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Hs
" Domain of Streaming Computing

= Increasingly prevalent computing domain with
applications in
= Embedded systems
= Cell phones, handheld computers, DSPs
= Desktop workstations
= Streaming media, real-time encryption, software radio, graphics

=« High-performance servers

= Software routers, cell phone base stations, radar tracking, HDTV
editing consoles, databases

= Predominant data streams include audio, video, and data
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What is Stream Computing?

= "A model that uses sequences of data and computation
kernels to expose and exploit concurrency and locality for

efficiency."
= Workshop on Streaming Systems, Summer 2003

http://cag.csail.mit.edu/wss03
|

kernel
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channel
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Hs
! Properties of Streaming Programs

= Process large (possibly infinite) amounts of data
« Data have limited lifetime and undergoes little processing

= Processing consists of a series of data transformations

= Filter is the basic unit for data transformation

= Input data —— Output data
= Filters are independent and self-contained

= Regular” computation patterns
=« Flow of data between filters is mostly constant

= Many opportunities for compiler optimizations

= Occasional changes in program control (messaging)
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Hs
" HPCS Goals in the Streaming Context

= Stream programming often requires special expertise

=« Conventional programming languages used in large applications
make it difficult to extract parallelism

= Low performance is not acceptable
= System experts on the critical path

» Programming high-end machines should not be the
“exclusive domain of experts”

= Use high-level abstractions to naturally describe streaming
computation
= Make the language compiler-friendly
= Expose parallelism and communication
= Empower the compiler to perform novel optimization
= Facilitate an efficient mapping of programs to (future) architectures
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Hs
! StreamIt Overview

s Streamlt is a high-level,
architecture-independent
language for stream
computing

« Facilitate the rapid

implementation of complex
applications

= Expert-programmer no
longer on critical path to
achieving high performance

= StreamlIt compiler applies
novel domain specific
optimizations

http://cag.csail.mit.edu/streamit
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Mir . : :
StreamlIt in the Big Picture
= Unified programming model with single machine

abstraction

= Expose parallelism and communication
= Uniprocessor, cluster of workstations, or tiled architecture

= Hide granularity of execution, architecture details
= Natural textual representation

> Innovative compiler technology focuses on the core set of
challenges
= Versatility, load balancing, fault tolerance, ...

provide “performance transparency”, portability, and support for “programming in the large”
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i
Related Work

= "Stream languages”

= KernelC/StreamC, Brook:
augment C with data-parallel
kernels

= Cg: allow low-level
programming of graphics
processors

= Prototyping environments

= Ptolemy, Simulink, etc.:
provide graphical abstractions,
but do not focus on compiling
for performance or reliability

= Control languages for
embedded systems

= LUSTRE, Esterel, etc.: can
verify safety properties, but do
not expose high-bandwidth
data flow for optimization
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Performance

In general, little features for
scalable program development,
or too abstract and
unstructured

= Compiler cannot perform

enough analysis and
optimizations

» StreamlIt exposes more task
parallelism, and uses

constructs that are easier to
analyze

C/ C++/ Assembly Streamlt:

With Manual Compiler
Parallelization Conscious
Language

Design

Synchronous Dataflow
-LUSTRE - SIGNAL
- Silage - Lucid

Programmability

»
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Mir _
StreamIt Language Overview
= A Streamlt program is a structured graph of nodes

= Nodes are autonomous units of computation
=« Edges are communication channels (FIFOs)

= Hierarchical structure
= Single-Input to Single-Output language constructs

= Graph components are parameterizable
=« Short and natural recursive stream graph definitions
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StreamIt Language Constructs

= Language constructs

» Filter
—

= Pipeline

N o

1] may be any of
the Streamlt language

constructs

parallel
“, computation

= SplitJoin o

—»| split i

= FeedBack Loop

— join split
—{ein | [ [ split
A
dl
[
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= Programming paradigm is

= Modular

= Important for large scale
development

= Malleable

=« Parameterized templates
allow program to change
behavior with small source
code modifications

= Composable

= Composition of simple
structures creates large and
complex graphs

= Enables inductive reasoning
about correctness

= Portable

= Application is architecture
independent

HPL Workshop
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Hs
" Filters as Computational Elements

= Filters are the basic programmable units
= An initialization function and a steady-state work function
= Communicate via FIFOs: pop(), peek(index), push(value)

float—float filter (int N) {
float[N] weights;
init {
weights = calculate_weights(N);

)
work push 1 pop 1 peek N {
float result = 0;
for(inti=0;i<N;i++){
result += weights[i] * peek(i);
)

push(result);
pop();
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Hs
! Example Application—Radar Front-End

complex—> void pipeline BeamFormer(int numChannels, int numBeams) {
add splitjoin {
split duplicate;
for (int i=0; iknumChannels; i++) {
add pipeline {
add FIR1(N1);

v v v v v v v v v v

add FIR2(N2); [FIRFiIteﬂ [FIRFiItel] [FIRFiItel] [FIRFiItel] [FIRFiIteli [FIRFiIteﬂ [FIRFiIteﬂ [FIRFiItel] [FIRFiItel] [FIRFiIter]

}
%
join roundrobin; RoundRobin
}
add splitjoin {
split duplicate;
for (int i=0; i<numBeams; i++) {
add pipeline {
add VectorMult();

add FIR3(N3);
add Magnitude();

add Detect();
}

|5

join roundrobin(0);
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Mir . :
StreamIt Compiler Overview
= The StreamlIt language hides granularity of execution and

architecture details

= Compiler backend supports
Uniprocessor, cluster of workstations, and MIT Raw

= Innovative compiler technology focuses on the core set of
challenges to deliver high performance in future

architectures
= Automating domain specific optimizations

= Optimization of linear streams
= Translation to the frequency domain

= Partitioning, layout, routing, ...

HPL Workshop
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L [TH . C .
Linear Filter Optimizations
= Most common target of DSP optimizations
= FIR filters )
= Compressors

= Expanders
« DFT/DCT y

> Output is weighted sum of inputs

= Example optimizations:
= Combining Adjacent Nodes
= Translating to Frequency Domain
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Representing Linear Filters

= A linear filter is a tuple (A, E 0)
= A: matrix of coefficients

= b: vector of constants
= O0: number of items popped

= Example

=
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Hs
! Extracting Linear Representation

work peek N pop 1 push 1 { Lmear
float sum = 0; Dataflow
for (int i=0; i<N; i++) { .
sum += h[i]*peek(i); Analysis

by
push(sum);
pop();

= Resembles constant propagation

= Maintains linear form <7, B} for each variable
= Peek expression: generate fresh v’
= Push expression: copy Vv into A
= Pop expression: increment o
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Hs
! Combining Linear Filters

Pipelines and splitjoins can be collapsed

Example: pipeline

Combined

Filter

HPL Workshop
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Hs
" Combination Example

6 mults 1 mults

output output

Combined i
) -
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Mir
From Time to Frequency Domain
= Convolutions are cheap in the Frequency Domain

= Painful to do by hand
= Blocking, Coefficient calculations, ...

= StreamlIt automates the transformation

)

FFT

VMM

IFFT
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Hs
" Linear Optimization of Stream Graph
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Hs
" Backend for Parallel Platforms
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Partitioning Layout Routing Codegen

= StreamlIt exposes communication patterns
= Automatic generation and optimization of routing code

= Otherwise, may require extensive (assembly) programming
FIR — Raw backend

= 15 statements of StreamIt code achieve the same performance as 352
statements of manually-tuned C

Frequency Hopping Radio — cluster backend

= 50% higher throughput and 35% less communication, when using StreamIt’s
messaging construct
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Hs
" StreamIt Development Tool (SDT)

= Graphical development environment

= Text editor
=« Key-word highlighting and indentation schemes

= Graphical editor for the rapid prototyping of stream
applications
= Fast composition of stream graphs

= Graphical debugger

= Step by step execution
= Inspection and modification of program variables

= Online help manuals
= Integrated with the IBM Eclipse Tool Platform

= Available at http://cag.csail.mit.edu/streamit/html/eclipse-plugin.html
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Hs
! Debugging Parallel StreamIt Programs

= Parallelism and communication are exposed

= Tracking the flow of data in a stream graph affords a frame of
reference for reasoning about “time”

= Powerful advantage when debugging parallel programs

splitJoin .. paralle/
., computation  VEISUS

= Multiple threads with independent
program counters

= Non-deterministic execution
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StreamIt Graphical Editor

Sk S _— StreamIt Component-Shortcuts
7 i T = Create Filters, Pipelines, Splitloins, Feedback Loops, FIFOs

N e 3 Fmt P NS

TestSpitJoin_81

TestLoop_89

1 Juan C Reyes _|
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StreamIt Debugging Environment

£ Debug - HelloWorldé.str - Eclipse Platform
File Edt MNavigate Segrch Froject Run Streamlt Window Help

==l x|

IF-Has|nlfk-% %o 9[-

|| %5 Debug

ETEEN-TE R

9| Breakpoints

6@ HelloWorlds at localhost:9105
@, System Thread [Finalizer] (Running)

35 @ System Thread [Reference Handier] (Rurning)
(=)@ Thread [main] {Suspended (breakpoint at line 20 in IntPrinker})
IntPrinter, work(} line: 201
Hellowarlder)

@ System Thread [Signal Dispatcher] (Running}
-k C:\Program Files\Javalizrel .4.2_03thintjavaw,exe (1j11704 1:16 AM)

Eh =] % Helloworlds [Streamlt Application]

[line: 7] - Comples
[line: 8] - real

[line: 9] - imag

[line: 10] - EightPusher
[line: 11] - EightPusher
[line: 121 - x

[line: 14] - x

cooocooo

2@ =

General Debugging
Information

Varlables |Breakpoints | Expressions |Display

Helloworlds.str 3% | ] Helloworlde, java

20r Overview of Stream Graph

void->int filter IntSource { fors
int x;

¥

init {
push (x++) ;
Text
push (x++]
int y:

® = 0;
¥
v puen 1« StFreamMIt
push (x++) ;
push (x++) ;
; Editor
int->roid filter IntPrinter {
init {
v = 0;

¥

work pop 4 peek 4 {
printipopil):
print(popil);
printipopil}:
printipopil);

¥

int->int filter Pass {

int z;

init {
z = 0;

i

work push 4 pop 4 peek 4 {
pushipopi)):
push (pop ()] ;
pushipopi)):
push (pop ()] ;

*

int->int pipeline Passer {
// add Pass(]:

il o |l

StreamlIt
Graph Zoom
Panel

not shown:
the StreamlIt
On-Line Help
Manual

=l Pass (id=51)

Work Executions:

ElPass (id=54)

Work Executions:

StreamlIt Graph
Components

expanded and
collapsed views
of basic
programmable
unit

communication

buffer with live
data

& cConsole [Helloworlds at localhost:3105]

S ]

[

1

Compiler and
Output Consoles

Cansols | Error Log | Tasks
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Hs
! Programmer Evaluation of the SDT

= A detailed study was held in April to evaluate the SDT

from a user’s perspective
= Monitored environment to track user progress on a core set of problems

=« Language and SDT tutorial
= Pre-study and post-study questionnaires

= Post-study interview

Visualization capabilities in the SDT considered

"invaluable” to some users
= Especially when stream graphs were large (and generated recursively)

The ability to track the flow of data was also considered
extremely helpful

= Many lessons learned!
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Hs
! For More Information

Streamlt Homepage
http://cag.csail.mit.edu/streamit

download papers, benchmarks, compiler, SDT, ...
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