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Schedule

1:30-1:40 Overview (Saman)

1:40-2:20 Stream Architectures (Saman)

2:20-3:00 Stream Languages (Bill)

3:00-3:30 Break

3:30-3:55 Stream Compilers (Saman)

3:55-4:20 Domain-specific
Optimizations (Saman)

4:20-5:00 Scheduling Algorithms (Bill)



Timeline: 1960’s

1960 1970 1980 1990 2000

Models of Computation Petri Nets
Comp Graphs

Languages / Compilers

Modeling Environments

= Stream” (P.J. Landin) — 1960

= Linking Algol 60 and lambda calculus, used for loop histories

= Petri Nets (C.A. Petri) — 1966

= Places, transitions, tokens

= Computation Graphs (Karp, Miller) — 1967
= Graph with firing actors, minimal firing requirements
= Formulate determinancy, termination, queuing properties




Timeline: 1970’s

1960 1970 1980 1990 2000

Models of Computation PetriNets PN
Comp Graphs CSP

Languages / Compilers Lucid Id_
C lazy VAL

Modeling Environments

= Process Networks (Kahn) — 1974
= Sequential threads communicate with unbounded FIFO's
= Deterministic
= CSP: Communicating Sequential Processes (Hoare) — 1978
= Sequential threads communicate with rendezvous message-passing
= Non-deterministic due to quards
= Dataflow languages
= First version dataflow procedure langauge (Dennis)
= Lucid (Ashcroft, Wadge), Id (Arvind, Gostelow), VAL (Dennis)
= Functional languages with lazy evaluation for streams
= lazy evaluator (Henderson, Morris); Sieve of Eratosthenes (Friedman, Wise)



Timeline: 1980’s

1960 1970 1980 1990 2000

Models of Computation ~ PetriNets PN SDF
Comp Graphs CSP

Languages / Compilers Lucid Id, Sisal
C_lazy VAL Occam

Modeling Environments )
Gabriel

= SDF: Synchronous Dataflow (Lee, Messerschmitt) — 1987
= Actors have static, non-uniform rates; firing is atomic and data-driven
= Allows static scheduling
= Sisal: Streams and Iteration in a Single Assignment Language — 1983
= Adds recursion, finite streams to VAL
= Implementations on many parallel machines
= IF1 intermediate format
= Occam - 1983
= Strongly typed procedural language
= Practical implementation of CSP

= More work on dataflow and functional languages (e.g., M. Broy)




Timeline: 1990’s

1960 1970 1980 1990 2000
Models of Computation Petri.'\.lets PN S[:>F
Comp Graphs CSP FSM
Languages / Compilers lucid Id  Sisal  Signal Esterel

é Ia'zy VAL Oc’cam LUSTIiEbH

Modeling Environments Ptolemy Matlab/Simulink
Gabriel Grape-II  etc.

= Synchronous Languages: Signal, LUSTRE, etc.

= Designed for expressiveness, verification moreso than high performance
= Esterel

= For reactive programming; event-driven and control-oriented

= Often implemented in either hardware or software
= pH: Parallel Haskell (Nikhil, Arvind, et al.)

= Combines lazy functional and dataflow philosophies for high performance
= Ptolemy: Heterogeneous Modeling Environment (Lee et al.)

= Many contributions to formalisms, scheduling, graph-level optimization
= Commercial Environments (Matlab, SPW, COSSAP, ADS, etc.)

= Becoming increasingly prevalent




Stream Programming Models

m) = Prototyping environments

= Conventional languages
= Object Oriented
= Procedural
= Assembly

= Stream languages
= Streamlt
= Brook
« Cg




Actor-Oriented Design
in the Ptolemy Project (UC Berkeley)

Model of Computation:

< connection - * Messaging schema
Actor Relation Actor - Flow of control
Port (@)—K ¢ Hink Port » Concurrency
Attributes Attributes
"%% _ ®§° Examples:
%, s * Dataflow
* Process networks
Port » Synchronous
Actor - Time triggered
\ Attributes - Discrete-event systems
* Publish & subscribe

called a "kernel," "step,” ...

Most Ptolemy IT models of computation are "actor oriented.”
But the precise semantics depends on the selected “director,”
which implements a model of computation.




Focus on Dataflow (a few variants)

Computation graphs [Karp & Miller - 1966]

Process networks [Kahn - 1974]

Static dataflow [Dennis - 1974]

Dynamic dataflow [Arvind, 1981]

K-bounded loops [Culler, 1986]

Synchronous dataflow [Lee & Messerschmitt, 1986]
Structured dataflow [Kodosky, 1986]

PGM: Processing Graph Method [Kaplan, 1987]
Synchronous languages [Lustre, Signal, 1980’s]
Well-behaved dataflow [Gao, 1992]

Boolean dataflow [Buck and Lee, 1993]
Multidimensional SDF [Lee, 1993]

Cyclo-static dataflow [Lauwereins, 1994]

Integer dataflow [Buck, 1994]

Bounded dynamic dataflow [Lee and Parks, 1995]
Heterochronous dataflow [Girault, Lee, & Lee, 1997]

Many tools,
software
frameworks,
and hardware
architectures
have been
built to
support one
or more of
these.



Synchronous Dataflow (SDF)

Fixed Production/Consumption Rates

fire A{ fire B{
channel

N M
} }

consume M

;r'oduce N

e Schedulable statically

e Decidable:
e buffer memory requirements
e deadlock

‘ Will address in detail in section on scheduling



Selected Generalizations

static
A

— Multidimensional Synchronous Dataflow (1993)
= Arcs carry multidimensional streams
= One balance equation per dimension per arc
— Cyclo-Static Dataflow (Lauwereins, et al., 1994)
= Periodically varying production/consumption rates
— Heterochronous Dataflow (1997)
= Combines state machines with SDF graphs
= Very expressive, yet decidable
— Boolean & Integer Dataflow (1993/4)
= Balance equations are solved symbolically
= Permits data-dependent routing of tokens
= Heuristic-based scheduling (undecidable)
» Dynamic Dataflow (1981-)
= Firings scheduled at run time
= Challenge: maintain bounded memory, deadlock freedom, liveness
= Demand driven, data driven, and fair policies all fail
—> Kahn Process Networks (1974-)
M = Replace discrete firings with process suspension
dy namic = Challenge: maintain bounded memory, deadlock freedom, liveness




Other Stream-Like Models of Computation

(all implemented in Ptolemy II)

= Push/Pull
= dataflow with disciplined nondeterminism
= e.g. Click (Kohler, 2001)
= Discrete events N
= data tokens have time stamps
= e.g.NS
= Continuous time
= Streams are a continuum of values
= e.g. Simulink

= Synchronous languages all of these include a
= sequence of values, one per clock tick logical notion of time
= fixed-point semantics

= e.g. Esterel

= Time triggered
= Similar, but no fixed-point semantics
= e.g. Giotto )

= Modal models
= state machines + stream-like MoCs, hierarchical
= e.g. Hybrid systems




Software Legacy of the Ptolemy Project

Gabriel (1986-1991)
= Written in Lisp
Aimed at signal processing
Synchronous dataflow (SDF) block diagrams
Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators
olemy Classic (1990-1997)
Written in C++
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components
olemy II (1996-2022)
Written in Java
Domain polymorphism
Multithreaded
Network integrated and distributed
Modal models
Sophisticated type system
CT, HDF, CI, GR, etc.

P

P
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Each of these
served, first-and-
foremost, as a
laboratory for
investigating design.

PtPlot (1997-?7?)
= Java plotting package

Tycho (1996-1998)
= Itcl/Tk GUI framework

Diva (1998-2000)
= Java GUI framework

Focus has always
been on embedded
software.




Ptolemy II

Hierarchical component Ptolemy II:
contraller | el
_ﬁ ......................... Our current framework for
el o] experimentation with actor-oriented
""""""""" Q design, concurrent semantics, visual
» S syntaxes, and hierarchical,

Th heterogeneous design.
* Th<regioni && Th =-regioni Q )
made =1
Th = region2 || Th < -region2
mode=0
stabiliz

............
...........
..........
.........
------
.........

AddSubtract

http://ptolemy.eecs.berkeley.edu

example Ptolemy IT model: hybrid control system




Implementing High-Performance
Streaming Applications

= Modeling environments are good for prototyping,
algorithmic optimizations
= However, embedded systems have tight resource
constraints:
= Real-time requirements (throughput, latency)
= Limited battery life (power)
= Limited instruction and data memory

= Current practice: re-implement stream algorithm in high-
performance language

= C/ assembly
= C++ runtime system (e.g., Spectrumware)

= New class of “stream languages” aim to raise abstraction
level, provide unified development environment
= Streamlt
= Brook
n Cg




Stream Programming Models

= Prototyping environments

= Conventional languages
m) = Object Oriented
= Procedural
= Assembly

= Stream languages
= Streamlt
= Brook
« Cg




Streaming in Object Oriented Style

= Each actor is an object

= Scheduled by pull model Control

(Runtime System)
1T




Streaming in Object Oriented Style

= Each actor is an object Control
ontro
= Scheduled by pull model (Runtime System)

class FIRFilter extends Stream {
int N; j::E
float[] input;
void getData(float[] output,
int offset, int length) {
if (input==null) {
input = new floatfMAX_LENGTH];
source.getData(input, 0, N+length);
} else
source.getData(input, N, length);
for (int i=0; i<length; i++) {
float sum = 0;
for (int j=0; j<N; j++)
sum = sum + datal[i+j]*h[j][N];
output[i+offset] = sum;
}
for (int i=0; i<N; i++)
input[i] = input[i+length];




Streaming in Object Oriented Style

= Each actor is an object
= Scheduled by pull model -

0

void main() {
DataSource datasource = new DataSource();
FIRFilter filter = new FIRFilter(5);
Display display = new Display();
filter.source = datasource;
display.source = filter;
display.run();




Streaming in Object Oriented Style

" PrO: Control
= Modular (Runtime System)

« Shows structure of graph =

= Automatic scheduling

= Con:

= Overhead of objects

= Communication is static;
don't need virtual dispatch

= Coarse-grained communication
= Block size is architecture-dependent
= Obscures fine-grained algorithm

= Overhead of run-time scheduler
= Lots of method calls
= Impossible to keep persistent data in registers

=« Compiler can’t optimize across module boundaries




Stream Programming Models

= Prototyping environments

= Conventional languages
= Object Oriented
m) = Procedural
= Assembly

= Stream languages
= Streamlt
= Brook
« Cg




Streaming in Procedural Style

int N = 5;
int BLOCK_SIZE = 100;

void main() {
float input[] = new float[N];
float output[] = new float[BLOCK_SIZE];
inti, j;
for (i=0; i<N; i++)
input[i] = getData();
while (true) {
for (out=0; i<N; i++, j++)
step(input, output, i, j);
int wholeSteps = (BLOCK_SIZE-j)/N;
for (int k=0; k<wholeSteps; k++)
for (i=0; i<N; i++, j++)
step(input, output, i, j);
for (i=0; j<BLOCK_SIZE; i++, j++)
step(input, output, i, j);
displayBlock(output);

= Complicated loop nest

= Statements in loops
represent actors

= Circular buffers for data items
= Scheduling done by hand

= Loop bounds adjusted
for cache size

void step(float[] input, float[] output, int i, int j)
{
float sum = 0;
for (int k=0; k<i; k++)
sum = sum + input[K]*h[k+i][N];
for (int k=i; k<N; k++)
sum = sum + input[K]*h[k-i][N];
output[j] = sum;
input[i] = getData();
}




Streaming in Procedural Style

int N = 5;
int BLOCK_SIZE = 100;

void main() {
float input[] = new float[N];
float output[] = new float[BLOCK_SIZE];
inti, j;
for (i=0; i<N; i++)
input[i] = getData();
while (true) {
for (out=0; i<N; i++, j++)
step(input, output, i, j);
int wholeSteps = (BLOCK_SIZE-j)/N;
for (int k=0; k<wholeSteps; k++)
for (i=0; i<N; i++, j++)
step(input, output, i, j);
for (i=0; j<BLOCK_SIZE; i++, j++)
step(input, output, i, j);
displayBlock(output);

= Pro:

= Better performance than
object-oriented style

= Con:

= Obscures parallelism and
communication patterns

= Scheduling and buffer
management done by hand
= Difficult get it right
= Hard to maintain

= Impossible for compiler to
optimize for given resources

= No modularity

= Actors are mixed with global
variables and control flow

= Hard to visualize computation



Stream Programming Models

= Prototyping environments

= Conventional languages
= Object Oriented
= Procedural
m = Assembly

= Stream languages
= Streamlt
= Brook
« Cg




Streaming in Assembly Code

= Example: Freq band detection

= Used in... AD
- metal detector
- garage door opener
- spectrum analyzer

[ Band pass ]

Duplicate

Source: Detect| |Detect| |Detect| |Detect

Application Report SPRA414 v ¥ v ¥
Texas Instruments, 1999 _teo ] [eo ] [ep J [ eo |




DSP Implementation

File Name: FIRO. ASM
; Originator: Digital control systems Apps group - Hbuston
i Target Sys: ' C24x Evaluation Board

: Description: FIR bandpass filter which detects the presence of a
: 500Hz signal. If the tone is detected an LED is
: lit by using the output port. Sampling Frequency

forced to be 4kHz.

; Last Update: 9 June 1997

.include f240regs. h

DACD .set 0000h ;Input data register for DACO
DACL .set 0001h ;Input data register for DACL
DAC2 .set 0002h ;Input data register for DAC2
DAC3 .set 0003h ;Input data register for DAC3
DACUPDATE . set 0004h ; DAC Updat e Regi ster

; Variable Declarations for B2

GPRO, 1 ; General Purpose Register
DACOVAL, 1 ; DACD Channel Val ue
DACLVAL, 1 ; DACL Channel Val ue
DAC2VAL, 1 ; DAC2 Channel Val ue
DAC3VAL, 1 ; DAC3 Channel Val ue

; Vector address declarations

.sect ".vectors"

RSVECT B START ; Reset \ector
INT1 B PHANTOM ; Interrupt Level
INT2 B FIRISR; Interrupt Level
INT3 B PHANTOM ; Interrupt Level
INTA B PHANTOM ; Interrupt Level
INTS B PHANTOM ; Interrupt Level
INT6 B PHANTOM ; Interrupt Level
RESERVED B PHANTOM ; Reser ved
SWINT8 B PHANTOM ; User S/W I nterrupt
SWINT9 B PHANTOM ; User S/W I nterrupt

G N RO

SWINT10 B PHANTOM ; User S/WInterrupt
SWINT11 B PHANTOM ; User S/WInterrupt
SWINT12 B PHANTOM ; User S/WInterrupt
SWINT13 B PHANTOM ; User S/WInterrupt
SWINT14 B PHANTOM ; User S/WInterrupt
SWINT15 B PHANTOM ; User S/WInterrupt

SWINT16 B PHANTOM ; User S/WInterrupt
TRAP B PHANTOM ; Trap vector

NM NT B PHANTQM ; Non-maskabl e | nterrupt
EMU_TRAP B PHANTOM ; Emul ator Trap
SWINT20 B PHANTOM ; User S/WInterrupt
SWINT21 B PHANTOM ; User S/WInterrupt
SWINT22 B PHANTOM ; User S/W I nterrupt
SWINT23 B PHANTOM ; User S/W I nterrupt

Source: Application Report SPRA414,

; MAI NCODE - starts here

. text

NOP

START: SETC INTM ; Di sable interrupts
SPLK #0002h, | MR ; Mask all core interrupts
i except INT2

LACC | FR ; Read Interrupt flags

SACL IFR ;Oear all interrupt flags

CLRC SXM ; Olear Sign Extension Mbde

CLRC OWM ; Reset Over f | ow Mode

CLRC ONF ; Config Block BO to Data mem

Address for
17000h - 707Fh

:The fol lowing line is necessary if a previous programset the PLL
ito adifferent setting than the settings which the application
iuses. By disabling the PLL, the CKCRL register can be modified

;s0 that the PLL can run at the new settings when it is re-enabl ed.

SPLK #0000000001000001b, CKCRO ; CLKMD=PLL Di sabl e
1 SYSCLK=CPUCLK! 2
i 5432109876543210
SPLK #0000000010111011b, CKCRL
1 CLKI N( O5C) =10MHz, CPUCLK=20MHz
{OKCRL - Cock Control Register 1
iBits 7-4 (1011) CKINF(3)-CKINF(0) - Grystal or O ock-1n Frequency
: Frequency = 10Mi
Bt 3 (1) PLLDIV(2) - PLL divide by 2 bit
: Divide PLL input by 2
iBits 2-0 (011) PLLFB(2)-PLLFB(0) - PLL multiplication ratio
PLL Miltiplication Ration = 4
i 5432109876543210
SPLK #0000000011000011b, CKCRO
{ CLKMD=PLL Enabl e, SYSCLK=CPUCLK/2
{CKCRO - Cock Control Register O
iBits 7-6 (11) CLKMX1),CLKMX0) - Operational mode of O ock
: Mdule
PLL Enabl ed; Run on CLKIN on exiting | ow power node
iBits 5-4 (00) PLLOCK(1), PLLOCK(0) - PLL Status. READ ONLY
iBits 3-2 (00) PLLPM1),PLLPMO) - Low Power Mbde

; LPMD
;Bit 1 (0) ACLKENA - 1M ACLK Enabl e
; ACLK Enabl ed

{Bit 0 (1) PLLPS - System O ock Prescale Val ue
f(syscl k) =f (cpucl k) / 2

i 5432109876543210

SPLK #0100000011000000b, SYSCR ; CLKOUT=CPUCLK

{SYSCR - System Control Register

iBit 15-14 (01) RESETI, RESETO - Software Reset Bits

: No Action

iBits 13-8 (000000) Reserved

iBit 7-6 (11) CLKSRCL, CLKSROD - CLKOUT-Pin Source Sel ect

: CPUCLK: CPU clock output mode

Bt 5-0 (000000) Reserved

SPLK #006Fh, VIDCR ; Disable WD if VOCP=5V (JP5 in pos. 2-3)

KI CK_DOG ; Reset Vit chdog

Texas Instruments, 1999

;-This section resets all

of the Event Manager Mbd

Event Manager Mbdul e Reset

ule Registers.

;*This is necessary for silicon revsion 1.1 however, for
i-silicon revisions 2.0 and later, this is not necessary

LDP #232 ; DP=232 Data Page for the Event

; Manager
SPLK #0000h, GPTCON ; O ear

General Purpose Tiner Co

SPLK #0000h, TICON ; Cl ear GP Timer 1 Control
SPLK #0000h, T2CON ; C ear GP Timer 2 Control
SPLK #0000h, T3CON ; C ear GP Timer 3 Control

SPLK #0000h, COVOON ; O ear

Conpare Cont rol

SPLK #0000h, ACTR ; O ear Full Conpare Action Control

: Regi ster

ntrol

SPLK #0000h, SACTR ; O ear Sinple Conpare Action Control

i Regi ster
SPLK #0000h, DBTCON ; O ear
: Regi ster

SPLK #OFFFFh, EVI FRA; O ear
SPLK #OFFFFh, EVI FRB; O ear
SPLK #OFFFFh, EVI FRC; O ear
SPLK #0000h, CAPCON ; O ear
SPLK #0000h, EVI MRA ; O ear
SPLK #0000h, EV MRB ; O ear
SPLK #0000h, EVI MRC ; O ear

Dead- Band Ti mer Control

Interrupt Flag Register
Interrupt Flag Register
Interrupt Flag Register
Capture Control

Event Minager Mask Regis!
Event Minager Mask Regis!
Event Minager Mask Regis!

; End of RESET section for silicon revision 1.1 *

i Set up Event Manager Modul e

T1COWPARE . set 2500

A
B
Cc

ter A
ter B
ter C

TIPER OD . set 5000 ;Sets up period for 4kHz frequency
LDP #232 ; DP=232, Data Page for Event Manager

Addr esses

SPLK #T1COMPARE, TIQVWPR Conpar e val ue for 50% duty cycle

; 2109876543210

SPLK #0000001010101b, GPTOON

; GPTOON - GP Tinmer Control Register

;Bit 15 (0) T3STAT - GP Timer 3 Status. READ OMLY
;Bit 14 (0) T2STAT - GP Timer 2 Status. READ OMLY
;Bit 13 (0) TISTAT - GP Timer 1 Status. READ OMLY
;Bits 12-11 (00) T3TOADC - ADC start by event of GP Timer 3

; No event starts ADC

;Bits 10-9 (00) T2TOADC - ADC start by event of GP Tinmer 2

; No event starts ADC

;Bits 8-7 (00) TITOADC - ADC start by event of GP

; No event starts ADC

Bt 6 (1) TCOWPCE - Conpare output enabl e
: Enable all three GP timer conpare outputs

;Bits 5-4 (01) T3PIN - Polarity of GP Tinmer

; Active Low

;Bits 3-2 (01) T2PIN - Polarity of GP Tinmer

; Active Low

;Bits 1-0 (01) TIPIN - Polarity of GP Timer

; Active Low

SPLK #T1PERI OD T1PR ; Peri
SPLK #0000h, TICNT ; O ear
SPLK #0000h, T2CNT ; O ear
SPLK #0000h, T3CNT ; A ear
; 5432109876543210

od val ue for 2kHz signal
GP Tiner 1 Counter
GP Tiner 2 Counter
GP Tiner 3 Counter

SPLK #0001000000000010b, TIOON

Timer 1

3 conpare out put
2 conpare out put

1 conpare out put



Cont.

{TICON - GP Tiner 1 Control Register
iBits 15-14(00) FREE SOFT - Enulation Control Bits
: Stop immediately on emlation suspend
{Bits 13-11(010) TMODE2-TMODEO - Count Mbde Sel ection
; Continuous-Up Count Mbde
iBits 10-8 (000) TPS2-TPSO - Input O ock Prescal er
Divide by 1
Bt 7 (0) Reserved
Bt 6 (0) TENABLE - Tiner Enable
Disable timer operations
iBits 5-4 (00) TCLKSL, TQLKSO - Olock Source Sel ect
i Internal Cock Source
iBits 3-2 (00) TCLDL TCLDO - Timer Conpare Register Reload
Condi tion
i Vhen counter is 0
(Bt 1 (1) TEQWR - Tiner conpare enabl e
Enabl e tiner conpare operation
Bt 0 (0) Reserved
: 5432109876543210
SPLK #0000000000000000b, T2CON
1GP Timer 2 - Not Used
{T2CON - GP Tiner 2 Control Register
iBits 15-14(00) FREE, SOFT - Enulation Control Bits
: Stop immediately on emulation suspend
{Bits 13-11(000) TMODE2-TMODEO - Count Mbde Sel ection
: Stop/Hold
iBits 10-8 (000) TPS2-TPSO - Input O ock Prescal er
Divide by 1
{Bit 7 (0) TSWL - GP Tiner 1 tiner enable bit
: Use own TENABLE bit
Bt 6 (0) TENABLE - Tiner Enable
: Disable tiner operations
iBits 5-4 (00) TCLKSL, TQLKSO - Olock Source Sel ect
Internal O ock Source
iBits 3-2 (00) TCLDL TCLDO - Timer Conpare Register Reload
; Condition
i Vhen counter is 0
(Bt 1 (0) TEQWR - Tiner conpare enabl e
: Disable tiner conpare operation
{Bit 0 (0) SELTIPR - Period Register select
: Use own period register
i 5432109876543210
SPLK #0000000000000000b, T3CON
1GP Timer 3 - Not Used
{T3CON - GP Tiner 3 Control Register
iBits 15-14(00) FREE SOFT - Enulation Control Bits
: Stop immediately on emulation suspend
{Bits 13-11(000) TMODE2-TMODEO - Count Mbde Sel ection
: Stop/Hold
iBits 10-8 (000) TPS2-TPSO - Input O ock Prescal er
: Divide by 1
(Bt 7 (0) TSWL - GP Tiner 1 tiner enable bit
: Use own TENABLE bit
Bt 6 (0) TENABLE - Tiner Enable
Disable timer operations
iBits 5-4 (00) TCLKSL, TALKSO - Olock Source Sel ect
: Internal Cock Source
iBits 3-2 (00) TCLDL TCLDO - Timer Conpare Register Reload
; Condition
i Vhen counter is 0
(Bt 1 (0) TEQWR - Tiner conpare enabl e
Disable timer conpare operation
(Bt 0 (0) SELTIPR - Period Register select
: Use own period register

Source: Application Report SPRA414,

Set up Digital 1/0 Port
LDP #225 ; DP=225, Data Page to Configure OCRA
{ 5432109876543210

SPLK #0011100000001111b, OCRA

{OCRA - Qutput Control Register A

Bt 15 (0) CRA 15 - |OPB7

Bt 14 (0) CRA 14 - |OPB6

Bt 13 (1) CRA 13 - T3PWM T3CMP

(Bt 12 (1) CRA 12 - T2PWM T2CMP

(Bt 11 (1) CRA 11 - TIPWM TICVP

Bt 10 (0) CRA 10 - |OPB2

{Bit 9 (0) CRAO - IOPBL

Bt 8 (0) CRAS - |OPBO

iBits 7-4 (0000)Reserved

(Bt 3 (1) CRA3 - ADONB

(Bt 2 (1) CRA2 - ADOND

(Bt 1(1) CRAL- ADONL

{Bit 0 (1) CRAO - ADOND

LDP #224

: 5432109876543210

SPLK #1000100100000000b, ADCTRL1

ADCTRL1 - ADC Control Register 1

Bit 15 (1) Suspend- SOFT -

: Conplete Conversion before halting emul ator

Bt 14 (0) Suspend- FREE -

: Operations is deternined by Suspend-SOFT

Bt 13 (0) ADCIMBTART - ADC start converting i mmediately

: No Action

iBit 12 (0) ADC2EN - Enabl e/ Di sabl e ADC2

: Disable ADC2

Bt 11 (1) ADCLEN - Enabl e/ Di sabl e ADCL

: Enable ADCL

Bt 10 (0) ADCOONRN - ADC Continuous Conversion Mbde

: Disable Continuous Conversion

{Bit 9 (0) ADONTEN - Enable ADC Interrupt
Mask ADC | nterrupt

Bt 8 (1) ADONTFLAG - ADC Interrupt Flag

: Oear Interrupt Flag Bit

Bt 7 (0) ADCECC - End of Conversion Bit READ ONLY

iBits 6-4 (000) ADC2CHSEL - ADC2 Channel Sel ect

: Channel 8

iBits 3-1 (000) ADCLCHSEL - ADCL Channel Sel ect
Channel 0

{Bit 0 (0) ADCSOC - ADC Start of conversion bit

: No Action

: 5432109876543210

SPLK #0000000000000101b, ADCTRL2

{ADCTRL2 - ADC Control Register 2

iBits 15-11 (00000)Reserved

iBit 10 (0) ADCEVSOC - Event Manager SOC mask bit

i Mask ADCEVSQC

Bt 9 (0) ADCEXTSOC - External SOC mask bit

i Mask ADCEXTSOC

iBit 8 (0) Reserved

iBits 7-6 (00) ADCFIFOL - Data Register FIFOL Status READ

oY

iBit 5 (0) Reserved

iBits 4-3 (00) ADCFIFCR - Data Register FIFQ2 Status READ

oY

iBits 2-0 (101) ADCPSCALE - ADC Input O ock Prescal er

: Prescale Value 16

i SYSCLK Period = 0. lusec

i 0.lusec x 16 x 6 = 9.6 usec >= busec

Texas Instruments, 1999

:The DAC nodule requires that wait states be generated for proper
;operation.

LDP #0000h ; Set Data Page Pointer to 0000h, Block B2

SPLK #4h, GPRO ; Set Wit State Generator for

QUT GPRO, VSGR ; Progr am Space, OVS

:Date Space, OWS

1110 Space, 1V8

XVALUE .word 0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0

.word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

.word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

.word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

.word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0

.sect ".blk1l"

VALUEIN .word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0
.word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0

.word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0

word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
VALUEQUT .word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

data

i Coefficients for 500Hz Bandpass filter for 4kHz Sanpling Frequency

BCCEFF . wiord 0000h, 0002h, 0002h, 0001h

.word 0000h, 0000h, 0000h, OFFFFh

.word OFFFFh, 0000h, 0000h, 0002h

.word 0002h, OFFFFh, OFFFoh, OFFF7h

.word 0000h, 0013h, 0025h, 0021h

.word OFFFBh, OFFBCh, OFF90h, OFFATh

.word 0011h, 00A4h, 00FDh, 00BFh

.word OFFDEh, OFEC3h, OFE2Ah, OFEATh

.word 0033h, 0206h, 02F1h, 0220h

.word OFFC2h, OFDL9h, OFBDSh, OFDOSh

.word 003Ch, 0388h, 054Ah, 03CSh

.word OFFD4h, OFBB4h, OF9EAh, OFBADh

.word 0010h, 0484h, 0660h, 0484h

.word 0010h, OFBADh, OF9EAh, OFBB4h

.word OFFD4h, 03CSh, 054Ah, 03B8h

.word 003Ch, OFDOSh, OFBD6h, OFDL9h

.word OFFC2h, 0220h, 02F1h, 0206h

.word 0033h, OFEA7h, OFE2Ah, OFEC3h

.word OFFDEh, 00BFh, 00FDh, 00A4h

.word 0011h, OFFA7h, OFF90h, OFFBCh

.word OFFFBh, 0021h, 0025h, 0013h

.word 0000h, OFFF7h, OFFFoh, OFFFFh

.word 0002h, 0002h, 0000h, 0000h

.word OFFFFh, OFFFFh, 0000h, 0000h

.word 0000h, 0001h, 0002h, 0002h

.word 0000h

LEDS . set 000Ch ;1/O Address for LEDS register

WNDOW . set 500 ; Nunber of snpls to check before

ireset’ g MAX val ues

.bss LEDSOUT, 1 ; Variabl e for which LEDS to |ight

.bss MAXIN, 1 ; Maxi num val ue input val ue

.bss MAXQUT, 1 ; Maxunum FIR resul t val ue

.bss DIFFIN, 1 ; Maxi mum Input Value - DC Of fset

1(7f1h)

.bss DI FFOUT, 1 ; Maxi num Qut put val ue - DC Cf f set

1(7f1h)

.bss THRESHOLDL, 1 ; Threshol d val ue for 1st LED

.bss THRESHOLLR, 1 ; Threshol d val ue for 2nd LED

.bss THRESHOLEB, 1 ; Threshol d val ue for 3rd LED

.bss THRESHOLDA, 1 ; Threshol d val ue for 4th LED

.bss THRESHOLDS, 1 ; Threshol d val ue for 5th LED

.bss THRESHOLDS, 1 ; Threshol d val ue for 6th LED

.bss THRESHOLDY, 1 ; Threshol d val ue for 7th LED

.bss THRESHOLDS, 1 ; Threshol d val ue for 8th LED
bss RESET_MAX 1 ; Counter to deternine when to



Cont. Cont.

ireset MAX values IMiltiply the values by 5/4 because the maximumgain is 4/5 iData In Buffer
.bss TEWP, 1 ;Variable for tenporary storage LT DACOVAL ; TREG = DACOVAL LAR AR, #127 ;AR7 = 128 - 1; Counter to find
iof val ues MPY #5 ; PREG = DACOVAL * 5 ;max value in
Ltext PAC ; ACC = PREG = DACOVAL * 5 MAR *, ARG ; ARP = AR
MAIN LAR ARL, #ADCFI FOL ; ARL = ADCFI FOL address SFR ; ACC = DAQOVAL * 5 / 2 FIND_MAXI N LAGC *+,0, AR7 ; ACC = Val ue pointed by ARG
LAR AR2, #ADCTRLL ; AR2 = ADCTRLI addr ess SFR ; ACC = DAQVAL * 5 / 4 SUB MAXI N ; Subt ract MAXIN
LAR AR3, #BOCEFF ; AR3 = BCOEFF address SACL DACOVAL ; DACOVAL = DACOVAL * 5/4 BOND RESUVEL, LEQ ; I f the value results in a
LAR ARS, #LEDS ; ARS = LEDS Qut put LACC DACDVAL ; ACC = DACOVAL ivalue less than 0,
LDP #232 RPT #3 ;Shift right 4 tines ithen the value is smaller
LACC EVI FRA ; ACC = Event Mbdul e Type A Interrupt ;=16 bit value to ithan MAXIN, el se the
i Flags SFR ;12 bit val ue because ivalue is larger than MXIN
SACL EVIFRA ; EVIFRA = ACC, Olears the current {DACis 12bits ADD MAXI N ; ACC = Val ue pointed by ARG
iset flags ADD #7FFh ; Add DC of f set SACL MAXIN ; Store new MAXI N val ue
SPLK #0080h, EV MRA ; Enabl e Timer 1 Period AND #OFFFh ; Ensure 12 bits RESUMEL BANZ FIND_MAXIN,*-, AR6 :1f smaller than MAXIN
i Interrupt SACL DACDVAL ;Store val ue for output on the DAC i decrement |oop counter
MR *, AR2 ; ARP = AR2 LDP #7 ;DP=7; Address for 0380h to 03FFh {(AR7), nove to next value in
LACC * ; ACC = ADCTRLL SACL VALUEOUT ; Store value to find naxi mum buffer
ADD #1 ; SET BIT FOR S| NGLE CONVERS| ON ivalue of the output values LAR AR7, #127 ;Since VALLEIN buffer is
SACL *, 0, ARL ; STARTS ADC CONVERS| ON LAR AR, #(VALUEQUT+127-1) ; AR6 = End of VALUE QUT :adj acent to
SBITL TICON, B6_MBK ; Sets Bit 6 of TICON, Starts buffer { VALUEOUT buffer, only AR7
ithe timer LAR AR, #126 ;AR7 = 127 - 1; Nunmber of ineeds to be reset
LDP #0 ;DP = 0; Addresses 0000h - 007Fh ival ues to nove {ARP i's al ready ARS
SPLK #0000h, LEDSQUT ; Ol ear the LEDS MAR *, AR6 ; ARP = ARS FI ND_MAXQUT LACC *+,0, AR7 ; ACC = Val ue pointed by ARS
QUT LEDSOUT, LEDS SH FTL DMV *-, AR7 ; Move al | of the values in SUB MAXQUT ; Subt ract MAXQUT
SPLK #0E38h, THRESHOLDL; QU5 val ue for 1/9 i the VALUEOUT BOND RESUVE2, LEQ ; I f the value results in a
SPLK #1C71h, THRESHOLD2; QU5 val ue for 2/9 BANZ SH FTL,*-, ARG ;Data Buffer to the next ivalue less than 0,
SPLK #2AAA, THRESHOLDS; QIS val ue for 3/9 +hi gher addr ess ithen the value is smaller than
SPLK #38E3h, THRESHOLD4; QU5 val ue for 4/9 LDP #0 ;DP = 0; Addresses 0000h - 007Fh IMAXQUT, el s
SPLK #471Ch, THRESHOLDS; QU5 val ue for 5/9 LACC DACLVAL ;ACC = DACIVAL = | nput Val ue ithe value is larger than
SPLK #5555h, THRESHOLDS; QU5 val ue for 6/9 RPT #3 ;Shift the value to the 1 MAXQUT
SPLK #638Eh, THRESHOLD?: QU5 val ue for 7/9 iright 4 tines ADD MAXOUT ; ACC = Val ue poi nted by AR
SPLK #71C7h, THRESHOLDS; QU5 val ue for 8/9 SFR ; Convert the val ue from 16 SACL MAXQUT ; Store new MAXOUT val ue
SPLK #0000h, MAXI N ; I ni tial i ze Maxni num i nput ibits to 12 bits RESUME2 BANZ FI ND_MAXCUT, *-, ARG ;1 f smaller than MAXQUT,
ival ue SACL DACLVAL ;DACIVAL = 12 bit value for DAC idec 1 oop counter (ART),
SPLK #0000h, MAXQUT ; I ni ti al i ze Maxi num FI R out put LDP #6 ;DP = 6, Addresses 0300h - 037Fh inove to next value in buffer
ival ue SACL VALUEI N ; VALUEI N = DACIVAL :The fol | owing section deternines if the value meets the threshol d
SPLK #W NDOW RESET_MAX ; I ni tial i ze the maximm LAR ARS, #( VALUEI N#127-1); ARG = End of VALUE IN i requi renent
ireset counter buffer LDP #0 ;DP = 0; Addresses 0000h to 007Fh
CLRC INTM ; Enabl e Interrupts LAR AR, #126 ;AR7 = 127 - 1; Nunmber of (Al variables used are in B2
VAIT BWIT Wit for interrupt ival ues to nove iNeed to remove the DC of fset because if the FIR result is 0 it will
s MAR *, AR6 ; ARP = ARS equal 7ffh which is already 50%of the maximuminput value
;I NTERRUPT SERVI CE ROUTI NES FCR FIR FILTER SH FT2 DMV *-, AR7 ; Move al | of the values in LACC MAXIN ; ACC = MAXIN
: ithe VALUEIN SUB #7FFh ; Subtract the DC of f set
FIR_I SR LAR ARA, #XVALUE+100 ; AR4 = DATA ADDRESS BANZ SH FT2,*-, ARG ;Data Buffer to the next SACL DIFFIN ;DIFFIN = MXIN - 7ffh
MAR *, ARL ; ARP = ARL = ADCFI FOL +hi gher addr ess LACC MAXQUT ; ACC = MACOUT
LACC *, 0, AR4 ; ACC = ADCFI FOL; ARP = {Qutputs the FIR results and the original value SUB #7FFh ;Subtract the DC of f set
ARA {DACD has the FIR results and DACL has the original value SACL DI FFQUT ;DI FFOUT = MAXQUT - 7ffh
LDP #0 ;DP = 0 LDP #0 iCheck if the output exceeds the niddle threshol d val ue, THRESHOLD4
: Addr esses 0000h - 007Fh QUT DACOVAL, DACD ; DACO = DACOVAL; FIR result on LT DIFFIN ; TREG = DI FFIN
SACL DACLVAL ; DACIVAL = ADCFI FOL : DAC channel 0 TH4 MPY THRESHOLD4 ; PREG = DI FFIN * THRESHOLD4
RPT #7 ;Shift ADC value 8 places QUT DACIVAL, DACL ; DACL = DACIVAL; Input value PAC ; ACC = PREG
i - Reduce to 8 bit value ;on DAC channel 1 SACH TEWP, 1 ; TEMP = ACC*2; Shift to remove
SFR ;Larger bit val ues produced QUT DACOVAL, DACUPDATE extra sign bit
ilarge results :Update the val ues on the DAC LACC TEMP ; ACC = TEMP
SUB #7Fh ; Subtract the equivalent 8 bit Find the maxinum val ue anong VALUEI N and VALUEQUT for the LEDs SUB DI FFOUT ; Subtract DI FFOUT
1 DC of fset LACC RESET_MAX ; ACC = RESET_MAX BOND ABOVEA, LT ;1f DIFFQUT is greater than
LDP #04h ;DP = 4; Address 0200h - 027Fh i Max Reset Counter {TEMP, then the FIR result is
SACL XVALUE : XVALUE = ADCFI FOL / 256; SUB #1 ;Decrement by 1 igreater than VALUEIN * THRESHOLDA,
LACC #0h ; Initialize the ACCUMILATCR SACL RESET_MAX ; Store new val ue for RESET_MAX ielse, it is bel ow THRESHOLD4 val ue
MPY #0h :Initialize the PROD REG BOND NO_RESET, GT ;I not WNDO/h val ue, don’t JQutput is bel ow THRESHALD4. Check if above THRESHOLD2
RPT #100 ; Cal cul ate Y ireset counter BELOM LT DIFFIN
MACD BOCEFF, *- ;Miltiply X ith B and add SPLK #W NDOW RESET_MAX TH2 MPY THRESHOLD2
APAC :final accunul ation {Else reset the max reset counter PAC
LDP #0 SPLK #0000h, MAXI N ; Reset the MAXIN val ue SACH TEMP, 1
RPT #7 ;Shift the result 8 places to left SPLK #0000h, MAXQUT ; Reset the MAXOUT val ue LACC TEWP
SFL NO_RESET LAR ARS, #VALUEIN ; AR6 = VALUEI N Begi nni ng of SUB DI FFOUT
SACH DACOVAL, 1 ; DACDVAL = Y * 2; shift to BOND ABOVEZ, LT
iremove extra sign bit ;Qutput is below THRESHALD4 & THRESHOLDR. Check if above THRESHOLDL
{FIR result to output BELOW2 LT DIFFIN
THL MPY THRESHOLDL
PAC
SACH TEMP, 1
LACC TEWP
SUB DI FFOUT

BOND ABOVEL, LT

Source: Application Report SPRA414, Texas Instruments, 1999



Cont. Cont. Cont.

;Qutput is below THRESHALD4, THRESHOLD2, & THRESHOLDL. Turn off LEDS
BELOM. SPLK #0000h, LEDSQUT

B QUTLEDS

;Qutput is below THRESHOLD4, THRESHOLD2, but above THRESHOLDL. Turn
;on DSL

ABOVEL SPLK #0001h, LEDSQUT

B QUTLEDS

;Qutput is below THRESHALD4, but above THRESHOLD2. Check if above

; THRESHOLD3

ABOVE2 LT DIFFIN

TH3 MPY THRESHOLD3

PAC

SACH TEMP, 1

;Qutput is below THRESHAL.D4 and THRESHOLD3, but above THRESHOLD2.
; Turn on DS1-DS2

BELOM8 SPLK #0003h, LEDSQUT

B QUTLEDS

;Qutput is below THRESHOLD4, but above THRESHOLD3 and THRESHOLD2.
; Turn on DS1-DS3

ABOVE3 SPLK #0007h, LEDSQUT

B QUTLEDS

;Qutput is above THRESHA.D4. Check if above THRESHOLDG

ABOVE4 LT DI FFIN

TH6 MPY THRESHOLD6

PAC

SACH TEMP, 1

LACC TEMP

SUB DI FFOUT

BCOND ABOVES, LT

;Qutput is above THRESHALD4, but bel ow THRESHOLD6. Check if above
; THRESHOLDS.

BELOM LT DIFFIN

TH6 MPY THRESHOLDS

PAC

SACH TEMP, 1

LACC TEMP

SUB DI FFOUT

BCOND ABOVES, LT

;Qutput is above THRESHA.D4, but bel ow THRESHOLD6 & THRESHOLDS. Turn
;on DS1-Ds4

BELOM SPLK #000Fh, LEDSQUT

B QUTLEDS

;Qutput is above THRESHA.D4 & THRESHOLDS, but bel ow THRESHOLDS.

; Turn on DS1-DSS

ABOVES SPLK #001Fh, LEDSQUT

B QUTLEDS

;Qutput is above THRESHA.D4 & THRESHOLD6. Check if above THRESHOLDS.
ABOVE6 LT DI FFIN

TH8 MPY THRESHOLD8

PAC

SACH TEMP, 1

LACC TEMP

SUB DI FFOUT

BOND ABOVES, LT

;Qutput is above THRESHALD4 & THRESHOLD6, but bel ow THRESHOLDS.

; Check if above THRESHOLD?.

BELOM LT DIFFIN

TH7 MPY THRESHOLD7

PAC

SACH TEMP, 1

LACC TEMP

SUB DI FFOUT

BCOND ABOVE7, LT

Source: Application Report SPRA414, Texas Instruments, 1999

;Qutput is above THRESHOLD4 & THRESHOLDG, but bel ow THRESHOLDS &
; THRESHOLD7. Turn on DSI1- DS6

BELOA7 SPLK #003Fh, LEDSQUT

B QUTLEDS

;Qutput is above THRESHALD4, THRESHOLDS, & THRESHOLD?, but bel ow
 THRESHOLDB. Turn on ; DSL- DS7

ABOVE7 SPLK #007Fh, LEDSCUT

B QUTLEDS

;Qutput is above THRESHALD4, THRESHOLDS, & THRESHOLDS. Turn on
; DS1- bS8

ABOVES SPLK #00FFh, LEDSCUT

QUTLEDS QUT LEDSCUT, LEDS ; Turn on the LEDS

RESTART_ADC MR *, AR2 ; ARP = AR

LACC * ; ACC = ADCTRL1

ADD #1h ;Set bit to restart the ADC

SACL * ;Start converting next value

LDP #232

LACC EVIFRA ;Qear the flag register of

; Event Manager

SACL EVI FRA

CLRC I NTM ; ENABLE | NTERRUPTS

RET ;Return to main line

I S R - PHANTGM

: Description: Dummy ISR used to trap spurious interrupts.
Modi fi es:

; Last Update: 16-06-95

PHANTOM B PHANTOM



DSP Implementation (Excerpt)

; The following section determines if the value meets the threshold
;requirement

LDP #0 ;DP = 0; Addresses 0000h to 007Fh

;All variables used are in B2

:Need to remove the DC offset because if the FIR result is 0 it will
;equal 7ffh which is already 50% of the maximum input value
LACC MAXIN ;ACC = MAXIN

SUB #7FFh ;Subtract the DC offset

SACL DIFFIN ;DIFFIN = MAXIN - 7ffh

LACC MAXOUT ;ACC = MACOUT

SUB #7FFh ;Subtract the DC offset

SACL DIFFOUT ;DIFFOUT = MAXOUT - 7ffh

;Check if the output exceeds the middle threshold value, THRESHOLD4
LT DIFFIN ;TREG = DIFFIN

TH4 MPY THRESHOLD4 ;PREG = DIFFIN * THRESHOLD4

PAC ;ACC = PREG

SACH TEMP,1 ;TEMP = ACC*2; Shift to remove

;extra sign bit

LACC TEMP ;ACC = TEMP

SUB DIFFOUT ;Subtract DIFFOUT

BCND ABOVEA4,LT ;If DIFFOUT is greater than

;TEMP, then the FIR result is

;greater than VALUEIN * THRESHOLD4,

relse, it is below THRESHOLD4 value

;Output is below THRESHOLD4. Check if above THRESHOLD2
BELOW4 LT DIFFIN

TH2 MPY THRESHOLD?2

PAC

Source: Application Report SPRA414, Texas Instruments, 1999



Streaming in Assembly Code

= Extremely tedious, costly, and error-prone
= Not portable between architectures

= Very hard to maintain
= Move center frequency from 500 Hz to 1200 Hz?

= According to TI, in the conventional design flow:
Redesign filter in MATLAB
Cut-and-paste values to EXCEL
Recalculate the coefficients
Update the assembly code

= Will address this issue again later today, in section
on Domain Specific Optimizations



Stream Languages to the Rescue

= Goals of a stream language:
=« EXpose parallelism
= ExXpose communication patterns

=« Encapsulate common idioms
= Autonomous filters
= Circular buffers

=) Improve BOTH performance and
programmer productivity

= Vision:
A unified, high-level programming environment that
achives the performance of hand-coded assembly



Stream Programming Models

= Prototyping environments

= Conventional languages
= Object Oriented
= Procedural
= Assembly

= Stream languages
m) . Streamilt
= Brook
« Cg




The StreamIt Language

= A high-level, architecture-independent
language for streaming applications

= Current focus domain: Synchronous Dataflow

= Contributions

=« Language Design, Structured Streams, Buffer
Management (CC 2002)

= Exploiting Wire-Exposed Architectures (ASPLOS 2002)
= Scheduling of Static Dataflow Graphs (LCTES 2003)
= Domain Specific Optimizations (PLDI 2003)



Representing Streams

= Conventional wisdom: streams are graphs
=« Graphs have no simple textual representation
= Graphs are difficult to analyze and optimize

= Insight: stream programs have structure

unstructured structured



Structured Streams

= Hierarchical structures:

= Pipeline — >~

= Splitboin —»| @D—»

« Feedback Loop  —mm— @

= Basic programmable unit: Filter —mm-



Freq band detection in StreamlIt

void->void pipeline FrequencyBand {
float sFreq = 4000;
float cFreq = 500/(sFreq*2*pi);
float wFreq = 100/(sFreq*2*pi);

add D2ASource(sFreq);

add BandPassFilter(1, cFreg-wFreq,
cFreg+wFreq, 100);

add splitjoin {

split duplicate;
for (int i=0; i<4; i++) {

add pipeline {
add Detector(i/4),

add LEDOutput(i);

}
}
join roundrobin(0);
}
}

A/D

[ Band pass ]

Duplicate

Detect Detect Detect
v v v v

[LED][LED][LED][LED}




Freq band detection in StreamlIt

void->void pipeline FrequencyBand {
float sFreq = 4000;
float cFreq = 500/(sFreq*2*pi);
float wFreq = 100/(sFreq*2*pi);

add D2ASource(sFreq);

A/D

float wp, int num) {
add LowPasskFilter(1, wp, num);

add HighPassFilter(gain, ws, num);

}

float->float pipeline BandPassFilter(float gain, float ws, 4

High pass

\_Band pass )

add splitjoin {

split duplicate;
for (int i=0; i<4; i++) {

add pipeline {
add Detector(i/4);

add LEDOutput(i);

}
}
join roundrobin(0);
}
}

Duplicate

Detect Detect Detect
v v v v

[LED][LED][LED][LED}




Filter Example: LowPassFilter

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

init {
weights = calcWeights(N, freq);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);
}
push(result);
pop();
}

000000

}



Filter Example: LowPassFilter

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

000000

init { N
weights = calcWeights(N, freq);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);
}
push(result);
pop();
}

}



Filter Example: LowPassFilter

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

X00000

init { N
weights = calcWeights(N, freq);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);
}
push(result);
pop();
}

}



Filter Example: LowPassFilter

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;
N{

init {
weights = calcWeights(N, freq);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);
}
push(result);
pop();
}

X00000

}



Filter Example: LowPassFilter

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

O
S
init { N{%

weights = calcWeights(N, freq);
}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);
}
push(result);
pop();
}

}



Why Structured Streams?

= Compare to structured control flow

GOTO statements If / else / for statements
= [radeoff:
PRO: - morerobust - more analyzable

CON: - “restricted” style of programming



Structure Helps Programmers

= Modules are hierarchical and composable
= Each structure is single-input, single-output

o e E S S S B S

—H@—»—H:I——»ITI—»
==

= Encapsulates common idioms

= Good textual representation
= Enables parameterizable graphs




N-Element Merge Sort (3-level)

Ny
N2 N2

N/A4
N/8 N/8

N/8 N/8 N/8

‘ﬁ

N/8

N/8 N/8

3z

— —

- -

Merge



N-Element Merge Sort (K-level)

pipeline MergeSort (int N, int K) {
if (K==1){
add Sort(N);
} else {
add splitjoin {
split roundrobin;
add MergeSort(N/2, K-1);
add MergeSort(N/2, K-1);
joiner roundrobin;
}
}
add Merge(N);
}
}



Structure Helps Compilers

= Enables local, hierarchical analyses
= Scheduling
= Optimization
= Parallelization
= Load balancing



Structure Helps Compilers

= Enables local, hierarchical analyses

= Scheduling

= Optimization

= Parallelization
= Load balancing

= Exa m ples:
Pipeline SplitJoin
F U5/0’7 Fusion |
-
P/pe//ne SplitJoin

@ F/ssion \ Fission



Structure Helps Compilers

= Enables local, hierarchical analyses
= Scheduling
= Optimization
= Parallelization
= Load balancing

= Examples:

Filter
Hoisting
e

L]
v



Structure Helps Compilers

= Enables local, hierarchical analyses
= Scheduling
= Optimization
= Parallelization
= Load balancing

= Disal
= SIMp
= All

OWS nhon-sensical graphs
ifies separate compilation

blocks single-input, single-output



CON: Restricts Coding Style

= Some graphs need
to be re-arranged

= Example: FFT

Bit-reverse
order

Butterfly
(2 way)

Butterfly Y v

(4 way)

AN
@

Butterfly
(8 way)

&

|
roundrobin (2)

roundrobin (1)

roundrobin (2)

v




Example: FM Radio with Equalizer
l

[ Low Pass filter ]

v

[ FM Demodulator ]

Y
Duplicate splitter

Low pass filter [Low pass filter] [Low pass filter] [Low pass filter] [Low pass filter] [Low pass filter] [Low pass filter] [Low pass filter] [Low pass filter] Low pass filter|

v v v v v v v v v
(Float Diff filter] (Float Diff filter] (Float Diff filter] (Float Diff filter] [Float Diff filter] (Float Diff filter) (Float Diff filter] (Float Diff filter] (Float Diff filter] (Float Diff filter]

Round robin joiner

v
( Float Difffilter ]

Y
[ Float Adder filter ]

l




Example: Vocoder

v

Duplicate splitter

[ DFT filter ) (oFT filter ) [ oFtfilter ) [ DFTfilter ] [ DFT filter DFT filter ] [ DFT filter |  ( DFTfilter | | DFY filter ) | DFT filter )

—_—

Round robin joiner

[Round robin spIitter]

B

[ Duplicate‘splitter ]

| Duplea

[ FIR Smoothing FiIter]
Round robin joiner

! (const Multiplier filter]

[ Phase unwrapper filter ]

[Deconvolve fiIter]

¥ \

[Round robin splitter] [Linear Interpolator fiIter]

/ \
Decimator filter

[ Liner Interpolator FiIter] [ Liner Interpolator FiIter]

Decimator filter Decimator filter

[ Round robin joiner ]

v

[ Muttiplier filter ]

\

[ Round robin joiner ]

v




Example: GSM decoder

\
(Round robin splitter)

(Round robin splitter]

( LTP Input Filter ]

Identit

Input

(_ LTP Input Filter ]

Round robin joiner

LTP Filter )

Round robin joiner

(Additional Update filter ]

( Duplicate splitter ]

( Hold Filter ]
-
(Round robin splitter] ?

( LTP Input Filter ]

( Round robin joiner )
(Reflection Coeff Filter]
(Short Term:Synth Filter)

(Post Processing Filter

v




( ] ] J

Example: 3GPP Physical Layer
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( ] ] J




Control Messages

= Structures for regular, high-bandwidth data

s But also need a control mechanism for
irregular, low-bandwidth events

= Change volume on a cell phone
= Initiate handoff of stream
= Adjust network protocol



Supporting Control Messages

= Option 1: Embed message in stream _ _
PRO: - message arrives with data
CON: - complicates filter code
- complicates structure
- runtime overhead

» Option 2: Synchronous method call
PRO: - delivery transparent to user
CON: -timing is unclear

- limits parallelism




StreamIt Messaging System

= Looks like method call, but semantics differ

e

void raiseVolume(int v)
myVolume +=v;

}

= No return value
= Asynchronous delivery
= Can broadcast to multiple targets



StreamIt Messaging System

= Looks like method call, but semantlcs differ

——
—\

TargetFilter x; -
work { * * S

if (lowVolume())
x.raiseVolume(10) at 100;

}

= No return value
= Asynchronous delivery
= Can broadcast to multiple targets
* Timed relative to data
- User gains precision; compiler gains flexibility



Message Timing

= A sends message toLB with zero latency

F
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= A sends message to B with zero latency
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Message Timing

= A sends message to B with zero latency
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Message Timing

= A sends message to B with zero latency
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General Message Timing

= Latency of N means:

- Message attached
to wavefront that ?
sender sees in N ®
executions -

~



General Message Timing

= Latency of N means:

= Message attached A
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= Examples:

- A—> B, latency 1
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General Message Timing

= Latency of N means:

= Message attached

to wavefront that
sender sees in N
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= Examples:

- A—> B, latency 1
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General Message Timing

= Latency of N means:

= Message attached
to wavefront that
sender sees in N
executions
= Examples:
- A—> B, latency 1

- B> A, latency 25 &%




Rationale

= Better for the programmer
= Simplicity of method call
= Precision of embedding in stream

= Better for the compiler

=« Program is easier to analyze
= No code for timing / embedding
= No control channels in stream graph

= Can reorder filter firings, respecting constraints
=« Implement in most efficient way



StreamIt Language Summary

= High-level, machine-independent stream
language
= Structured streams for high-bandwidth dataflow
= Messaging system for control
= Working on new dynamic constructs

= Compiler-conscious language design can
improve both programmability and
performance




Stream Programming Models

= Prototyping environments

= Conventional languages
= Object Oriented
= Procedural
= Assembly

= Stream languages

= Streamlt
‘ = Brook
m Cg




The Brook Language (Stanford)

= Also an architecture-independent stream language
= Evolved out of StreamC / KernelC, which targets Imagine

StreamlIt Brook/StreamC

Think structured synchronous Think pointer-less C, with

data flow embedded dataflow graphs
instead of loop nests

Single stream graph Multiple stream graphs,
surrounded by C-subset

Streams are infinite length Streams are finite length

Static rates Dynamic rates

“Filters” can have state, may “Kernels” must be state-less,
require sequential processing allow parallel processing

Designed by compiler people, Designed by application and
clean but more constrained architecture people, rough but
more expressive




Stream Programming Models

= Prototyping environments

= Conventional languages
= Object Oriented
= Procedural
= Assembly

= Stream languages
= Streamlt
= Brook

m = Cg




The Cg language (NVIDIA)

= Cg is both a language and a system
=« Cg language is for writing stream kernels
= Cg system targets graphics hardware

= Developed by NVIDIA

= In collaboration with Microsoft
= Runs on lots of hardware (not just NVIDIA's)

= Widely deployed
= Shipping for over a year
= Anyone can download it

s Lots of information available:

= Cg language specification — via download
= Cg tutorial — buy on amazon.com
= Paper in SIGGRAPH 2003



GPUs are now programmable

.
Vertex Triangle Fragment Framebuffer =
—> | Assembly & |9 > e b o]
Pr ocessor Rasterization Pr ocessor Operations 2
—
@
Textures
MQV R4.y, R2.y; ADD R3.xy, R3.xyww, C11.z;
ADD R4.x, -R4.y, C[3].w; TEX H5, R3, TEX2, 2D;

MAD R3.xy, R2, R3.xyww, C[2].z TEX H6, R3, TEX2, 2D;




Programmable units in GPUs
are stream processors

kernel
Sstate

4

Input stream Output stream

Stream

11 [12 ... [In | =——pp S rEsT - 01|02 ...]On

. The programmable unit executes a
computational kernel for each input
element

. Streams consist of ordered elements



Design Decisions in Cg

= Cg: C for graphics
= Like C, directly map to underlying hardware
= General purpose (not just a shading language)

= A program for each pipeline stage
= Alternative: write one program and have compiler do

the partitioning

= Chose to separate at programmer level to guarantee

valid mapping; e.g., for outer-level control
dependences

= A language for expressing stream kernels

Unlike StreamlIt/Brook, does not express high-level
connections in stream graph

Instead, write kernels for hardware resources and use
connections of hardware

Use auxiliary namespace (bind-by-name) as dataflow
interface between vertex and fragment processors

Use Cg runtime API to control kernel execution



Cg language example

voi d sinpleTransforn(float4
fl oat4
fl oat4
out fl oat4
out fl oat4
out fl oat4
uni form fl oat

obj ect Posi ti
col or

decal Coord
clipPosition
Col or

oDecal Coord
bri ght ness,

on : PGCSI TI ON,
. COLOR,
TEXCOORDO,
POSI T1 ON,
COLOR,
TEXCOORDO,

uni form f| oat 4x4 nodel Vi ewPr o] ecti on)

{

clipPosition = mul (nodel Vi ewPr oj ecti on,

oCol or = brightness * color;

oDecal Coord = decal Coord;
}

obj ect Posi ti on);




How should system support
different levels of HW?

NV20 Rr3po NV40 Nv50

R200 Nv30 R400

= HW capabilities change each generation
= Data types
= Support for branch instructions, ...

= We expect this problem to persist
« Future GPUs will have new features

= Mandate exactly one feature set?
= Must strand older HW or limit newer HW

?



Two options for handling HW
differences

= Emulate missing features?
= 100 slow on GPU
= Too slow on CPU, especially for fragment HW

= EXpose differences to programmer?
= They chose this option
= Differences exposed via subsetting
= A profile is a nhamed subset
= Cg supports function overloading by profile



Cq is closely related to
other recent languages

= Microsoft HLSL

= Largely compatible with Cg
= NVIDIA and Microsoft collaborated

= OpenGL ARB shading language
= All three languages are similar
= Overlapping development

= Extensive cross-pollination of ideas
= Designers mostly agreed on right approach

= Systems are different



Summary

= There are many prototyping environments for
streaming applications

= However, industry still relies on C, C++, and
assembly code for implementations
« Tedious, costly, error-prone

= Stream languages have potential to improve both
performance and programmability

= ExXpose communication patterns
= Expose parallelism
=« Encapsulate common idioms

= Examples: Streamlt, Brook, Cg




