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Schedule

1:30-1:40 Overview (Saman)

1:40-2:20 Stream Architectures (Saman)

2:20-3:00 Stream Languages (Bill)

3:00-3:30 Break

3:30-3:55 Stream Compilers (Saman)

3:55-4:20 Domain-specific
Optimizations (Saman)

4:20-5:00 Scheduling Algorithms (Bill)



Conventional DSP Design Flow
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Design Flow with StreamlIt
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Design Flow with StreamlIt

Application-Level Design

= Benefits of programming in a

e single, high-level abstraction
(dataflow + control) = Modular
v = Composable
DSP Optimizations = Portable
+ = Malleable
Achiecuresoeare] " The Challenge: Maintaining
Optimizations Performance
v = Replacing Expert DSP Engineer
C/Assembly Code C Rep acing Expert Assembly
Hacker




Our Focus: Linear Filters

= Most common target of DSP optimizations
= FIR filters
= Compressors
= Expanders
« DFT/DCT |

> Qutput is weighted sum of inputs

= Example optimizations:
= Combining Adjacent Nodes
= Translating to Frequency Domain



Representing Linear Filters

= A linear filter is a tuple (A, B, 0)
= A: matrix of coefficients
« b: vector of constants
= 0: number of items popped

= Example
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Extracting Linear Representation

work peek N pop 1 push 1 {
float sum = 0;
for (int i=0; i<N; i++) {
sum += h[i]*peek(i);

}

push(sum);
pop();

Linear
Dataflow
Analysis

>

= Resembles constant propagation

= Maintains linear

form (V, b) for each variable

= Peek expression: generate fresh v
= Push expression: copy V into A

= Pop expression:

iIncrement o



Optimizations using Linear Analysis

1) Combining adjacent linear structures

2) Shifting from time to the frequency domain

3) Selection of ‘optimal’ set of transformations



1) Combining Linear Filters

= Pipelines and splitjoins can be collapsed
= Example: pipeline

X

Combined
Filter




Combination Example
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output output

Combined _
)




AB for any A and B??

= Linear Expansion

PELEN EI i:;j Vo
I[A] } [A][A]

[A]



AB for any A and B??

Need to “expand” matrices to a steady-state cycle:
A
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AB for any A and B??

Need to “expand” matrices to a steady-state cycle:
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AB for any A and B??
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AB for any A and B??

Need to “expand” matrices to a steady-state cycle:
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AB for any A and B??

Expanded dimensions match
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Floating-Point Operations Reduction
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2) From Time to Frequency Domain

= Convolutions can be done
cheaply in the Frequency

FFT
Domain

B WM

= Painful to do by hand IFFT

= Blocking = Multiple outputs

= Coefficient calculations = Interfacing with FFT library
= Startup



Generic Freg. Implementation

float — float pipeline optimizedFreq (A,b,e, 0, u) {
add float — float filter {
N — 2[1g(2e)]
m— N —2e+1
partials — new array[0...e —2,0...u — 1]

r—mde—1 work peek r pop 7 push u* 1 {

Z—pop(0...m+4e—2)

init { X « FFT(N, 7)
for j=0tou—1 for j=0tou—1/
~ H[*,j] — FFT(N, A[*,u — 1 — j]) Y[*,j] + X.* H[x, j]
} ylx, j] — IFFT(N, Y%, j])
prework peek 7 pop 7 push u x m { fori=0toe—1
:f‘;—pop(()...m%—e—?) for j=0tou—1{
X «— FFT(N,Z) push(vy[i, j] + partials[i, j])
for j=0tou—14{ I~ o Vg o .
el s partials[i, j] — y[m +e — 1+, j]
Yix, 5] < X+ H[x, j] }
ZJ[*_J:'} — IFFT(N, Y[*,j]) fort=0tom—1
partials[x, j] — ym+e—1...m 4 2e — 3, j| for j =0tou—1

push(7[i + e — 1, 5] + b[4])
fori:2=0tom—1
for j =0 tou—1 }

push(7[i + e — 1, 5] + b[4]) add Decimator (o, u)
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3) Transformation Selection

= When to apply what transformations?

= Linear filter combination can increase the
computation cost

= Shifting to the Frequency domain is expensive for
filters with pop > 1
= Compute all outputs, then decimate by pop rate
= Some expensive transformations may later enable
other transformations, reducing the overall cost



Selection Algorithm

s Estimate minimal cost for each structure:

~N

= Linear combination | Cost function based
= Frequency translation | on profiler feedback

= No transformation

= If hierarchical, consider all possible
groupings of children

= Overlapping sub-problems allows efficient
dynamic programming search



tion Selectio

Radar (Transforma




Radar (Transformation Selection)

First compute cost of individual filters:
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Radar (Transformation Selection)

First compute cost of individual filters: o high
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Radar (Transformation Selection)

Then, compute cost of 1x2 nodes: ow high
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Radar (Transformation Selection)

Then, compute cost of 1x2 nodes: ow high
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Radar (Transformation Selection)

Then, compute cost of 1x2 nodes: ow high
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Radar (Transformation Selection)

Continue with 1x3 2x1 3x1 4x1

1x4 2x2 3x2 4x2
: ii : 2x3 3x3 4x3
" soap oo

2x4 3X4 m) Overall solution



Radar (Transformation Selection)




Radar (Transformation Selection)
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Radar (Transformation Selection)
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EX S

Maximal Combination and Using Transformation
Shifting to Frequency Domain Selection
2.4 times as half as

many FLOPS many FLOPS
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Experimental Results

= Fully automatic implementation
= StreamlIt compiler

= StreamlIt to C compilation
=« FFTW for shifting to the frequency domain

= Benchmarks all written in StreamIt

= Measurements
=« Dynamic floating-point instruction counting
= Speedups on a general purpose processor



Execution Speedup
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Related Work

s SPIRAL/SPL (Puschel et. al)

= Automatic derivation of DSP transforms
s FFTW (Friego et. al)

= Wicked fast FFT
s ADE (Covell, MIT PhD Thesis, 1989)

= Affine Analysis (Karr, Acta Informatica, 1976)
« Affine relationships among variables of a program

= Linear Analysis (Cousot, Halbwatchs, POPL, 1978)

« Automatic discovery of linear restraints among
variables of a program



Conclusions

= A DSP Program Representation: Linear Filters
= A dataflow analysis that recognizes linear filters

Three Optimizations using Linear Information
= Adjacent Linear Structure Combination
= Time Domain to Frequency Domain Transformation
= Automatic Transformation Selection

= First Step in Replacing the DSP Engineer from the Design Flow
= On the average 90% of the FLOPs eliminated
= Average performance speedup of 450%

= Streamlt: A Unified High-level Abstraction for DSP Programming
= Increased abstraction does not have to sacrifice performance

http://cag.lcs.mit.edu/linear/



