Language, Compiler and Development
Support for Stream Computing

Rodric M. Rabbah

Massachusetts Institute of Technology
Joint work with Michael Gordon, Michal Karczmarek, Andrew Lamb, Jasper Lin, William

Thies, Kimberly Kuo, Juan C. Reyes, David Maze, and Saman Amarasinghe

Streamilt

http://cag.csail.mit.edu/streamit

HPL Workshop
May 2004

Hs
" Domain of Streaming Computing

= Increasingly prevalent computing domain with
applications in
= Embedded systems
= Cell phones, handheld computers, DSPs
= Desktop workstations
= Streaming media, real-time encryption, software radio, graphics

=« High-performance servers

= Software routers, cell phone base stations, radar tracking, HDTV
editing consoles, databases

= Predominant data streams include audio, video, and data

(:'-l—hﬁﬂm"=.—
2Ll =23l 0 Dl HPL Workshop

http://cag.csail.mit.edu/streamit May, 2004 2

What is Stream Computing?

= "A model that uses sequences of data and computation
kernels to expose and exploit concurrency and locality for

efficiency."
= Workshop on Streaming Systems, Summer 2003

http://cag.csail.mit.edu/wss03
|

kernel

data
channel

Cim =
e P A== AR HPL Workshop
ttp://cag.csail.mit.edu/streamit May, 2004 3

Hs
! Properties of Streaming Programs

= Process large (possibly infinite) amounts of data
« Data have limited lifetime and undergoes little processing

= Processing consists of a series of data transformations

= Filter is the basic unit for data transformation

= Input data —— Output data
= Filters are independent and self-contained

= Regular” computation patterns
=« Flow of data between filters is mostly constant

= Many opportunities for compiler optimizations

= Occasional changes in program control (messaging)

—

http://cag.csail.mit.edu/streamit

HPL Workshop
May, 2004 4

Hs
" HPCS Goals in the Streaming Context

= Stream programming often requires special expertise

=« Conventional programming languages used in large applications
make it difficult to extract parallelism

= Low performance is not acceptable
= System experts on the critical path

» Programming high-end machines should not be the
“exclusive domain of experts”

= Use high-level abstractions to naturally describe streaming
computation
= Make the language compiler-friendly
= Expose parallelism and communication
= Empower the compiler to perform novel optimization
= Facilitate an efficient mapping of programs to (future) architectures

(:'-l—hﬁﬂm”:.—
o 2l =23l 0 Dl HPL Workshop

http://cag.csail.mit.edu/streamit May, 2004 5

Hs
! StreamIt Overview

s Streamlt is a high-level,
architecture-independent
language for stream
computing

« Facilitate the rapid

implementation of complex
applications

= Expert-programmer no
longer on critical path to
achieving high performance

= StreamlIt compiler applies
novel domain specific
optimizations

http://cag.csail.mit.edu/streamit

design flow with Streamlt

Application-Level Design

v |

StreamlIt Program | [Application
(dataflow + control) Developer

T)

J/

Domain Specific

Optimizations

¢ > StreamlIt

Compiler
Architecture-Specific

Optimizations

* J

C / Assembly

HPL Workshop
May, 2004 6

Mir . : :
StreamlIt in the Big Picture
= Unified programming model with single machine

abstraction

= Expose parallelism and communication
= Uniprocessor, cluster of workstations, or tiled architecture

= Hide granularity of execution, architecture details
= Natural textual representation

> Innovative compiler technology focuses on the core set of
challenges
= Versatility, load balancing, fault tolerance, ...

provide “performance transparency”, portability, and support for “programming in the large”

o =
s] W PFHI I Miils HPL Workshop
May, 2004 7

http://cag.csail.mit.edu/streamit

i
Related Work

= "Stream languages”

= KernelC/StreamC, Brook:
augment C with data-parallel
kernels

= Cg: allow low-level
programming of graphics
processors

= Prototyping environments

= Ptolemy, Simulink, etc.:
provide graphical abstractions,
but do not focus on compiling
for performance or reliability

= Control languages for
embedded systems

= LUSTRE, Esterel, etc.: can
verify safety properties, but do
not expose high-bandwidth
data flow for optimization

Di—hp—\ﬂm”m—
2l =23l 0 Dl

http://cag.csail.mit.edu/streamit

>

Performance

In general, little features for
scalable program development,
or too abstract and
unstructured

= Compiler cannot perform

enough analysis and
optimizations

» StreamlIt exposes more task
parallelism, and uses

constructs that are easier to
analyze

C/ C++/ Assembly Streamlt:

With Manual Compiler
Parallelization Conscious
Language

Design

Synchronous Dataflow
-LUSTRE - SIGNAL
- Silage - Lucid

Programmability

»

" HPL Workshop
May, 2004

Mir _
StreamIt Language Overview
= A Streamlt program is a structured graph of nodes

= Nodes are autonomous units of computation
=« Edges are communication channels (FIFOs)

= Hierarchical structure
= Single-Input to Single-Output language constructs

= Graph components are parameterizable
=« Short and natural recursive stream graph definitions

- ﬁ:"l_
1l HPL Workshop
May, 2004 9

=

http://cag.csail.mit.edu/streamit

StreamIt Language Constructs

= Language constructs

» Filter
—

= Pipeline

N o

1] may be any of
the Streamlt language

constructs

parallel
“, computation

= SplitJoin o

—»| split i

= FeedBack Loop

— join split
—{ein | [[split
A
dl
[

D-l—hﬁﬂh'_ﬂ"=.—
Bl el 0 s

http://cag.csail.mit.edu/streamit

= Programming paradigm is

= Modular

= Important for large scale
development

= Malleable

=« Parameterized templates
allow program to change
behavior with small source
code modifications

= Composable

= Composition of simple
structures creates large and
complex graphs

= Enables inductive reasoning
about correctness

= Portable

= Application is architecture
independent

HPL Workshop
May, 2004 10

Hs
" Filters as Computational Elements

= Filters are the basic programmable units
= An initialization function and a steady-state work function
= Communicate via FIFOs: pop(), peek(index), push(value)

float—float filter (int N) {
float[N] weights;
init {
weights = calculate_weights(N);

)
work push 1 pop 1 peek N {
float result = 0;
for(inti=0;i<N;i++){
result += weights[i] * peek(i);
)

push(result);
pop();

Crns =
A =il Il HPL Workshop

http://cag.csail.mit.edu/streamit May, 2004 11

Hs
! Example Application—Radar Front-End

complex—> void pipeline BeamFormer(int numChannels, int numBeams) {
add splitjoin {
split duplicate;
for (int i=0; iknumChannels; i++) {
add pipeline {
add FIR1(N1);

v v v v v v v v v v

add FIR2(N2); [FIRFiIteﬂ [FIRFiItel] [FIRFiItel] [FIRFiItel] [FIRFiIteli [FIRFiIteﬂ [FIRFiIteﬂ [FIRFiItel] [FIRFiItel] [FIRFiIter]

}
%
join roundrobin; RoundRobin
}
add splitjoin {
split duplicate;
for (int i=0; i<numBeams; i++) {
add pipeline {
add VectorMult();

add FIR3(N3);
add Magnitude();

add Detect();
}

|5

join roundrobin(0);

StreamIt Compiler

Mir . :
StreamIt Compiler Overview
= The StreamlIt language hides granularity of execution and

architecture details

= Compiler backend supports
Uniprocessor, cluster of workstations, and MIT Raw

= Innovative compiler technology focuses on the core set of
challenges to deliver high performance in future

architectures
= Automating domain specific optimizations

= Optimization of linear streams
= Translation to the frequency domain

= Partitioning, layout, routing, ...

HPL Workshop
May, 2004 14

—

ttp://cag.csail.mit.edu/streamit

L [TH . C .
Linear Filter Optimizations
= Most common target of DSP optimizations
= FIR filters)
= Compressors

= Expanders
« DFT/DCT y

> Output is weighted sum of inputs

= Example optimizations:
= Combining Adjacent Nodes
= Translating to Frequency Domain

E-l—hﬁﬂh'_ﬂﬁcf‘.:
Bl el 0 ML HPL Workshop
May, 2004 15

http://cag.csail.mit.edu/streamit

Representing Linear Filters

= A linear filter is a tuple (A, E 0)
= A: matrix of coefficients

= b: vector of constants
= O0: number of items popped

= Example

=

ttp://cag.csail.mit.edu/streamit

HPL Workshop
May, 2004 16

Hs
! Extracting Linear Representation

work peek N pop 1 push 1 { Lmear
float sum = 0; Dataflow
for (int i=0; i<N; i++) { .
sum += h[i]*peek(i); Analysis

by
push(sum);
pop();

= Resembles constant propagation

= Maintains linear form <7, B} for each variable
= Peek expression: generate fresh v’
= Push expression: copy Vv into A
= Pop expression: increment o

E-I—hHHMHE.—
Bl el 0 ML

HPL Workshop
http://cag.csail.mit.edu/streamit

May, 2004 17

Hs
! Combining Linear Filters

Pipelines and splitjoins can be collapsed

Example: pipeline

Combined

Filter

HPL Workshop
May, 2004 18

=

ttp://cag.csail.mit.edu/streamit

Hs
" Combination Example

6 mults 1 mults

output output

Combined i
) -

L 1 HPL Workshop
http://cag.csail.mit.edu/streamit May, 2004 19

Mir
From Time to Frequency Domain
= Convolutions are cheap in the Frequency Domain

= Painful to do by hand
= Blocking, Coefficient calculations, ...

= StreamlIt automates the transformation

)

FFT

VMM

IFFT

HPL Workshop
May, 2004 20

—

ttp://cag.csail.mit.edu/streamit

Hs
" Linear Optimization of Stream Graph

900%
800%
700%
& 600%
§ 500%
B 400% |
2 300%
200% -
100% - IE
0% >
AQ}\ \Q’ ro ’b b Q &
000 ?}00 y @Q. Q:b ‘\\@8) Aoc)o @,06\ Q
Q::}@ &(&Q (<\ OAQ
On a Pentium IV

a7 B e | A lLJ‘I HPL Workshop
http://cag.csail.mit.edu/streamit May, 2004 21

Hs
" Backend for Parallel Platforms

ﬁ%ﬁd%}d?{ -?{:g}u

Partitioning Layout Routing Codegen

= StreamlIt exposes communication patterns
= Automatic generation and optimization of routing code

= Otherwise, may require extensive (assembly) programming
FIR — Raw backend

= 15 statements of StreamIt code achieve the same performance as 352
statements of manually-tuned C

Frequency Hopping Radio — cluster backend

= 50% higher throughput and 35% less communication, when using StreamIt’s
messaging construct

D-l—hﬁﬂm"=.—
Bl el 0 L HPL Workshop

http://cag.csail.mit.edu/streamit May, 2004 22

Development Support

Hs
" StreamIt Development Tool (SDT)

= Graphical development environment

= Text editor
=« Key-word highlighting and indentation schemes

= Graphical editor for the rapid prototyping of stream
applications
= Fast composition of stream graphs

= Graphical debugger

= Step by step execution
= Inspection and modification of program variables

= Online help manuals
= Integrated with the IBM Eclipse Tool Platform

= Available at http://cag.csail.mit.edu/streamit/html/eclipse-plugin.html

= ﬁi:rl—
1l HPL Workshop
May, 2004 24

A=

Hs
! Debugging Parallel StreamIt Programs

= Parallelism and communication are exposed

= Tracking the flow of data in a stream graph affords a frame of
reference for reasoning about “time”

= Powerful advantage when debugging parallel programs

splitJoin .. paralle/
., computation VEISUS

= Multiple threads with independent
program counters

= Non-deterministic execution

D-l—hﬁﬂh'_ﬂ"=.—
Bl el 0 ML

HPL Workshop
http://cag.csail.mit.edu/streamit

May, 2004 25

|
StreamIt Graphical Editor

Sk S _— StreamIt Component-Shortcuts
7 i T = Create Filters, Pipelines, Splitloins, Feedback Loops, FIFOs

N e 3 Fmt P NS

TestSpitJoin_81

TestLoop_89

1 Juan C Reyes _|

M.Eng. Thesis

http://cag.csail.mit. edu/streamlt

HPL Workshop

May, 2004

26

StreamIt Debugging Environment

£ Debug - HelloWorldé.str - Eclipse Platform
File Edt MNavigate Segrch Froject Run Streamlt Window Help

==l x|

IF-Has|nlfk-% %o 9[-

|| %5 Debug

ETEEN-TE R

9| Breakpoints

6@ HelloWorlds at localhost:9105
@, System Thread [Finalizer] (Running)

35 @ System Thread [Reference Handier] (Rurning)
(=)@ Thread [main] {Suspended (breakpoint at line 20 in IntPrinker})
IntPrinter, work(} line: 201
Hellowarlder)

@ System Thread [Signal Dispatcher] (Running}
-k C:\Program Files\Javalizrel .4.2_03thintjavaw,exe (1j11704 1:16 AM)

Eh =] % Helloworlds [Streamlt Application]

[line: 7] - Comples
[line: 8] - real

[line: 9] - imag

[line: 10] - EightPusher
[line: 11] - EightPusher
[line: 121 - x

[line: 14] - x

cooocooo

2@ =

General Debugging
Information

Varlables |Breakpoints | Expressions |Display

Helloworlds.str 3% |] Helloworlde, java

20r Overview of Stream Graph

void->int filter IntSource { fors
int x;

¥

init {
push (x++) ;
Text
push (x++]
int y:

® = 0;
¥
v puen 1« StFreamMIt
push (x++) ;
push (x++) ;
; Editor
int->roid filter IntPrinter {
init {
v = 0;

¥

work pop 4 peek 4 {
printipopil):
print(popil);
printipopil}:
printipopil);

¥

int->int filter Pass {

int z;

init {
z = 0;

i

work push 4 pop 4 peek 4 {
pushipopi)):
push (pop ()] ;
pushipopi)):
push (pop ()] ;

*

int->int pipeline Passer {
// add Pass(]:

il o |l

StreamlIt
Graph Zoom
Panel

not shown:
the StreamlIt
On-Line Help
Manual

=l Pass (id=51)

Work Executions:

ElPass (id=54)

Work Executions:

StreamlIt Graph
Components

expanded and
collapsed views
of basic
programmable
unit

communication

buffer with live
data

& cConsole [Helloworlds at localhost:3105]

S]

[

1

Compiler and
Output Consoles

Cansols | Error Log | Tasks

[R e e s =
otreamiG

http://cag.csail.mit.edu/streamit

Kimberly Kuo

M.Eng. Thesis

HPL Workshop

May, 2004

27

Hs
! Programmer Evaluation of the SDT

= A detailed study was held in April to evaluate the SDT

from a user’s perspective
= Monitored environment to track user progress on a core set of problems

=« Language and SDT tutorial
= Pre-study and post-study questionnaires

= Post-study interview

Visualization capabilities in the SDT considered

"invaluable” to some users
= Especially when stream graphs were large (and generated recursively)

The ability to track the flow of data was also considered
extremely helpful

= Many lessons learned!

g | I S
HPL Workshop
May, 2004 28

=

http://cag.csail.mit.edu/streamit

Hs
! For More Information

Streamlt Homepage
http://cag.csail.mit.edu/streamit

download papers, benchmarks, compiler, SDT, ...

ooooooooooo

==

