
1Copyright © Eric S. Chung

PROTOFLEX: Co-Simulation for
Component-wise FPGA Emulator Development

Eric S. Chung, James C. Hoe, Babak Falsafi
{echung, jhoe, babak}@ece.cmu.edu

SimFlex
Computer Architecture Lab (CALCM)

Carnegie Mellon University
http://www.ece.cmu.edu/~simflex

2Copyright © Eric S. Chung

Motivation
• Community goal

– FPGA shared-memory multiprocessor research infrastructure

• Development obstacles
– Functional verification of multiprocessor RTL not easy!
– Distributed collaborators with independent research goals
– Don’t have teams of engineers but few (smart) researchers

• RTL development method for researchers needed
– HW functional validation for target model
– Concurrent development
– Gradual transition to full emulation

3Copyright © Eric S. Chung

PROTOFLEX
• Systematic methodology for FPGA emulator development

– Rely on validated component-based simulators for reference
– Create equivalent RTL piece-wise—then co-simulate for validation

• Advantages
– Gradual SW to HW transition
– Concurrent RTL development of agreed reference model
– Subsystem characterization

Core
(C++)

Caches
(C++)

Core
(C++)

Caches
(C++)

Coherence Engine
(C++)

NIC
(C++)

Coherence Engine
(Verilog)

NIC
(C++)

Software-only simulation reference system

Verification of RTL with co-simulation

4Copyright © Eric S. Chung

Necessary Ingredients
• Agreed-upon simulator w/ component-based interfaces

– Examples: FLEXUS, ASIM, Liberty, etc.
– Our simulator choice: FLEXUS

– Cycle- and execution-driven, component-based simulator
– Full-system support executes unmodified workloads + OS
– 20 components to support DSM, CMP configurations

• Generate interfaceable software objects from RTL
– HDL to C++ generator: Verilator
– Compiles synthesizable Verilog into equivalent C++ object
– Object can be instantiated in software and “clocked”
– Component wrapper to map between RTL signals & data structures

FLEXUS + Verilator enable PROTOFLEX methodology

5Copyright © Eric S. Chung

Outline
I Motivation
II PROTOFLEX

III Necessary Ingredients
IV Case Study: Cache Coherence
V Testing Strategies
VI Limitations
VII Conclusion

6Copyright © Eric S. Chung

Case Study: Cache Coherence
• Protocol Engine in FLEXUS

– Distributed, MSI directory-based protocol based on Piranha
– Protocol verified in Murphi
– Performance-optimized (e.g., NAK-free)
– Protocol microcoded in symbolic C-like language
– Parameterizable (1 to 32 transactions)

• Porting to RTL
– C++ model Bluespec Verilog (Verilated C++ object)
– Interfaced to FLEXUS’s distributed shared memory timing model
– Same microcode from C++

PROTOFLEX enabled design + validation in 6 weeks
Essential for FPGA emulator component development

7Copyright © Eric S. Chung

Case Study: Cache Coherence
Home Engine
• Handle request to home memory
• 7000L C++ / 4000L Bluespec
• 8000 slices, 46 MHz*

Remote Engine
• Handle request to remote memory
• Same code/timing/slices as Home

Local Engine
• Optional hardwired fast path for

local accesses
• 1000L C++ / 2000L Bluespec
• 14000 slices, 84MHz*

Home & Remote engines occupy 50% Virtex-II Pro 70 w/o tweaks

* Synthesis Target: Xilinx Virtex-II Pro 70

Home
Engine

Home
Engine

Local Engine

Cache Request
Channel

Snoop Request &
Cache Reply Channel

Eviction & Snoop
Reply Channel

Directory Locks

Home Engine Remote Engine

NIC

Interconnect

Memory &
Directory

Core

L1

L2

8Copyright © Eric S. Chung

Testing Strategies
• Isolated and in-system component testing

– Trace errors (e.g., deadlocks, bad responses) to culprit RTL
– Run in realistic operating conditions (boot unmodified Solaris)
– E.g., races in OLTP on DB2/Oracle, memory-bound cases in Ocean

• Advanced simulator test and debug features
– Adjustable debugging levels, assertions identified propagating errors
– Surrounding components (e.g., Cache, NIC) detected bad messages
– Adjustable simulator system configuration to force rare corner cases,

e.g., writeback races
– Collect simulation checkpoints as regression suite

e.g., sample multi program phases for coverage rather rerun whole program

• With PROTOFLEX, generate representative test cases quickly
– Testing infrastructure + benchmarks already present
– Handwritten testbenches for multi-node interactions would be HARD

9Copyright © Eric S. Chung

Limitations
• Validated RTL only good as reference simulator

– Microarchitectural details may be absent
– E.g., simulator cache, protocol engines only keep addresses not values

• Co-simulation performance
– RTL-level simulation of component dominates co-simulation time
– But, alternative is to simulate entire system in RTL

• Simulator metadata
– Some communication contain metadata for statistics tracking
– Must facilitate by component wrapper or implement in RTL

10Copyright © Eric S. Chung

Conclusion
• FPGA emulator development is hard

– Numerous, complex components to develop in RTL
– Distributed collaborators

• PROTOFLEX enables:
– Refinement path towards implementing full-system MP emulator
– Concurrent development of infrastructure
– Accelerate robust bring-up of final design in FPGA
– Subsystem validation and characterization

11Copyright © Eric S. Chung

Additional Information
• FLEXUS available at www.ece.cmu.edu/~simflex/

– Tutorial at ISCA 2006 (July)

• Verilator and tutorials available at
www.veripool.com

• PROTOFLEX being developed for TRUSS project
– Total Reliability Using Scalable Servers
– www.ece.cmu.edu/~truss

• Thanks! Questions? echung@ece.cmu.edu

12Copyright © Eric S. Chung

Backup Slides

13Copyright © Eric S. Chung

Co-simulation Methods

• Functional verification
– Detect functional divergences

• Timing verification
– Detect any timing divergences

14Copyright © Eric S. Chung

FLEXUS Component Abstraction

• Component-based simulators
– Built from timing-independent (like RDL), software components
– 20 components to support baseline DSM and CMP configurations

• Component Interfaces
– Ports, FIFO Channels, payload is arbitrary C++ data type

• Why care about component abstraction?
– RTL/SW co-simulation (map payloads to/from RTL signals)
– Concurrent porting into RTL with agreed reference model

doCycle

Cache
(C++)

Coherence
Engine
(Verilog)

doCycle {
 MemoryMessage aMessage;
 aMessage.theAddress = …;
 send(aMessage, …);
}

RTL signals / SW translation

always @ posedge CLK
 begin
 address[31:0] <= ...
 end

addr0

addr1

handleMsg (uint address,..)
{
 ...
}

