

Design Considerations for FPGA-Based
High-Performance CPUs

James Ball
Altera

110 Cooper St, Suite 201
Santa Cruz, CA 95060

USA
+1 408-544-8531

jball@altera.com

Kerry Veenstra
Altera

110 Cooper St, Suite 201
Santa Cruz, CA 95060

USA
+1 408-544-8521

kerry@altera.com

CPU designers who target FPGAs face different tradeoffs than designers who target
ASICs. Unaware of FPGA tradeoffs, an ASIC designer may see an unexpected
imbalance in timing paths leading to a slower design. Even when FPGA performance is
not a requirement (as in prototyping), some ASIC circuit blocks will map inefficiently
into FPGA resources. A designer who knows relative FPGA resource costs and speeds
can create a more efficient CPU. For example, a general-purpose embedded CPU has
been designed that performs 150 Dhrystone MIPS on a 130-nm FPGA and uses only
1,200 logic elements.

ASIC designers will see that adders in FPGAs are fast, cheap, and plentiful. Registers in
FPGAs also are fast and cheap, although it is best when they are driven by at least a small
amount of combinatorial logic. In some FPGAs, multipliers are fast. Memories in an
FPGA are dual-ported, and so designers should take advantage of the second, essentially
free, port whenever possible. Leaving the second memory port unused does not save
resources or improve performance because FPGA RAM cells remain dual-ported
regardless of port usage.

ASIC designers will see that wires and multiplexers are slower and that adding just one
more input to a multiplexer may slow performance unexpectedly. Wide equality
comparators, such as those used for tag comparisons, are slower and so must be used
carefully. On-chip RAMs, although feature-rich, will be slower than RAMs on ASICs.
Full barrel shifters on FPGAs will require more than a single clock cycle or stage to
complete their operation.

On-chip RAMs with more than two ports will be limited to a single write port unless the
write port is time-multiplexed or the remaining ports are in a read/write configuration.

Submitted for Workshop on Architecture Research using FPGA Platforms at HPCA-11.

