
WARFP05 ziavras@njit.edu 1

Intra- and Inter-FPGA Programmable
Multiprocessor Designs

with Emphasis on Large-Scale Matrix Operations*

Sotirios G. Ziavras, Xiaofang Wang & Muhammad Z. Hasan

ECE Dept.
New Jersey Institute of Technology

Newark, NJ 07102
ziavras@njit.edu

WARFP05 ziavras@njit.edu 2

FPGA-Based Reconfigurable Computing

• The advent of multi-million-gate FPGAs introduced a new era in
reconfigurable computing
– Complex and general-purpose (instruction-programmable) parallel

computing platforms supporting floating-point arithmetic

• The peak floating-point performance of FPGAs has
outnumbered (last 1-2 years) that of modern microprocessors
and is growing much faster than the latter

• FPGA advantages (compared to ASIC designs)
– Flexibility
– Low cost
– Ease of upgrading
– High availability

• Lower speed

WARFP05 ziavras@njit.edu 3

HERA HERA ((HEHEterogeneousterogeneous RReconfigurableeconfigurable AArchitecture)rchitecture)
Motivation

• The performance and efficiency of an algorithm highly
depend on its good match with the target hardware

• A real-world application has various subtasks with
different architectural requirements

• SIMD: good for data-parallel operations
• MIMD: deals better with dynamic uncertainties

• Our target (matrix-based) applications mostly involve data-
parallel operations
– However, they can benefit in certain instances from MIMD

(e.g., LU factorization & multiplication of large matrices)
è

• HERA: A mixed-mode machine reconfigured at
runtime to support a variety of independent or cooperating
computing modes (SIMD, MIMD, Multiple-SIMD) to better
match the subtask characteristics of a single application

WARFP05 ziavras@njit.edu 4

HERA System Architecture
• NEWS connections
• Hierarchical bus system
• PCI communication with

host machine
• Shared local data

memory port for local
groups of 3 PEs

• Customizable in terms of
PE function and total
number of PEs

• Support global (PE ID)
and local masking (mask
register)

• PE mode switch by one
instruction
(Configure/JumpI/OMR)

*PE: Processing Element
*LDM: Local data memory
*LPM: Local program memory
*GDM: Global data memory
*GPM: Global program

memory

WARFP05 ziavras@njit.edu 5

PE Microarchitecture

IF ID

1 2 3

fpmul

1 2 ...

fpdiv

28

1 2 3

fpsub

1 2 3

fpadd

M
E
M

WB

LPM

LDM

LCU

Control
Signals

Local
Instructions

Global Instructions

N_IN

S_OUT

N_OUT

S_IN

W_IN

W_OUT

E_IN

E_OUT

PE(i,j)

West PE East PE

North PE

Cbus_j

South PE

LDM: Local Data Memory
LPM: Local Program MemoryTo Cbus_j

Annapolis WildStar PCI-II board (2 Xilinx Virtex II XC2V6000-5)
36 (6 x 6) PEs; 80MHz

WARFP05 ziavras@njit.edu 6

Parallel BDB LU Factorization
(sparse matrices)

?

WARFP05 ziavras@njit.edu 7

Tasks in Parallel BDB LU Factorization

• FAC: Independent factorization of all the 3-block groups. No
data communication between PEs

• MAC: Independent multiplication of the factored border block
pairs and (local) accumulation of the partial products inside
each PE to later produce the inner product. Every resulting
product has the same size as Ann. This work can be
overlapped with the FAC work as long as the corresponding L
and U blocks are already factored

• PAC: Parallel (global) accumulation of the partial results in all
PEs in parallel using the results of MAC tasks. This work also
can be overlapped with FAC and MAC work

• LAST: Parallel LU factorization of the last block upon finishing
all the factorization and multiplication work. The beginning of
this work starts with the synchronization of the involved PEs.
The last block is normally dense

WARFP05 ziavras@njit.edu 8

Mixed-Mode Scheduling (1)
Step 1:

– Identify 3-block groups of comparable size and put them
into the same task queue

– Configure HERA into M-SIMD based on the task information
– Assign 3-block groups from a queue to PEs in the same

SIMD group, and perform the FAC and MAC work on these
groups until the number of remaining 3-block groups is less
than the number of PEs (i.e., 36)

Step 2: Assign the remaining 3-block groups in such a way that
groups of comparable size go to the same column of PEs and
every PE has the largest possible number of idle nearest
neighbors. This is an effort to facilitate the following PAC work.
If necessary, reconfigure the system into a different M-SIMD
layout

Step 3: A PE is reconfigured into MIMD as soon as it finishes its
work and no more 3-block group is in the task queue

WARFP05 ziavras@njit.edu 9

Mixed-Mode Scheduling (2)

Step 4: Assign each PE in MIMD to the multiplication of a pair of
(row and column) factored border blocks. Since the LDM has a
shared port with its east and south neighbors, every idle PE will
help its neighbors after it finishes its own work; no data
transfer incurs in this process

Step 5: After the factorization of all the 3-block groups and the
multiplication of factored border blocks, reconfigure all the PEs
again into the SIMD mode to carry out the PAC work

Step 6: Factor the last block in SIMD

WARFP05 ziavras@njit.edu 10

Typical BDB Execution Mode for

Large BDB Matrices

WARFP05 ziavras@njit.edu 11

0

50

100

150

200

250

300

350

1000 x 1000 2000 x 2000 3000 x 3000 4000 x 4000 5000 x 5000

Matrix size

E
xe

cu
tio

n
 ti

m
e

(m
s)

SIMD

MIMD

MIXED-MODE

DELL PC

Performance

WARFP05 ziavras@njit.edu 12

Conclusions

• New generation FPGAs brought about a new era in
reconfigurable computing & multiprocessor-on-chip designs
– Viable and cost-effective approaches in building high-performance

parallel computing platforms for scientific computing

• Mixed-mode parallelism can match better the requirements of
applications throughout execution
– Better performance than SIMD or MIMD
– Appropriate for applications with irregular computation and

communication patterns, and/or frequent conditional executions

• HERA yields high performance
– Dynamic reconfiguration to match the application
– User-programmable (software)
– Dynamic mixed-mode execution (SIMD, MIMD, combination M-SIMD)
– Low-cost

WARFP05 ziavras@njit.edu 13

Vector Processor for the W-Matrix Method

(Solution of Linear Equations: Ax=b)

• Let A = L D U
• Let L-1 = WL & U-1 = WUè x = WU D-1 WL b
• Solution in 3 steps: WL b = z, D-1 z = y & WU y = x.
• Let L = L1 L2 … Ln, where Li is an identity matrix having

the i-th column the same as that of L è
WL = L-1 = (L1 L2 … Ln) -1 = Ln

-1…L2
-1L1

-1 = Wn …W2 W1,
where W i is Li with the signs of the off-diagonal elements
reversed.

• x = (L1
t)-1(L2

t)-1… (Lnt)-1 D-1 Ln
-1…L2

-1L1
-1b = (W1

t)(W2
t)…

(Wn
t) D-1 Wn…W2W1b or x = (Wa

t)(Wb
t)D-1 WbWab. The

number of non-zero elements increases as we combine
the W factors, reducing the number of serial steps.

WARFP05 ziavras@njit.edu 14

Vector Operations for the W-matrix Method

Reduce the number of indirect memory accessesLoading-Adding-Storing with the same indices *

Reduce the number of memory accessesMultiplication followed by addition*

Adding only certain elements of a vector with
certain other elements of the same vector

Fast multiplication of a matrix with a vectorAdding only certain elements of a vector with
certain elements of another vector *

Creating a vector from the last row numbers of
partitions of a matrix *

Creating a vector from the column indices of all
non-zero elements of a matrix

Fast access of the elementsCreating a vector from all non-zero elements

Fast access of the elementsAccessing only the diagonal elements

Fast access of the elementsCreating pseudo-columns from many partially
filled columns

Selecting a row based on the minimum count

Sorting the rows based on the above counts

Fast ordering of rows for more parallelismCounting the number of non-zero elements

EffectOperations

WARFP05 ziavras@njit.edu 15

IEEE Power Benchmarks

20.758292183687257-bus
(6% NZ)

23.2257550983430-bus
(12% NZ)

25.9241563211014-bus
(27.55% NZ)

With sparse handling
instructions

With standard
instructions

Cycle
Savings
(%)

Cycles NeededTest System

WARFP05 ziavras@njit.edu 16

Two- & Three-Stage Vector-Chaining

502550Add-
Store

27.56387Load-
Mult

With
Chaini

ng

W/O
Chain-

ng

Savin
gs

(%)

Cycles NeededOpera-
tions

10.386734751430
bus

10.341474164414
bus

With
Chaini-

ng
(Load-
Mult-

Prefetch
)

W/O
Chaining

Savi-
ngs

(%)

Cycles Needed

