
A Common Machine Language
for Communication-Exposed

Architectures

Bill Thies, Michal Karczmarek, Michael
Gordon, David Maze and Saman Amarasinghe

MIT Laboratory for Computer Science

HPCA Work-in-Progress Session, February 2002

A Common Machine Language
for Communication-Exposed

Architectures

Language Designers Have
Been Ignoring Architects

Bill Thies, Michal Karczmarek, Michael
Gordon, David Maze and Saman Amarasinghe

MIT Laboratory for Computer Science

HPCA Work-in-Progress Session, February 2002

Back in The Good Old Days…
• Architecture: simple von-Neumann
• “Common Machine Language”: C

– Abstracts away idiosyncratic differences
• Instruction set • Pipeline depth
• Cache configuration • Register layout

– Exposes common properties
• Program counter • Arithmetic instructions
• Monolithic memory

– Efficient implementations on many machines
– Portable: everyone uses it

Programming Language Evolution

0

5

10

15

20

25

30

35

40

1970 1975 1980 1985 1990 1995 2000 2005

Language Effectiveness

C

C++

Java

Programming Language Evolution

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005

Language Effectiveness
Moore's Law

• Two choices:
• Develop cool architecture with

complicated, ad-hoc language
• Bend over backwards to support

old languages like C/C++

• Two choices:
• Develop cool architecture with

complicated, ad-hoc language
• Bend over backwards to support

old languages like C/C++

Languages Have Not Kept Up

Modern
architecture

• Two choices:
• Develop cool architecture with

complicated, ad-hoc language
• Bend over backwards to support

old languages like C/C++

C von-Neumann
machine

Evidence: Superscalars
• Huge effort into improving performance of
sequential instruction stream

• Complexity has grown unmanageable
• Even with 1 billion transistors on a chip,
what more can be done?

Renaming

Out-of-Order
Execution

Pipelining

Speculative
Execution

Prefetching

Branch
Prediction

Value
Prediction

A New Era of Architectures
• Facing new design parameters

– Transistors are in excess
– Wire delays will dominate

• “Communication-exposed” architectures
– Explicitly parallel hardware
– Compiler-controlled communication
– e.g. RAW, Smart Memories, TRIPS,

Imagine, the Grid Processor, Blue Gene

• Should expose shared properties:
– Explicit parallelism (multiple program counters)
– Regular communication patterns
– Distributed memory banks
– No global clock

A New Common Machine Language
• Should expose shared properties:

– Explicit parallelism (multiple program counters)
– Regular communication patterns

• Should hide small differences:
– Granularity of computation elements
– Topology of network interconnect
– Interface to memory units

C does not qualify!

The StreamIt Language
• A high-level language for communication-
exposed architectures

• Computation is expressed
as a hierarchical composition
of independent filters

The StreamIt Language
• A high-level language for communication-
exposed architectures

• Computation is expressed
as a hierarchical composition
of independent filters

• Features:
– High-bandwidth channels
– Low-bandwidth messaging
– Re-initialization

The StreamIt Compiler
• We have a compiler for a uniprocessor

– Performs comparably to C++ runtime system

The StreamIt Compiler
• We have a compiler for a uniprocessor

– Performs comparably to C++ runtime system
• Working on a backend for RAW

– Fission and fusion transformations

– Many optimizations in progress

The StreamIt Compiler
• We have a compiler for a uniprocessor

– Performs comparably to C++ runtime system
• Working on a backend for RAW

– Fission and fusion transformations

– Many optimizations in progress
• Goal: High-performance, portable language
for communication-exposed architectures

For more information, see:

http://cag.lcs.mit.edu/streamit/

Thank you!

