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FPGA-Based Reconfigurable Computing

• The advent of multi-million-gate FPGAs introduced a new era in 
reconfigurable computing
– Complex and general-purpose (instruction-programmable) parallel 

computing platforms supporting floating-point arithmetic

• The peak floating-point performance of FPGAs has 
outnumbered (last 1-2 years) that of modern microprocessors 
and is growing much faster than the latter

• FPGA advantages (compared to ASIC designs)
– Flexibility
– Low cost
– Ease of upgrading
– High availability

• Lower speed
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HERA HERA ((HEHEterogeneousterogeneous RReconfigurableeconfigurable AArchitecture)rchitecture)
Motivation

• The performance and efficiency of an algorithm highly 
depend on its good match with the target hardware

• A real-world application has various subtasks with 
different architectural requirements

• SIMD: good for data-parallel operations
• MIMD: deals better with dynamic uncertainties

• Our target (matrix-based) applications mostly involve data-
parallel operations
– However, they can benefit in certain instances from MIMD 

(e.g., LU factorization & multiplication of large matrices)
è

• HERA: A mixed-mode machine reconfigured at 
runtime to support a variety of independent or cooperating 
computing modes (SIMD, MIMD, Multiple-SIMD) to better 
match the subtask characteristics of a single application
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HERA System Architecture
• NEWS connections
• Hierarchical bus system
• PCI communication with 

host machine
• Shared local data 

memory port for local 
groups of 3 PEs

• Customizable in terms of 
PE function and total 
number of PEs

• Support global (PE ID) 
and local masking (mask 
register)

• PE mode switch by one 
instruction 
(Configure/JumpI/OMR)

*PE: Processing Element
*LDM: Local data memory
*LPM: Local program memory
*GDM: Global data memory
*GPM: Global program 

memory
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PE Microarchitecture
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Parallel BDB LU Factorization 
(sparse matrices)

?



WARFP05 ziavras@njit.edu 7

Tasks in Parallel BDB LU Factorization

• FAC: Independent factorization of all the 3-block groups. No 
data communication between PEs

• MAC: Independent multiplication of the factored border block 
pairs and (local) accumulation of the partial products inside 
each PE to later produce the inner product. Every resulting 
product has the same size as Ann. This work can be 
overlapped with the FAC work as long as the corresponding L
and U blocks are already factored

• PAC: Parallel (global) accumulation of the partial results in all 
PEs in parallel using the results of MAC tasks. This work also 
can be overlapped with FAC and MAC work

• LAST: Parallel LU factorization of the last block upon finishing 
all the factorization and multiplication work. The beginning of 
this work starts with the synchronization of the involved PEs. 
The last block is normally dense
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Mixed-Mode Scheduling (1)
Step 1:

– Identify 3-block groups of comparable size and put them 
into the same task queue

– Configure HERA into M-SIMD based on the task information 
– Assign 3-block groups from a queue to PEs in the same 

SIMD group, and perform the FAC and MAC work on these 
groups until the number of remaining 3-block groups is less 
than the number of PEs (i.e., 36)

Step 2: Assign the remaining 3-block groups in such a way that 
groups of comparable size go to the same column of PEs and 
every PE has the largest possible number of idle nearest 
neighbors. This is an effort to facilitate the following PAC work. 
If necessary, reconfigure the system into a different M-SIMD
layout

Step 3: A PE is reconfigured into MIMD as soon as it finishes its 
work and no more 3-block group is in the task queue
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Mixed-Mode Scheduling (2)

Step 4: Assign each PE in MIMD to the multiplication of a pair of 
(row and column) factored border blocks. Since the LDM has a 
shared port with its east and south neighbors, every idle PE will 
help its neighbors after it finishes its own work; no data 
transfer incurs in this process

Step 5: After the factorization of all the 3-block groups and the 
multiplication of factored border blocks, reconfigure all the PEs
again into the SIMD mode to carry out the PAC work

Step 6: Factor the last block in SIMD
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Typical BDB Execution Mode for 

Large BDB Matrices



WARFP05 ziavras@njit.edu 11

0

50

100

150

200

250

300

350

1000 x 1000 2000 x 2000 3000 x 3000 4000 x 4000 5000 x 5000

Matrix size

E
xe

cu
tio

n
 ti

m
e 

(m
s)

SIMD

MIMD

MIXED-MODE

DELL PC

Performance



WARFP05 ziavras@njit.edu 12

Conclusions

• New generation FPGAs brought about a new era in 
reconfigurable computing & multiprocessor-on-chip designs
– Viable and cost-effective approaches in building high-performance 

parallel computing platforms for scientific computing

• Mixed-mode parallelism can match better the requirements of 
applications throughout execution
– Better performance than SIMD or MIMD 
– Appropriate for applications with irregular computation and 

communication patterns, and/or frequent conditional executions 

• HERA yields high performance
– Dynamic reconfiguration to match the application
– User-programmable (software)
– Dynamic mixed-mode execution (SIMD, MIMD, combination M-SIMD)
– Low-cost
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Vector Processor for the W-Matrix Method

(Solution of Linear Equations: Ax=b)

• Let A = L D U
• Let L-1 = WL & U-1 = WUè x = WU D-1 WL b 
• Solution in 3 steps:  WL b = z, D-1 z = y & WU y = x. 
• Let L = L1 L2 … Ln, where Li is an identity matrix having 

the i-th column the same as that of L è
WL = L-1 = (L1 L2 … Ln) -1 = Ln

-1…L2
-1L1

-1 = Wn …W2 W1, 
where W i is Li with the signs of the off-diagonal elements 
reversed.

• x = (L1
t)-1(L2

t)-1… (Lnt)-1 D-1 Ln
-1…L2

-1L1
-1b = (W1

t)(W2
t)… 

(Wn
t) D-1 Wn…W2W1b or x = (Wa

t)(Wb
t)D-1 WbWab. The 

number of non-zero elements increases as we combine 
the W factors, reducing the number of serial steps.
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Vector Operations for the W-matrix Method

Reduce the number of indirect memory accessesLoading-Adding-Storing with the same indices *

Reduce the number of memory accessesMultiplication followed by addition*

Adding only certain elements of a vector with 
certain other elements of the same vector

Fast multiplication of a matrix with a vectorAdding only certain elements of a vector with 
certain elements of another vector *

Creating a vector from the last row numbers of 
partitions of a matrix *

Creating a vector from the column indices of all 
non-zero elements of a matrix

Fast access of the elementsCreating a vector from all non-zero elements

Fast access of the elementsAccessing only the diagonal elements

Fast access of the elementsCreating pseudo-columns from many partially 
filled columns

Selecting a row based on the minimum count

Sorting the rows based on the above counts

Fast ordering of rows for more parallelismCounting the number of non-zero elements 

EffectOperations
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IEEE Power Benchmarks
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Two- & Three-Stage Vector-Chaining
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