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Back in The Good Old Days…
• Architecture:  simple von-Neumann
• “Common Machine Language”:  C

– Abstracts away idiosyncratic differences
• Instruction set • Pipeline depth
• Cache configuration • Register layout

– Exposes common properties
• Program counter • Arithmetic instructions
• Monolithic memory

– Efficient implementations on many machines
– Portable:  everyone uses it



Programming Language Evolution
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• Two choices:
• Develop cool architecture with 

complicated, ad-hoc language
• Bend over backwards to support

old languages like C/C++
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Evidence:  Superscalars
• Huge effort into improving performance of 
sequential instruction stream

• Complexity has grown unmanageable
• Even with 1 billion transistors on a chip, 
what more can be done?
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A New Era of Architectures
• Facing new design parameters

– Transistors are in excess
– Wire delays will dominate

• “Communication-exposed” architectures
– Explicitly parallel hardware
– Compiler-controlled communication
– e.g. RAW, Smart Memories, TRIPS, 

Imagine, the Grid Processor, Blue Gene



• Should expose shared properties:
– Explicit parallelism (multiple program counters)
– Regular communication patterns
– Distributed memory banks
– No global clock

A New Common Machine Language
• Should expose shared properties:

– Explicit parallelism (multiple program counters)
– Regular communication patterns

• Should hide small differences:
– Granularity of computation elements
– Topology of network interconnect
– Interface to memory units

C does not qualify! 



The StreamIt Language
• A high-level language for communication-
exposed architectures

• Computation is expressed 
as a hierarchical composition 
of independent filters



The StreamIt Language
• A high-level language for communication-
exposed architectures

• Computation is expressed 
as a hierarchical composition 
of independent filters

• Features:
– High-bandwidth channels
– Low-bandwidth messaging
– Re-initialization
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– Performs comparably to C++ runtime system
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The StreamIt Compiler
• We have a compiler for a uniprocessor

– Performs comparably to C++ runtime system
• Working on a backend for RAW

– Fission and fusion transformations

– Many optimizations in progress
• Goal:  High-performance, portable language 
for communication-exposed architectures



For more information, see:

http://cag.lcs.mit.edu/streamit/

Thank you!


