A Flexible Architecture for Simulation and Testing (FAST) Multiprocessor Systems

John D. Davis, Lance Hammond,
Kunle Olukotun
Computer Systems Lab
Stanford University

FAST @ Glance

- Custom PCB design
- 4-way tightly-coupled multiprocessor
- Real R3000/R3010 cores, CPU/FPU
- Flexible memory simulation hierarchy, including L1 caches

FAST Capabilities

- Real Applications
 - Including OS & FP-intensive code
- Multiprocessor systems up to 4 processors
- Variety of Memory Structures
 - L1 and/or L2 caches, FIFO's, DRAM
- Emulation of on-chip and off-chip memory latencies
- Expandable interface
 - Multiple PCBs, other digital interfaces

FAST Simulation Space

- Thread Level Speculation
 - Stanford's HYDRA CMP
- Transactional Memory
 - Stanford's TCC
- Large-Scale Networked CMP
 - Stanford's Smart Memories
- Multithreaded HW
- Embedded SOC Architectures
- All at multi-MHz speeds

FAST Processor Tiles

- 4 MIPS-based Processor Tiles
- CPU and FPU
 - External Cache and Coprocessor interface
- Local Memory Controller
 - Cache or other memory structures
- Coprocessor
 - Additional Functionality
 - ISA Extensions
- L1 Local Memory
 - SRAMs: 256K X 36-bit

MP FAST

- Read/Write Controller:
 - Hub of the multi-core system
 - Handles the interprocessor interaction
- Shared Memory Controller:
 - Interfaces the RWC with the L2 memory SRAM array and the expansion connector
 - Expansion connector can connect multiple PCBs, main memory daughter card, or other digital interfaces.

FAST Support HW

- Host communication
 - Daughter card with embedded processor and Ethernet controller
- CPLD
 - FPGA Programming
 - Clock Management
 - PCB Management
- Flash Memory
 - Store FPGA bitstreams
 - Onboard SW, like Board OS

FAST Conclusions

- Flexible hardware emulation platform for tightly-coupled multiprocessor systems
- Emulate a variety of memory systems
- Full system or partial system simulation
- Expandable simulation fabric
- Integer and Floating-point applications

BACKUP

Complete FAST

FAST HW at a Glance

- 4 MIPS-based Processor Cores:
 - CPU and FPU @ 25MHz
 - 2 XCV1000 @ 25-100MHz
 - L1 Local Memory, each: 256K X 36-bit @25-100MHz
- XC2V6000 L2 Shared Memory Controller @ 200 MHz
 - 16M X 36-bit L2 Shared Memory @ 200 MHz
- XC2V6000 Read/Write Controller @ 200 MHz
- All on PCB I/O @ 3.3V
- Three main clock domains: 25MHz, 100MHz, 200MHz
- Four voltage domains: 1.5V, 2.5V, 3.3V, 5.0V
- 128Mb Flash Memory to store FPGA configurations and PMON OS
- CPLD for additional control, FPGA programming, etc.
- RCM3200 Microcontroller with Embedded Ethernet Port for off-PCB Communication

FAST PCB Details

- 23 Layer Board
- 4200 nets
- 28000 vias
- 43 BGA packages
- 2500 testpoints
- 4300 parts

FAST Status

- PCB in fabrication and assembly phase
- Need to partition Verilog for initial Speculative Thread design
- Building Morphware infrastructure for Rapid prototyping