A Common Machine Language for Communication-Exposed Architectures

Bill Thies, Michal Karczmarek, Michael Gordon, David Maze and Saman Amarasinghe

MIT Laboratory for Computer Science

HPCA Work-in-Progress Session, February 2002

A Common Machine Language for Communisation-Exposed Architectures

Language Designers Have Been Ignoring Architects

Bill Thies, Michal Karczmarek, Michael Gordon, David Maze and Saman Amarasinghe

MIT Laboratory for Computer Science

HPCA Work-in-Progress Session, February 2002

Back in The Good Old Days...

- Architecture: simple von-Neumann
- "Common Machine Language": C
 - Abstracts away idiosyncratic differences
 - Instruction set
 - Cache configuration
 Register layout
- Pipeline depth
 Peaker layout
 - Exposes common properties
 - Program counter Arithmetic instructions
 - Monolithic memory
 - -Efficient implementations on many machines
 - -Portable: everyone uses it

Programming Language Evolution

Programming Language Evolution

Languages Have Not Kept Up

Modern architecture

- Two choices:
 - Develop cool architecture with complicated, ad-hoc language
 - Bend over backwards to support old languages like C/C++

Evidence: Superscalars

- Huge effort into improving performance of sequential instruction stream
- Complexity has grown unmanageable
- Even with 1 billion transistors on a chip, what more can be done?

A New Era of Architectures

- Facing new design parameters
 - Transistors are in excess
 - Wire delays will dominate
- "Communication-exposed" architectures
 - Explicitly parallel hardware
 - Compiler-controlled communication
 - -e.g. RAW, Smart Memories, TRIPS, Imagine, the Grid Processor, Blue Gene

A New Common Machine Language

- Should expose shared properties:
 - Explicit parallelism (multiple program counters)
 - Regular communication patterns
 - Distributed memory banks
 - -No global clock
- Should hide small differences:
 - Granularity of computation elements
 - Topology of network interconnect
 - -Interface to memory units

→ C does not qualify!

The StreamIt Language

- A high-level language for communicationexposed architectures
- Computation is expressed as a hierarchical composition of independent filters

The StreamIt Language

- A high-level language for communicationexposed architectures
- Computation is expressed as a hierarchical composition of independent filters
- Features:
 - High-bandwidth channels
 - -Low-bandwidth messaging
 - -Re-initialization

The StreamIt Compiler

We have a compiler for a uniprocessor
 Performs comparably to C++ runtime system

The StreamIt Compiler

- We have a compiler for a uniprocessor
 Performs comparably to C++ runtime system
- Working on a backend for RAW
 - -Fission and fusion transformations

- Many optimizations in progress

The StreamIt Compiler

- We have a compiler for a uniprocessor
 Performs comparably to C++ runtime system
- Working on a backend for RAW
 - -Fission and fusion transformations

- Many optimizations in progress

• Goal: High-performance, portable language for communication-exposed architectures

For more information, see:

http://cag.lcs.mit.edu/streamit/

Thank you!