Full-System Architectural
Exploration Sandbox

Eriko Nurvitadhi and James C. Hoe
Computer Architecture Lab (CALCM)
Carnegie Mellon University

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2005, Slide 1

Sandbox Desiderata

¢ A PC where | can make small but unrestricted
changes to the CPU and/or memory architecture
- add/change instructions
- add/change mechanisms
This is not for microarchitecture/ILP studies

¢ Requirements
- real operating system, applications, 1/0, and networking
- afew 100 MIPS
- reasonable one-time investment to build infrastructure
- reasonable recurring cost to use the Sandbox in a study

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2003, Slide 2




Sandbox Platform

‘p‘ A* eeoooeoeo

“&M —* memory
b”cﬂqe Sandbox PC System

o | B Smncee

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2003, Slide 3

We can do it because ...

¢ We don’t need a P4
- detailed microarchitecture and ILP are second-order
- DRAM and I/O devices are relatively faster
Pentium or simpler will suffice for IPC=1 at 100MHz

¢ We don’t need “full” x86 compliance
- use C++ code from Bochs as ISA spec
- use Bochs simulation for reference behavior
(http://bochs.sourceforge.net)
Bochs-compliance is good enough to boot Linux and Windows
¢ We can use high-level HDL and FPGA

- emphasis on correctness rather than optimality
- incremental development

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2003, Slide 4




Preliminary Experience

¢ x86 CISC instruction decoding
- as little as 1 byte, as many as 16 bytes per instruction
- vyields 947 distinct behaviors (according to Bochs)
only 558 in pre-MMX x86
- a major source of complexity in real x86 implementations
the real reason there is a trace cache in Intel P4

¢ Bochs C++ to VHDL

- naive, straightforward translation of C++ code to
combinational logic in VHDL

- synthesize to Xilinx XC2V6000-6
* 5% resource
* 50MHz

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2003, Slide 5

Bochs Example:px cPu c::ADD EbGh

BX CPU_C: :ADD_EbGb (bxInstruction_c *i) {
Bit8u op2, opl, sum;
op2 = BX READ 8BIT REGx(i->nnn(),i->extend8bitL())
if (i->modCO()) {
opl = BX READ 8BIT REGx(i->rm(), i->extend8bitL())
sum = opl + op2;
BX WRITE 8BIT REGx(i->rm(), i->extend8bitL(), sum);
} else {
read RMW virtual byte(i->seg(), RMAddr (i), &opl);
sum = opl + op2;
Write RMW virtual byte (sum) ;
}
SET_FLAGS_OSZAPC_8(opl, op2, sum, BX INSTR ADDS) ;
}

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2003, Slide 6




To Conclude

¢ A powerful tool for architectural studies
- complete control of CPU and memory controller
- run real operating system and applications
¢ | am not saying it is easy, but it definitely is doable
- Bochs as specification and reference behavior
- incremental development in FPGA
¢ Why not just use SIMICS, Bochs, etc?
- 10 MIPS out of the box, but performance degrades very
quickly when you tack on new behavior or detail
¢ Why not use Pentium RTL models?
- real RTL models are hard to come by
- real RTL models are impossible to modify

Nurvitadhi & Hoe. CMU/ECE WARFP 2005, February 2005, Slide 7

CAICM

TRUSS

Computer Architecture Lab (CALCM)
Carnegie Mellon University
http://www.ece.cmu.edu/CALCM

WARFP 2005, February 2005, Slide 8

Nurvitadhi & Hoe. CMU/ECE




