Stream Compilers

Saman Amarasinghe and William Thies
Massachusetts Institute of Technology

PACT 2003
September 27, 2003

Schedule

1:30-1:40 Overview (Saman)

1:40-2:20 Stream Architectures (Saman)

2:20-3:00 Stream Languages (Bill)

3:00-3:30 Break

3:30-3:55 Stream Compilers (Saman)

3:55-4:35 Scheduling Algorithms (Bill)

4:35-5:00 Domain-specific
Optimizations (Saman)

How to execute a Stream Graph?
Method 1: Time Multiplexing

= Run one filter at a time

-~
= Pros:
= Perfectly load balanced
= Allows SIMD control

= Synchronization from Memory Processor

= Cons:

= If a filter run is too short
= Filter load overhead is high

= If a filter run is too long
= Data spills down the cache hierarchy
= Long latency

= Lots of memory traffic

Bad cache effects

- Could require storage to offset (SRF)

= Does not scale with spatially-aware
architectures

How to execute a Stream Graph?
Method 2: Space Multiplexing

Map filter per tile and run HD_@;._,
forever

= Pros:
= No filter swapping overhead

= Exploits spatially-aware
architectures

= Scales well
= Reduced memory traffic
= Localized communication
= Tighter latencies
= Smaller live data set
= Cons:
= Load balancing is critical
= Not good for dynamic behavior
= Requires # filters < # processing elements

Example: Radar Array Front End

complex->void pipeline BeamFormer(int numChannels, int
numBeams) {

add splitjoin {
split duplicate;
for (int i=0; i<numChannels; i++) {
add pipeline {
add FIR1(N1);

add FIR2(N2);
}i

}i
join roundrobin;
¥
add splitjoin {
split duplicate;
for (int i=0; i<numBeams; i++) {
add pipeline {
add VectorMult();

add FIR3(N3);
add Magnitude();

add Detect();
}i
}i
join roundrobin(0);

}i

Radar Array Front End on Raw

Pracessor

B Blocked on Static Network
Executing Instructions
Pipeline Stall

Bridging the Abstraction layers

= Streamlt language exposes the data movement
= Graph structure is architecture independent

= Each architecture is different in granularity and topology
= Communication is exposed to the compiler

= The compiler needs to efficiently bridge the abstraction
= Map the computation and communication pattern of the program
to the PE's, memory and the communication substrate

Bridging the Abstraction layers

= Streamlt language exposes the data movement
= Graph structure is architecture independent

= Each architecture is different in granularity and topology
= Communication is exposed to the compiler

= The compiler needs to efficiently bridge the abstraction
= Map the computation and communication pattern of the program
to the PE's, memory and the communication substrate

= The StreamIt Compiler
Partitioning

Placement

Scheduling

Code generation

Partitioning: Choosing the Granularity

Pt

= Mapping filters to tiles
= # filters should equal (or a few less than) # of tiles
« Each filter should have similar amount of work
= Throughput determined by the filter with most work
= Compiler Algorithm

=« Two primary transformations
= Filter fission
= Filter fusion

= Uses a greedy heuristic

Partitioning - Fission

= Fission - splitting streams

= Duplicate a filter, placing the duplicates in a
SplitJoin to expose parallelism.

Splitter

Joiner

-Split a filter into a pipeline for load balancing

| Filter0 || Filter1 |— -+ FilterN

Partitioning - Fusion

= Fusion - merging streams

= Merge filters into one filter for load balancing
and synchronization removal

Splitter

Filter0 FilterN

[FilterO}—»! Filterl]—> FilterN

Example: Radar Array Front End (original)

 /, = 77

FIRFilter [FIRFiIter [FIRFiIter [FIRFiIter [FIRFiIter FIRFilter FIRFiIter] FIRFiIter] FIRFilter FIRFilter FIRFiIter] FIRFiIter]
FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter] [FIRFiIter FIRFilter

—— —

Vector Mult Vector Mult Vector Mult Vector Mult
I 2 T

FirFilter FirFilter FirFilter FirFilter
2 2 T

Magnitude Magnitude Magnitude Magnitude
Detector| Detector] Detector| Detector|

Example: Radar Array Front End

FirFilter

FirFilter

FirFilter

i
D
pLA
D
(@)
P
()
=

Example: Radar Array Front End

S

Vector Mult
FirFilter FirFilter FirFilter FirFilter

Example: Radar Array Front End

FIRFilter FIRFilter FIRFilter

FIRFilter FIRFilter FIRFilter [FIRFiIter

FIRFilter

FIRFilter FIRFilter FIRFilter | |FIRFilter
FIRFilter FIRFilter

FIRFilter

FIRFilter

FIRFilter FIRFilter FIRFilter
FIRFilter FIRFilter FIRFilter

FIRFilter
FIRFilter

Vector Mult

v

FirFilter

¥

Magnitude

Detector

Vector Mult

2

FirFilter

v

Magnitude

Detector

Vector Mult

¥

FirFilter

¥

Magnitude

Detector

Vector Mult

FirFilter

Magnitude

Detector

Example: Radar Array Front End

FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter | |FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter
FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Example: Radar Array Front End

FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter | |FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter
FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Example: Radar Array Front End

FIRFilter
FIRFilter

FIRFilter

FIRFilter

FIRFilter FIRFilter
FIRFilter FIRFilter

|

FIRFilter FIRFilte
FIRFilter FIRFilte

) {

FIRFilter

FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

FIRFilter
FIRFilter

Vector Mult

FIRFilter
Magnitude
Detector

Vector Mult
FIRFilter
Magnitude
Detector

Vector Mult
FIRFilter
Magnitude
Detector

Vector Mult
FIRFilter
Magnitude
Detector

Example: Radar Array Front End

FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter | |FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter
FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Example: Radar Array Front End

FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter | |FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter
FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Example: Radar Array Front End (Balanced)

FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter | |FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter
FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Vector Mult|Vector Mult
FIRFilter | FIRFilter
Magnitude | Magnitude
Detector | Detector

FIRFilter | FIRFilter
Magpnitude | Magnitude
Detector | Detector

Placement: Minimizing Communication

Paata

= Assign filters to tiles
=« Communicating filters > try to make them adjacent
= Reduce overlapping communication paths
=« Reduce/eliminate cyclic communication if possible

= Compiler algorithm
= Uses Simulated Annealing

Placement for Partitioned Radar Array Front End

FIR FIR R FIR
FIR FIR "Seector FIR
@ ® 4
FIR_$ Joiner —4 FIR
FIR "Seor < rR

®
FIR FIR FIR FIR
FIR FIR FIR FIR

FIR FIR FIR
FIR FIR FIR

Scheduling: Communication Orchestration

= Create a communication schedule

= Compiler Algorithm
= Calculate an initialization and steady-state schedule
= Simulate the execution of an entire cyclic schedule
= Place static route instructions at the appropriate time

Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule = { }

A B

*[pu;r;:z} ppu"sphiﬂ ’{p".‘?.: 2 }—’

Steady-State Schedule

= All data pop/push rates are constant
= Can find a Steady-State Schedule

= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule={ A}

A
r ™

B

pusilill
g J

pop=3 7
pushzlJ

=)

Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule ={A A}

A B

C
4) w
—> pop=3 pop=2
pusilil push=1 J
G J

Steady-State Schedule

= All data pop/push rates are constant
= Can find a Steady-State Schedule

= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule={A A B}

A

e

T

=)

Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule={A A B A}

A B

C
(N\ w
—> pop=3 pop=2
pusilil push=1 J []
_)

Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule

= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More getails later, in section on scheduling

= Schedule={ A, A B,A B}

A

e

B

r

pop=3

i

Bush=1
.

~\

J

Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule={ A A B, A B, C}

A B

W pop=3 w =2
push=2 J push=1 J -> pO.F.). >
J

Initialization Schedule

= When peek > pop, buffer cannot be empty after
firing a filter

= Buffers are not empty at the beginning/end of
the steady state schedule

= Need to fill the buffers before starting the steady
state execution

s More details later, in section on scheduling

peek:4<w
T Pop=3 g
push=1

Initialization Schedule

= When peek > pop, buffer cannot be empty after
firing a filter

= Buffers are not empty at the beginning/end of
the steady state schedule

= Need to fill the buffers before starting the steady
state execution

s More details later, in section on scheduling

[peek=4

. push=1 ,

Code Generation: Optimizing tile performance

]
=y Aey R
@ o) @) 4 = ! =

= Creates code to run on each tile
= Optimized by the existing node compiler

s Generates the switch code for the communication

Performance Results for Radar Array Front End

L l||| ||I||||||||| |||||||||||| |
| il
LR Hi Il L |
ORLLTERT TR TR TR Ly e i LT T TR
| || N ” |] N NN ” | |
0 | M T
= LIS LEL PR RUE L L L AL | ii‘ L]
5|1 I . Wil
5 | | | |
2 |
= i i | | | |
TTHIRN
|
:
Time I Blocked on Static Network

Executing Instructions
Pipeline Stall

MFLOPS

Performance of Radar Array Front End*

1,400

1,200 -
1,000 -
800 -
600 -

400 -

O _

* As of Summer, 2002

240

11

S77

C program

1 GHz Pentium
]

C program

250 MHz single
tile Raw

1,230

Unoptimized
Streamlt

250 MHz 64 tile
Raw

Optimized
Streamlt

250 MHz 16 tile
Raw

Utilization of Radar Array Front End*

120

100 -

MFLOPS per Tile
o)) ©
o o

N
o
|

N
o
\

* As of Summer, 2002

11

10

99

C program

250 MHz single
tile Raw

Unoptimized
Streamlt

250 MHz 64 tile
Raw

Optimized
Streamlt

250 MHz 16 tile
Raw

Application Performance*

* As of Summer, 2002

32
ﬁg 28 -
S =
T 24
h 2 20
o E
o
4_‘0167
g--l—d
o g 12
S N
o8 8
e E
F o 4

c
0,

Scalability of StreamIt*

* As of Summer, 2002
14

=
N
|

H
o
|

o0
|

Normalized Throughput

o N SEN ()]
| | |

1x1 2 X2 3 X3 4 x4 5x5 6 X6

Scalability of StreamIt*

Tile Utilization

* As of Summer, 2002
100.00

90.00
80.00 -
70.00 -
60.00 -
50.00 -
40.00 -
30.00 -
20.00 -
10.00 -
0.00

1x1 2X 2 3Xx3 4x 4 5x5 6X6

Related Work

= Stream-C / Kernel-C (Dally et. al)

= Compiled to Imagine with time multiplexing

= Extensions to C to deal with finite streams

= Programmer explicitly calls stream “kernels”

= Need program analysis to overlap streams / vary target granularity
= Brook (Buck et. al)

= Architecture-independent counterpart of Stream-C / Kernel-C

= Designed to be more parallelizable
= Ptolemy (Lee et. al)

= Heterogeneous modeling environment for DSP

= Many scheduling results shared with StreamlIt

= Don't focus on language development / optimized code generation
= Other languages

= Occam, SISAL — not statically schedulable

= LUSTRE, Lucid, Signal, Esterel — don't focus on parallel performance

Conclusion

= Streaming Programming Model
= An important class of applications
= Can break the von Neumann bottleneck
= A natural fit for a large class of applications
= Straightforward mapping to the architectural model

= StreamlIt: A Machine Language for Communication
Exposed Architectures

= EXxpose the common properties
= Multiple instruction streams
= Software exposed communication
= Fast local memory co-located with execution units

= Hide the differences
= Granularity of execution units
= Type and topology of the communication network
= Memory hierarchy

= A good compiler can eliminate the overhead of
abstraction

