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Schedule

1:30-1:40 Overview (Saman)

1:40-2:20 Stream Architectures (Saman)

2:20-3:00 Stream Languages (Bill)

3:00-3:30 Break

3:30-3:55 Stream Compilers (Saman)

3:55-4:35 Scheduling Algorithms (Bill)

4:35-5:00 Domain-specific
Optimizations (Saman)



How to execute a Stream Graph?
Method 1: Time Multiplexing

=  Run one filter at a time

-~
= Pros:
= Perfectly load balanced
= Allows SIMD control

= Synchronization from Memory Processor

= Cons:

= If a filter run is too short
= Filter load overhead is high

= If a filter run is too long
= Data spills down the cache hierarchy
= Long latency

= Lots of memory traffic

Bad cache effects

- Could require storage to offset (SRF)

= Does not scale with spatially-aware
architectures




How to execute a Stream Graph?
Method 2: Space Multiplexing

Map filter per tile and run HD_@;._,
forever

= Pros:
= No filter swapping overhead

= Exploits spatially-aware
architectures

= Scales well
= Reduced memory traffic
= Localized communication
= Tighter latencies
= Smaller live data set
= Cons:
= Load balancing is critical
= Not good for dynamic behavior
= Requires # filters < # processing elements




Example: Radar Array Front End

complex->void pipeline BeamFormer(int numChannels, int
numBeams) {

add splitjoin {
split duplicate;
for (int i=0; i<numChannels; i++) {
add pipeline {
add FIR1(N1);

add FIR2(N2);
}i

}i
join roundrobin;
¥
add splitjoin {
split duplicate;
for (int i=0; i<numBeams; i++) {
add pipeline {
add VectorMult();

add FIR3(N3);
add Magnitude();

add Detect();
}i
}i
join roundrobin(0);

}i



Radar Array Front End on Raw

Pracessor

B Blocked on Static Network
Executing Instructions
Pipeline Stall




Bridging the Abstraction layers

= Streamlt language exposes the data movement
= Graph structure is architecture independent

= Each architecture is different in granularity and topology
= Communication is exposed to the compiler

= The compiler needs to efficiently bridge the abstraction
= Map the computation and communication pattern of the program
to the PE's, memory and the communication substrate



Bridging the Abstraction layers

= Streamlt language exposes the data movement
= Graph structure is architecture independent

= Each architecture is different in granularity and topology
= Communication is exposed to the compiler

= The compiler needs to efficiently bridge the abstraction
= Map the computation and communication pattern of the program
to the PE's, memory and the communication substrate

= The StreamIt Compiler
Partitioning

Placement

Scheduling

Code generation



Partitioning: Choosing the Granularity

Pt

= Mapping filters to tiles
= # filters should equal (or a few less than) # of tiles
« Each filter should have similar amount of work
= Throughput determined by the filter with most work
= Compiler Algorithm

=« Two primary transformations
= Filter fission
= Filter fusion

= Uses a greedy heuristic




Partitioning - Fission

= Fission - splitting streams

= Duplicate a filter, placing the duplicates in a
SplitJoin to expose parallelism.

Splitter

Joiner

-Split a filter into a pipeline for load balancing

| Filter0 || Filter1 |— -+ FilterN




Partitioning - Fusion

= Fusion - merging streams

= Merge filters into one filter for load balancing
and synchronization removal

Splitter

Filter0 FilterN

[FilterO}—»! Filterl]—> FilterN




Example: Radar Array Front End (original)
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Example: Radar Array Front End
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Example: Radar Array Front End
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Example: Radar Array Front End
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Example: Radar Array Front End (Balanced)
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Placement: Minimizing Communication

Paata

= Assign filters to tiles
=« Communicating filters > try to make them adjacent
= Reduce overlapping communication paths
=« Reduce/eliminate cyclic communication if possible

= Compiler algorithm
= Uses Simulated Annealing




Placement for Partitioned Radar Array Front End
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Scheduling: Communication Orchestration

= Create a communication schedule

= Compiler Algorithm
= Calculate an initialization and steady-state schedule
= Simulate the execution of an entire cyclic schedule
= Place static route instructions at the appropriate time



Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule = { }

A B
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Steady-State Schedule

= All data pop/push rates are constant
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Steady-State Schedule
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Steady-State Schedule

= All data pop/push rates are constant
= Can find a Steady-State Schedule

= # of items in the buffers are the same before and the

after executing the schedule
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Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the
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Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule

= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More getails later, in section on scheduling
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Steady-State Schedule

= All data pop/push rates are constant

= Can find a Steady-State Schedule
= # of items in the buffers are the same before and the

after executing the schedule
= There exist a uniqgue minimum steady state schedule

« More details later, in section on scheduling

= Schedule={ A A B, A B, C}
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Initialization Schedule

= When peek > pop, buffer cannot be empty after
firing a filter

= Buffers are not empty at the beginning/end of
the steady state schedule

= Need to fill the buffers before starting the steady
state execution

s More details later, in section on scheduling

peek:4<w
T Pop=3 g
push=1




Initialization Schedule

= When peek > pop, buffer cannot be empty after
firing a filter

= Buffers are not empty at the beginning/end of
the steady state schedule

= Need to fill the buffers before starting the steady
state execution

s More details later, in section on scheduling
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Code Generation: Optimizing tile performance

]
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= Creates code to run on each tile
= Optimized by the existing node compiler

s Generates the switch code for the communication




Performance Results for Radar Array Front End
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Utilization of Radar Array Front End*
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Application Performance*
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Scalability of StreamIt*
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Scalability of StreamIt*

Tile Utilization
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Related Work

= Stream-C / Kernel-C (Dally et. al)

= Compiled to Imagine with time multiplexing

= Extensions to C to deal with finite streams

= Programmer explicitly calls stream “kernels”

= Need program analysis to overlap streams / vary target granularity
= Brook (Buck et. al)

= Architecture-independent counterpart of Stream-C / Kernel-C

= Designed to be more parallelizable
= Ptolemy (Lee et. al)

= Heterogeneous modeling environment for DSP

= Many scheduling results shared with StreamlIt

= Don't focus on language development / optimized code generation
= Other languages

= Occam, SISAL — not statically schedulable

= LUSTRE, Lucid, Signal, Esterel — don't focus on parallel performance



Conclusion

= Streaming Programming Model
= An important class of applications
= Can break the von Neumann bottleneck
= A natural fit for a large class of applications
= Straightforward mapping to the architectural model

= StreamlIt: A Machine Language for Communication
Exposed Architectures

= EXxpose the common properties
= Multiple instruction streams
= Software exposed communication
= Fast local memory co-located with execution units

= Hide the differences
= Granularity of execution units
= Type and topology of the communication network
= Memory hierarchy

= A good compiler can eliminate the overhead of
abstraction



