
Language, Compiler and Development 
Support for Stream Computing

Rodric M. Rabbah
Massachusetts Institute of Technology
Joint work with Michael Gordon, Michal Karczmarek, Andrew Lamb, Jasper Lin, William 
Thies, Kimberly Kuo, Juan C. Reyes, David Maze, and Saman Amarasinghe

HPL Workshop
May 2004

http://cag.csail.mit.edu/streamit



HPL Workshop
May, 2004 2http://cag.csail.mit.edu/streamit

Domain of Streaming Computing
Increasingly prevalent computing domain with 
applications in

Embedded systems
Cell phones, handheld computers, DSPs

Desktop workstations
Streaming media, real-time encryption, software radio, graphics

High-performance servers
Software routers, cell phone base stations, radar tracking, HDTV
editing consoles, databases

Predominant data streams include audio, video, and data



HPL Workshop
May, 2004 3http://cag.csail.mit.edu/streamit

What is Stream Computing?
"A model that uses sequences of data and computation 
kernels to expose and exploit concurrency and locality for 
efficiency." 

Workshop on Streaming Systems, Summer 2003
http://cag.csail.mit.edu/wss03

data 
channel

kernel



HPL Workshop
May, 2004 4http://cag.csail.mit.edu/streamit

Properties of Streaming Programs
Process large (possibly infinite) amounts of data

Data have limited lifetime and undergoes little processing

Processing consists of a series of data transformations
Filter is the basic unit for data transformation

Input data Output data
Filters are independent and self-contained

“Regular” computation patterns
Flow of data between filters is mostly constant
Many opportunities for compiler optimizations

Occasional changes in program control (messaging)



HPL Workshop
May, 2004 5http://cag.csail.mit.edu/streamit

HPCS Goals in the Streaming Context
Stream programming often requires special expertise

Conventional programming languages used in large applications 
make it difficult to extract parallelism
Low performance is not acceptable
System experts on the critical path

Programming high-end machines should not be the 
“exclusive domain of experts”

Use high-level abstractions to naturally describe streaming 
computation
Make the language compiler-friendly

Expose parallelism and communication
Empower the compiler to perform novel optimization
Facilitate an efficient mapping of programs to (future) architectures



HPL Workshop
May, 2004 6http://cag.csail.mit.edu/streamit

StreamIt Overview
StreamIt is a high-level, 
architecture-independent 
language for stream 
computing

Facilitate the rapid 
implementation of complex 
applications
Expert-programmer no 
longer on critical path to 
achieving high performance
StreamIt compiler applies 
novel domain specific 
optimizations

design flow with StreamIt

Domain Specific
Optimizations

StreamIt Program
(dataflow + control)

Architecture-Specific
Optimizations

C / Assembly

Application-Level Design

StreamIt
Compiler

Application
Developer



HPL Workshop
May, 2004 7http://cag.csail.mit.edu/streamit

StreamIt in the Big Picture
Unified programming model with single machine 
abstraction

Expose parallelism and communication
Uniprocessor, cluster of workstations, or tiled architecture

Hide granularity of execution, architecture details
Natural textual representation
Innovative compiler technology focuses on the core set of 
challenges

Versatility, load balancing, fault tolerance, …

provide “performance transparency”, portability, and support for “programming in the large”



HPL Workshop
May, 2004 8http://cag.csail.mit.edu/streamit

Related Work
“Stream languages”

KernelC/StreamC, Brook: 
augment C with data-parallel 
kernels
Cg: allow low-level 
programming of graphics 
processors

Prototyping environments
Ptolemy, Simulink, etc.: 
provide graphical abstractions, 
but do not focus on compiling 
for performance or reliability

Control languages for 
embedded systems

LUSTRE, Esterel, etc.: can 
verify safety properties, but do 
not expose high-bandwidth 
data flow for optimization

In general, little features for 
scalable program development, 
or too abstract and 
unstructured

Compiler cannot perform 
enough analysis and 
optimizations
StreamIt exposes more task 
parallelism, and uses 
constructs that are easier to 
analyze

Programmability

P
er

fo
rm

an
ce

Synchronous Dataflow
- LUSTRE - SIGNAL
- Silage - Lucid

C / C++ / Assembly 
With Manual

Parallelization

StreamIt:
Compiler
Conscious
Language
Design



HPL Workshop
May, 2004 9http://cag.csail.mit.edu/streamit

StreamIt Language Overview
A StreamIt program is a structured graph of nodes

Nodes are autonomous units of computation
Edges are communication channels (FIFOs)

Hierarchical structure
Single-Input to Single-Output language constructs

Graph components are parameterizable
Short and natural recursive stream graph definitions



HPL Workshop
May, 2004 10http://cag.csail.mit.edu/streamit

Language constructs
Filter

Pipeline

SplitJoin

FeedBack Loop

StreamIt Language Constructs

may be any of 
the StreamIt language 
constructs

Programming paradigm is
Modular

Important for large scale 
development

Malleable
Parameterized templates 
allow program to change 
behavior with small source 
code modifications

Composable
Composition of simple 
structures creates large and 
complex graphs
Enables inductive reasoning 
about correctness

Portable
Application is architecture 
independent

parallel 
computation

split join

splitjoin



HPL Workshop
May, 2004 11http://cag.csail.mit.edu/streamit

Filters are the basic programmable units
An initialization function and a steady-state work function
Communicate via FIFOs: pop(), peek(index), push(value)

Filters as Computational Elements

N

filter

float→float filter FIR (int N) {
float[N] weights;

init {
weights = calculate_weights(N);

}

work push 1 pop 1 peek N {
float result = 0;
for (int i = 0; i < N; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}



HPL Workshop
May, 2004 12http://cag.csail.mit.edu/streamit

Splitter

FIRFilterFIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

FIRFilterFIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

RoundRobin

Duplicate

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Joiner

complex→ void pipeline BeamFormer(int numChannels, int numBeams) {
add splitjoin { 

split duplicate;
for (int i=0; i<numChannels; i++) {

add pipeline { 
add FIR1(N1);

add FIR2(N2);
};

};
join roundrobin;  

}; 

add splitjoin {
split duplicate;
for (int i=0; i<numBeams; i++) {

add pipeline {
add VectorMult();

add FIR3(N3);

add Magnitude();

add Detect();
};

};
join roundrobin(0);  

};
}

Example Application–Radar Front-End



StreamIt Compiler



HPL Workshop
May, 2004 14http://cag.csail.mit.edu/streamit

StreamIt Compiler Overview
The StreamIt language hides granularity of execution and 
architecture details

Compiler backend supports
Uniprocessor, cluster of workstations, and MIT Raw

Innovative compiler technology focuses on the core set of 
challenges to deliver high performance in future 
architectures

Automating domain specific optimizations
Optimization of linear streams
Translation to the frequency domain

Partitioning, layout, routing, …



HPL Workshop
May, 2004 15http://cag.csail.mit.edu/streamit

Output is weighted sum of inputs

Linear Filter Optimizations
Most common target of DSP optimizations

FIR filters
Compressors
Expanders
DFT/DCT

Example optimizations:
Combining Adjacent Nodes
Translating to Frequency Domain



HPL Workshop
May, 2004 16http://cag.csail.mit.edu/streamit

Representing Linear Filters

yx = x A + b
→

〈A, b, o〉

A linear filter is a tuple 〈A, b, o〉
A:  matrix of coefficients
b:  vector of constants
o:  number of items popped

Example

→

→

→



HPL Workshop
May, 2004 17http://cag.csail.mit.edu/streamit

Extracting Linear Representation

work peek N pop 1 push 1 {
float sum = 0;
for (int i=0; i<N; i++) { 

sum += h[i]*peek(i);
}
push(sum);
pop();

}

Resembles constant propagation
Maintains linear form 〈v, b〉 for each variable

Peek expression:  generate fresh v
Push expression:  copy v into A
Pop expression:  increment o

Linear
Dataflow
Analysis 〈A, b, o〉

→

→

→

→

→



HPL Workshop
May, 2004 18http://cag.csail.mit.edu/streamit

Combining Linear Filters
Pipelines and splitjoins can be collapsed
Example:  pipeline

Filter 1

Filter 2

x

y

z

y = x A

z = y B

Combined
Filter z = x Cz = x A B

C



HPL Workshop
May, 2004 19http://cag.csail.mit.edu/streamit

Combination Example
















=
3
2
1

B

[ ]654=A

6 mults
output

1 mults
output

Filter 1

Filter 2

C = [ 32 ]Combined
Filter



HPL Workshop
May, 2004 20http://cag.csail.mit.edu/streamit

From Time to Frequency Domain

Xi*Wn-iΣ

X ← F(x)

Y ← X .* H

y ← F -1(Y)

FFT

VMM

IFFT

Convolutions are cheap in the Frequency Domain
Painful to do by hand

Blocking, Coefficient calculations, …
StreamIt automates the transformation



HPL Workshop
May, 2004 21http://cag.csail.mit.edu/streamit

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

FIR
Rate

Con
ve

rt
Targ

etD
ete

ct
FMRad

io

Rad
ar

Filte
rB

an
k

Voc
od

er
Ove

rsa
mple

DToA

Sp
ee

du
p 

(%
)

Linear Optimization of Stream Graph

5%

On a Pentium IV



HPL Workshop
May, 2004 22http://cag.csail.mit.edu/streamit

Backend for Parallel Platforms

StreamIt exposes communication patterns
Automatic generation and optimization of routing code
Otherwise, may require extensive (assembly) programming

FIR – Raw backend
15 statements of StreamIt code achieve the same performance as 352 
statements of manually-tuned C

Frequency Hopping Radio – cluster backend
50% higher throughput and 35% less communication, when using StreamIt’s
messaging construct

Partitioning Layout Routing Codegen



Development Support



HPL Workshop
May, 2004 24http://cag.csail.mit.edu/streamit

StreamIt Development Tool (SDT)
Graphical development environment
Text editor

Key-word highlighting and indentation schemes
Graphical editor for the rapid prototyping of stream 
applications

Fast composition of stream graphs
Graphical debugger

Step by step execution
Inspection and modification of program variables

Online help manuals
Integrated with the IBM Eclipse Tool Platform

Available at http://cag.csail.mit.edu/streamit/html/eclipse-plugin.html



HPL Workshop
May, 2004 25http://cag.csail.mit.edu/streamit

Debugging Parallel StreamIt Programs
Parallelism and communication are exposed

Tracking the flow of data in a stream graph affords a frame of 
reference for reasoning about “time”
Powerful advantage when debugging parallel programs

versus
Multiple threads with independent 
program counters
Non-deterministic execution

parallel 
computation

SplitJoin



HPL Workshop
May, 2004 26http://cag.csail.mit.edu/streamit

StreamIt Graphical Editor
StreamIt Component-Shortcuts

Create Filters, Pipelines, SplitJoins, Feedback Loops, FIFOs

Juan C. Reyes 
M.Eng. Thesis



HPL Workshop
May, 2004 27http://cag.csail.mit.edu/streamit

StreamIt Debugging Environment

StreamIt 
Text 
Editor

StreamIt 
Graph Zoom 
Panel

StreamIt Graph 
Components

expanded and 
collapsed views 
of basic 
programmable 
unit

communication 
buffer with live 
data

General Debugging 
Information

Compiler and 
Output Consoles

not shown: 
the StreamIt 
On-Line Help 
Manual

Kimberly Kuo
M.Eng. Thesis



HPL Workshop
May, 2004 28http://cag.csail.mit.edu/streamit

Programmer Evaluation of the SDT
A detailed study was held in April to evaluate the SDT 
from a user’s perspective

Monitored environment to track user progress on a core set of problems

Language and SDT tutorial
Pre-study and post-study questionnaires
Post-study interview

Visualization capabilities in the SDT considered 
"invaluable" to some users

Especially when stream graphs were large (and generated recursively)

The ability to track the flow of data was also considered 
extremely helpful

Many lessons learned!



HPL Workshop
May, 2004 29http://cag.csail.mit.edu/streamit

For More Information

http://cag.csail.mit.edu/streamit
download papers, benchmarks, compiler, SDT, …

StreamIt Homepage


