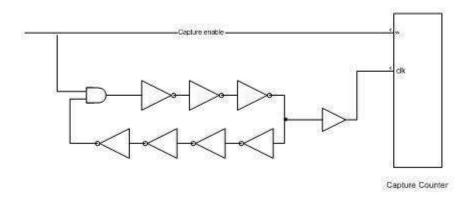


Siva Velusamy, Wei Huang, John Lach, Mircea Stan and Kevin Skadron

University of Virginia

Motivation

- Temperature fast becoming a constraint to increasing performance
- HotSpot [ISCA 03] tool that can be integrated with power performance simulators to predict temperature
- Use FPGAs to analyze
 - micro-architecture/temperature interactions
 - validate HotSpot

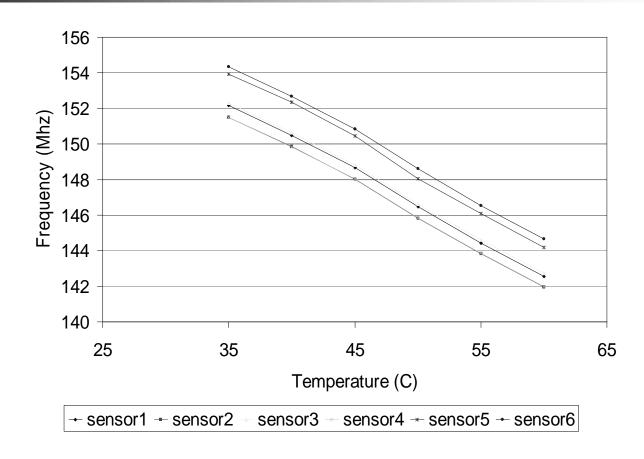

Methodology

- Implement temperature sensors on the FPGA fabric
- Instantiate sensors at various locations on the FPGA along with a softmicroprocessor under test
- A simple controller can read the temperature from the sensors and control the activity of the system.

Experimental Setup

- Ring oscillator based temperature sensor
- Xilinx EDK/ISE software
- Xilinx XC2VP7 device on an Insight Memec board
 - Embedded PowerPC used as the controller
 - MicroBlaze used as the processor under test
- FPGA core powered using constant DC supply that allows measurement of current

Temperature Sensor Schematic

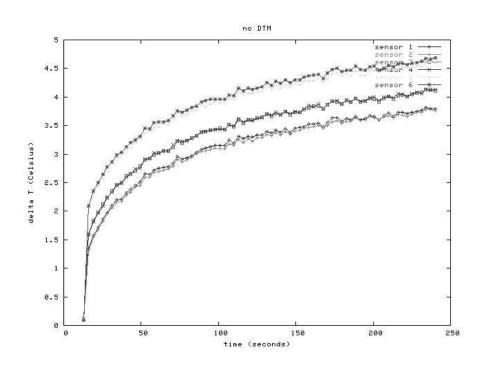

Sergio Lopez-Buedo and Eduardo Boemo,

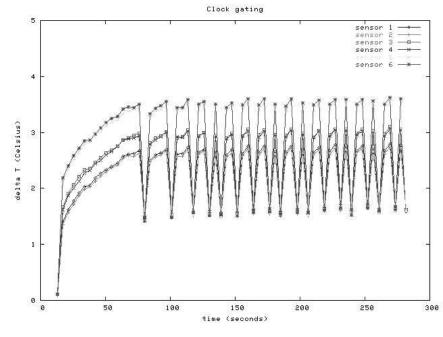
Making Visible the Thermal Behavior of Embedded Microprocessors on FPGAs, FPGA 2004.

Sensor Implementation

- Each NOT can be implemented in a single LUT.
- Each of the LUTs have to be manually placed (RLOC constraints)
- To achieve similar frequencies, the LUTs need to be manually routed as well.

Sensor Calibration


Application 1: Granularity of Temperature Variations


- Attempt to determine how big an area is needed to create a local HotSpot
- Method:
 - Create a "heater" unit
 - Sorround it by sensors
 - Vary the size of the heater unit and vary the distance between different heater units.

Application 1: Granularity of Temperature Variations

Heater size	Distance bet. Heater units			
	Close	Medium	Distant	
2 slices	2.81	2.71	2.66	
4 slices	4.15	3.40	3.06	
8 slices	6.86	6.82	6.62	

Application 2: Clock gating

Application 3: Comparison with HotSpot

Unit	Power (mW)	Sensor	HotSpot
blank1	0.1	3.4	3.37
left_ppc	75	3.5	3.69
bot_ppc	75	3.4	3.67
ррс	45	3.5	3.66
mb	313	4.1	3.96
blank2	0.1	3.4	3.38

Challenges

- Dependence on Vdd
- Vdd bounce/load
 - Especially when coupled with clock gating
- "Simple" soft-processors
- Core implementation differs from custom microprocessors
 - Area
 - frequency
- Power models

Conclusion

- Testbed for temperature-aware microarchitecture experiments.
- Easy to implement, fine grained granularity
- Validated HotSpot steady state temperatures to within 10%.