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Schedule

1:30-1:40 Overview (Saman)

1:40-2:20 Stream Architectures (Saman)

2:20-3:00 Stream Languages (Bill)

3:00-3:30 Break

3:30-3:55 Stream Compilers (Saman)

3:55-4:20 Domain-specific
Optimizations (Saman)

4:20-5:00 Scheduling Algorithms (Bill)



Processor Model

= User model has been very stable for 30 years
= Sequentially executes instructions
= IO operations interact with outside world

= Model has hidden the scaling of technology
= Efficiently transformed transistors to performance
= 8008 — 3,500 transistors, and ran at 200kHz
= P4 —42M transistors, runs at 3GHz
= Performance changed from 0.06MIPS to >1000MIPS

= Cis a perfect fit to this programming model
= They grew up together ...
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The World is About to Change

= Processor performance will not continue to scale
= We will fall off the current performance curve soon

= Many factors will cause this to occur
= VLSI wire issues (global structure are hard to build)
= Insufficient recoverable ILP
= Power

= This performance growth was partially an illusion



Technology Scaling

= Scaling CMOS has two direct effects:

= Devices get smaller
= Both transistors and wires
=« Get more per square mm
= Generally means they get cheaper
= Enables more complex devices

= Transistors get faster
= S0 do wires when viewed the ‘right” way



FO4 Inverter Delay Under Scaling

= Gate delay varies linearly with process technology (so far)
= Useful rule of thumb: Dgate = 500pS*Ldrawn at TTLH

Fanout=4 inverter delay at TT, 90% Vvdd, 125C
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= Issues with being able to continue this scaling
= Some current technologies are faster (le < feature size)



The World is Growing

= The problem associated with wires is really due to complexity

= Diagram shows the logical span you reach in a cycle
= It also show the logical span of a chip

Old view: a chip looks small to a wire

- LDgiCEﬂ chip size

- Distance | can go in 1 cycle




Range of a Wire in One Clock Cycle
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Architecture Scaling
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Gates Per Clock

= Clock speed has been scaling faster than base technology
= Number of FO4 delays in a cycle has been falling
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Number of gates decrease
1.4x each generation

Caused by:
= Faster circuit families
(dynamic logic)
= Better optimization
= Better micro-architecture
= Better adder/mem arch

All this generally requires
more transistors



Clock Cycle in 'FO4’
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Gates Per Clock

= Current SOA machines are at 16 FO4 gates per cycle
= Historical low values (Cray) were at this level

= Overhead for short tick machines grows rapidly

= Power
= Increases clock power per logic function

= Latency
= Flops are already 10-20% of cycle today

= Logic reach grows smaller
= What fits in a cycle (how many bits/gates) decreases

= Difficult to generate a clock at less than 8 FO4 gates

= Continued scaling of gates/clock will be hard
= Performance gain from 16 FO4 to 8 FO4 is only 20% anyhow



Coming Opportunity

= Conventional processor scaling is going to slow down
= Design costs are enormous
= Improving IPC is getting harder
= Improving cycle time is getting harder

= For performance need to exploit parallelism
= EVS8, Pentium 4 — SMT

= Power 4 is an explicit multiprocessor
= Power 5 is explicit multiprocessor with SMT

= How do we do this well?
= Create other programming models
= Make the models match VLSI constraints

= Dont worry about universality



Making Communication EXxplicit

= In VLSI, communication is what matters
It is the wires, stupid

= Another way of saying this is:
= In VLSI building computation elements is easy
= Keeping them feed is hard
= Hence, most of a modern processor stages data

= What a computation model that
= Makes communication explicit
= Provides feedback to the programmer about communication



The “Ideal” VLSI Machine

= Lots of simple compute units
= Units feed by cheap (in energy, area) sources — local regs
= Relatively cheap instruction issue logic
= Memory (FIFOs) to decouple data fetch/execute
= Communication takes time (it is the LAW)
= Need to enable the machine to tolerate latency
= Interconnection network with high-bandwidth
= And as small latency as possible
= Connections to large backing store
= Main memory and disk

= Streams are a programming model that matches this
machine



Next-Generation Architectures

The new design space
=« How to use a billion transistors?
= How to accommodate the wire delays?

Many forward looking architecture are addressing
this problem

= MIT Raw processor

« Stanford Imagine processor

= Stanford Smart Memories processor

« UT Austin TRIPS processor

= Wisconsin ILDP architecture

= The original IBM BlueGene processor



Next-Generation Architectures

= MIT Raw processor

= Stanford Imagine processor
= UT Austin TRIPS processor
= Berkeley VIRAM Processor



Wire Delay

Make a tile as big as
you can go in one
clock cycle, and
expose longer
communication to the
programmer




Wire Delay and Tiled Architectures
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RAW: A Wire Exposed Architect

e
11

Conput atio
Resour ces

= A wire can cross a tile in a single clock cycle
= Wire delay is not a issue in the processor design

= Ultra fast interconnect network
= Exposes the wires to the compiler
= Compiler orchestrate the communication - hide wire delay

= Defying the Speed of Light



On-Chip Networks

= 2 Static Networks

= Software configurable crossbar

= 3 cycle latency for nearest-
neighbor ALU to ALU

= Must know pattern at compile-time
= Flow controlled

Computation
Resources

=

1 Switch
Processor

= 2 Dynamic Networks
= Header encodes destination
= Fire and Forget
= 15 cycle latency for nearest-neighbor




Raw Chip
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Close-up of a single Raw tile

Static Router
Fetch Unit

Compute Compute
Processor ' Processor
Fetch Unit _ Data Cache




Raw vs. Pentium
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Next-Generation Architectures

= MIT Raw processor

= Stanford Imagine processor
= UT Austin TRIPS processor
= Berkeley VIRAM Processor



Imagine Stream Processor (Stanford)

= 48 FP arithmetic units
= In 8 VLIW clusters
= SIMD control of clusters
= Execute “stream kernels”

= To keep ALUs busy, streams
of data are buffered in
Stream Register File (SRF)  rreswonpomessor
= SRF is compiler-controlled, on-chip memory
= 128 KB — can hold large streams of data
= Distinguishes Imagine from plain vector processor

= Kernel execution, DMA operations, and SRF
allocation is orchestrated by control processor

Host Stream

Interface ’_ Contraller

Stream
Register File

ZTrAWOWM




Producer-Consumer Locality in a Depth Extractor

Memory/ Global Data | SRF/Streams | Clusters/Kernels
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A Bandwidth Hierarchy exploits kernel
and producer-consumer locality
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2GBls  32GBIs 544GBls
Memory BW Global RF BW Local RF BW

Depth Extractor 0.80 GB/s 18.45 GB/s 210.85 GB/s
MPEG Encoder 0.47 GB/s 2.46 GB/s 121.05 GB/s
Polygon Rendering 0.78 GB/s 4.06 GB/s 102.46 GB/s

QR Decomposition 0.46 GB/s 3.67 GB/s 234.57 GBIs




Bandwidth demand of stream programs fits
bandwidth hierarchy of architecture

Bandwidth (GB/s)

MPEG QRD STAP Render RTSL
(average)




Prototype HW and SW

Prototype of Imagine architecture

— Proof-of-concept 2.56cm? die in 0.15um TI
process, 21M transistors

— Collaboration with TI ASIC
Dual-Imagine development board
— Platform for rapid application development
— Test & debug building blocks of a 64-node system
— Collaboration with ISI-East
Software tools based on
Stream-C/Kernel-C
— Stream scheduler
— Communication scheduling
Many Applications
— 3 Graphics pipelines
— Image-processing apps — depth, MPEG
— 3G Cellphone (Rice)
— STAP




Next-Generation Architectures

= MIT Raw processor

= Stanford Imagine processor
= UT Austin TRIPS processor
= Berkeley VIRAM Processor



TRIPS (UT Austin)
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Dataflow Execution in TRIPS Core
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TRIPS Memory Accesses
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Stream register file (SRF)
* lrregular memory access (accessed w/ LMW)

« Map to hardware cache hierachy

« Regular data accesses
« Subset of L2 cache banks configured as Stream Register File (SRF)
« High bandwidth data channels to SRF, reduced address BW
 DMA engines transfer between SRF and DRAM or other SRFs

« Constants saved in reservation stations with corresponding instructions



TRIPS: Desirable Attributes

= Performs well on DLP programs with different attributes

= Synchronous core to minimize synchronization overheads on
traditional vector/stream applications

= MIMD-like capabilities for applications with irregular control
= Support for different types of data structures

= Partitioned and scalable microarchitecture
= Dataflow instruction execution
= Limit/eliminate global broadcast of instructions/data
= Decoupled processor core
= From memory system to enable memory fetch parallelism
= From other processor cores to enable kernel pipelining
= Efficient instruction distribution and re-use
= Exploit spatial/temporal locality



TRIPS Chip

4 cores (with streaming support)
L2 cache and SRF memory banks
* Pipelining across kernels mapped to different cores

* Extend to system through off-chip channels




Next-Generation Architectures

= MIT Raw processor

= Stanford Imagine processor
= UT Austin TRIPS processor
= Berkeley VIRAM Processor



Vector IRAM Approach (UC Berkeley)

Vector processing Embedded DRAM

* multimedia ready e high memory bandwidth

e predictable, high * low memory latency
performance * energy savings

 simple e system size benefits

* energy savings Serial I/0O

 high code density e Ghbit/sec I/O bandwidth

» well understood * low pin count

C.E. Kozyrakis, IEEE Computer Elements Workshop, June 22, 1998

programming model « low power



The VIRAM “Stream” Processor

Vector Lane Vector Lane

MIPS Vector Vector

Core Registers

Registers

Crossbar Switch




The VIRAM “Stream” Processor

= Vector hardware
= 125M transistors, 13MB DRAM, 0.18um CMOS

= Single issue, in order, no hardware caches
= 4.8 Gops (32b), 200MHz, 2W

= Performance
= Evaluated for multimedia, telecom, and scientific apps
= 10x over superscalar and VLIW
= Even better with a clustered, decoupled vector processor
= See MICRO'02, IPDPS'02, ISCA'03
= 'Streaming” software

= C with pragmas for data-level parallelism
= Sufficient for many array-based and SDF computations

= Vectorizing compiler (based on Cray compiler)



Initial Performance Study
= From an independent study done at ISI East

= A Performance Characterization of New Microprocessor Paradigms
on Data-Intensive Kernels” - Jinwoo Suh, Eun-Gyu Kim, Stephen P.
Crago, Lakshmi Srinivasan, and Matthew C. French, ISCA 2003.

= Many caveats

=« Hard to do apples-to-apples comparison
= Different process generations
= Different clock speeds
= Different tool chains
= Different languages

= Only small kernels




Prototype Peak Memory Bandwidth and GOPS
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= Memory speed

=« VIRAM, Imagine, Raw: as fast as processors
« PPC: 266 MHz DDR SDRAM



Overview of Kernels

= Corner turn
« 1K by 1K matrix transpose
= Source and destination in memory
= Out of place

= Coherent sidelobe canceller (CSLC)
= Radar signal processing
» Basically convolution in frequency domain
= FFT — Multiplication — IFFT

= Beam steering

= Radar signal processing
= Mostly load/store and add operations



Speedup for CT
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All three architectures obtain almost peak
memory bandwidth

PPC G4: 1000 MHz (Memory 266 M Hz), Measured VIRAM: 200 MHz, Simulated
Imagine: 300 MHz, Simulated Raw: 300 MHz, Simulated



Speedup for CSLC
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Speedup for Beam steering
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Conclusion

= Uniprocessor scaling is near its end
= Wire delay is a big issue

= Stream architectures have a lot of potential
=« Expand spatially
= Balance the bandwidth hierarchy
= Morph general purpose substrates

= Cannot keep supporting the same old
programming model



Future Work for Architects:

Programming Language Design
= Why C (FORTRAN, C++ etc.) became very successful?

= Abstracted out the differences of von Neumann machines
= Register set structure
= Functional units and capabilities
= Pipeline depth/width
= Memory/cache organization

= Directly expose the common properties
= Single memory image
= Single control-flow
= A clear notion of time

= Can have a very efficient mapping to a von Neumann machine
= Cis the portable machine language for von Numann machines”

= Today von Neumann languages are a curse
= We have squeezed out all the performance out of C
= We can build more powerful machines
= But, cannot map C into next generation machines
= Switching to a data-flow programming paradigm will help

Architectures, Languages, and Compilers for the Streaming Domain
PACT 2003 Tutorial — Saman Amarasinghe, William Thies — MIT CSAIL



