
Using an FPGA as a Prototyping Platform for Multi-core Processor Applications

Christopher R. Clark, Ripal Nathuji, Hsien-Hsin S. Lee
School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA
{cclark, rnathuji, leehs}@ece.gatech.edu

In this work, we investigate the use of an FPGA to assist in
the application development process for multi-core processors. We
implement a basic multi-core architecture in an FPGA and develop
a software application that takes advantage of multiple processors.
We also investigate the use of processor extensions by attaching
application-specific custom logic to each core.

A. FPGA Multi-core Architecture

Our architecture consists of multiple processor cores sharing a
common data bus and a 32-bit memory address space. We use both
hard-IP cores and soft-IP cores. A hard-IP embedded PowerPC (PPC)
core is attached to a 64-bit Processor Local Bus (PLB) and accesses
instructions and data from a 16 KB memory block connected to the
PLB. A bridge connects the PLB to the 32-bit On-chip Peripheral
Bus (OPB). The OPB bus hosts one or more MicroBlaze [1] soft-
IP processor cores. Each MicroBlaze (MB) processor has a 16 KB
dual-ported local memory for storing its program and its static and
dynamic data. The PPC and all of the MB processors can access
a shared 8 KB memory via the OPB bus. We have implemented
this architecture on an Avnet development board containing a Xilinx
Virtex-II Pro 2VP-20 FPGA. All logic, including processors and
buses, are connected to a 100 MHz clock. The various on-chip
memory regions are built using one or more hard-IP BlockRAMs.

B. Sample Application: DNA Sequencing

To study the feasibility of using an FPGA for the development
and testing of software for multi-core processors, we implement
a DNA sequencing algorithm because this task is well-suited to
parallelization. Since our goal was to study functionality rather than
achieve high performance, our sequencing algorithm uses a simple
dynamic programming approach. The scenario we consider is where
a single query sequence is compared against numerous sequences
from a database. Due to the data-parallel nature of the operations, we
utilize a single program multiple data (SPMD) programming model.

In our system, the PPC core acts as the central coordinator by
assigning database sequences to the individual MB cores and reading
back results. Inter-processor communication is conducted using the
shared memory block, which contains synchronization data structures.
Each MB copies a database sequence from the work queue in shared
memory to local memory. It then executes the sequencing algorithm
and writes the results to the shared memory. With multiple processors
performing comparisons in parallel, the time to search an entire
database is reduced. We have measured the time required to process
a database with 1000 entries, where each entry is 256 characters in
length. Table I presents the execution time and speedup for designs
with one, two, and four MicroBlaze cores.

The small amount of local memory available to store the state table
places a practical limit on the length of compared sequences. It would
be possible to compare longer sequences by iteratively running the
algorithm on overlapping sections of the sequence, but this would
make the number of operations O(n2) rather than O(n).

C. Processor Extensions Using Custom Logic

An interesting feature of an FPGA multi-core testbed is the ability
to quickly implement and evaluate processor extensions using the

TABLE I
PERFORMANCE SCALABILITY WITH MULTIPLE CORES

Number of Cores Execution Time (sec) Speedup

1 23.89 1.0
2 11.94 2.0
4 5.96 4.0

TABLE II
PERFORMANCE WITH PATTERN-MATCHING EXTENSION

Length of Execution Time (sec)
Database Sequences 1 Core 2 Cores 4 Cores

128 47.93 23.99 12.00
256 57.78 28.92 14.40
512 115.6 57.73 28.92

available programmable logic. We have developed a pattern-matching
co-processor that connects to the MicroBlaze through two Fast
Simplex Link (FSL) connections. The FSL channels allow data to be
transferred between the processor’s register file and external circuitry.
The pattern-matcher is based on a circuit presented in [2] that is
capable of detecting approximate matches between two sequences.
This is ideal for DNA sequencing, where we are looking for closely-
related sequences with a small number of character substitutions
(nucleotide mismatches) and character insertions (gaps).

We modified the MB software to use the co-processor to enable
the comparison of longer database sequences. The idea is to use the
custom logic to quickly scan the sequence and determine interesting
sub-sequences for further processing by the software. This prevents
unnecessary computation by allowing the software to ignore sections
of the database sequence that would not lead to a close match. Table II
shows the execution time of the algorithm using the pattern-matching
extension for 1000 database entries of various lengths. The results
show that longer sequences can be compared with about a factor of
two increase in execution time, significantly better than the factor of
n increase that would be incurred by a software-only approach.

D. Conclusion

We have found that FPGAs are a useful platform for studying
issues related to multi-core processors. Their flexibility allows differ-
ent designs to be evaluated (e.g. MPSD or streaming architectures),
and their ability to run full-length programs provides an advantage
over software simulators. This type of configurable platform enables
research on multiple issues related to multi-core processors, such as
helper threads or the allocation of different functions to different
cores (e.g. security, networking).

REFERENCES

[1] “MicroBlaze Soft Processor Core,” http://http://www.xilinx.com/xlnx/xebiz
/designResources/ip product/details.jsp?key=microblaze.

[2] C.R. Clark and D.E. Schimmel, “A Pattern-Matching Co-Processor
for Network Intrusion Detection Systems,” In Proceedings of IEEE
International Conference on Field-Programmable Technology, 2003.


