
StreamIt Cookbook

streamit@cag.lcs.mit.edu

September, 2006

1 StreamIt Overview

Most data-flow or signal-processing algorithms can be broken down into
a number of simple blocks with connections between them. In StreamIt
parlance, the smallest block is a filter; it has a single input and a single
output, and its body consists of Java-like code. Filters are then connected
by placing them into one of three composite blocks: pipelines, split-joins,
and feedback loops. Each of these structures also has a single input and a
single output, so these blocks can be recursively composed.

A typical streaming application might be a software FM radio, as shown
in Figure 1. The program receives its input from an antenna, and its output
is connected to a speaker. The main program is a pipeline with a band-pass
filter for the desired frequency, a demodulator, and an equalizer; the equal-
izer in turn is made up of a split-join, where each child adjusts the gain
over a particular frequency range, followed by a filter that adds together
the outputs of each of the bands.

Our goal with choosing these constructs was to create a language with
most of the expressiveness of a general data-flow graph structure, but to
keep the block-level abstraction that modern programming languages of-
fer. Allowing arbitrary graphs makes scheduling and partitioning difficult
for the compiler. The hierarchical graph structure allows the implementa-
tion of blocks to be “hidden” from users of the block; for example, an FFT
could be implemented as a single filter or as multiple filters, but so long
as there is a stream structure named “FFT” somewhere in the program the
actual implementation is irrelevant to other modules that use it. Since most
graphs can be readily transformed into StreamIt structures, StreamIt is suit-
able for working on a wide range of signal-processing applications.

1



LowPass

Demod

BandPass ... BandPass

DUP

1 1
RR

Equalizer

Adder

FMRadio

Figure 1: Stream graph for a software FM radio

2 Programming in StreamIt

2.1 A Minimal Program

void−>void pipeline Minimal {
add IntSource;
add IntPrinter ;

}
void−>int filter IntSource {

int x;
init { x = 0; }
work push 1 { push(x++); }

}
int−>void filter IntPrinter {

work pop 1 { print(pop()); }
}

IntSource

IntPrinter

Minimal

This is the minimal interesting StreamIt program. Minimal is a StreamIt
pipeline: the output of its first child is connected to the input of its second
child, and so on. It has two children, a source and a sink. Each of these are

2



implemented as StreamIt filter objects.
A filter has two special functions, an init function and a work function.

Both of these are present in IntSource. The init function runs once at the
start of the program; the work function runs repeatedly forever. If the
init function is omitted, as it is in IntPrinter, it is assumed to be empty.
Work functions declare their data rates, which may be static or dynamic.
The source here declares that each iteration of the work function pushes a
single item on to its output; the sink declares that it pops a single item from
its input.

Every StreamIt structure has a single input and a single output. The
filter and pipeline declarations here show the types of these inputs and
outputs. C-like int and float types are available, along with bit for one-bit
data and complex for complex floating-point data. void is used as a special
type to indicate the boundary of the program: “the program” in StreamIt
is defined as a stream structure with both void input and output types. A
filter that takes no input at all should also be declared to take void as its
input type, and similarly a void output can be used if a filter produces no
output.

How to Compile and Run

The StreamIt compiler script strc can be used to compile and execute StreamIt
programs. If you are using the StreamIt release, you can find all of the cook-
book examples in the following directory:

cd $STREAMIT_HOME/apps/examples/cookbook

The minimal example is stored in Minimal.str, and the following com-
mand will compile it for the uniprocessor backend:

strc Minimal.str -o minimal

The resulting binary is stored in minimal, and it can be executed for 5
iterations as follows:

minimal -i 5

Doing so will print the integers from 0 to 4, in increasing order.
During the course of compilation, a number of stream graphs are ouput

to dot files in the current directory. The dot format can be displayed and
converted to other formats using the Graphviz software, which is available

3



online1. Running the following command will draw the stream graph for
the program, as pictured to the right of the source code above:

dotty stream-graph-simple.dot

There are many otherdotfiles that are output by the compiler; see Section 3
of this document for more details.

The Java Library. In addition to using the StreamIt compiler, it is pos-
sible to convert StreamIt programs into equivalent Java programs that can
be executed using any Java VM. This is particularly convenient for testing
and debugging, as well as for cases when the compiler might encounter a
bug.

To run the Minimal program for 5 iterations in the Java library, do as
follows:

strc --library Minimal.str -i 5

This command will output a Minimal.java file, compile it with a Java
compiler, and run it using java. The output should always be identical
to that obtained using the compiler. In addition, the library will output a
Minimal.dot file that can be visualized using Graphviz.

For more details on the StreamIt compiler and execution environment,
please consult Section 3.

2.2 A Moving Average Filter

void−>void pipeline MovingAverage {
add IntSource();
add Averager(10);
add IntPrinter ();

}
int−>int filter Averager(int n) {

work pop 1 push 1 peek n {
int sum = 0;
for ( int i = 0; i < n; i++)

sum += peek(i);
push(sum/n);
pop();

}
}

IntSource

Averager

IntPrinter

MovingAverage

1http://www.graphviz.org/

4



Most of a typical StreamIt program consists of filters that produce some
output from their input. The Averager filter shown here is such a filter.
Like the filters shown before, Averager has a work function with statically
declared input and output rates.

In addition to peeking and popping, Averager peeks at its input stream.
The peek() operator returns a particular item off of the input stream, with
peek(0) returning the next item that would normally be popped. The work
function must declare a peek rate if it peeks at all, but this peek rate is a
maximum, rather than an exact, rate; it would be valid for the Averager
filter to peek(n−2) and never peek(n−1), but peek(n) is illegal. Note that
mixing peeking and popping is valid, but that popping an item shifts the
index of future peeks.

Averager also has a stream parameter. The number n is the number of
items to average. This is passed like a normal function parameter from
the add statement that creates the filter. Within the filter, the parameter
is a constant: it is illegal for code to modify the parameter. This allows
parameter values to be used in expressions for e.g. I/O rates, as in the peek
rate here.

This program also provides a basic demonstration of StreamIt’s filter
scheduler. There is a guarantee that the Averager filter is not run until its
input rates can be met, and in particular, that there are 10 inputs avail-
able so peeking can happen. For this to happen, the source needs to run
nine additional times at the start of the program; there can then be steady-
state exections of source, averager, printer. The StreamIt compiler handles
this automatically. While all of the examples so far have had filters with
matched I/O rates, the compiler also automatically schedules the execu-
tion of adjacent filters whose push and pop rates are different.

2.3 A Low-Pass Filter

float−>float filter LowPassFilter(float rate , float cutoff ,
int taps , int decimation) {

float [ taps ] coeff ;
init {

int i ;
float m = taps − 1;
float w = 2 ∗ pi ∗ cutoff / rate ;
for ( i = 0; i < taps ; i++) {

if ( i − m/2 == 0)

5



coeff [ i ] = w/pi ;
else

coeff [ i ] = sin(w∗(i−m/2)) / pi / ( i−m/2) ∗
(0.54 − 0.46 ∗ cos(2∗pi∗i /m));

}
}
work pop 1+decimation push 1 peek taps {

float sum = 0;
for ( int i = 0; i < taps ; i++)

sum += peek(i) ∗ coeff[ i ];
push(sum);
for ( int i =0; i<decimation; i++)

pop();
pop();

}
}

The work function for a low-pass filter looks much like the work func-
tion of the moving-average filter; however, it has extensive initialization
code. From the sampling rate, cutoff frequency, and number of taps, coef-
ficients for an FIR filter can be statically calculated. This is done once, in
the init function, and saved in the coeff array; the work function then ef-
fectively does a convolution. StreamIt provides a number of built-in math-
ematical functions, such as the call to sin () here, along with the constant
pi.

StreamIt’s array syntax is more C-like than Java-like. Every array has a
fixed length; this length can be a numeric constant or stream parameter, or
other value that can be statically evaluated. In the declaration syntax, the
length of the array comes between the base type and the variable name.

The coefficient array here is defined as a field in the filter. If the name
coeff were used as a local variable in the init or work function, it would
shadow the field, as in other languages. Otherwise, uses in both the init
and work functions reference the field. If multiple low-pass filters existed,
each would have its own coefficient array.

6



2.4 A Band-Pass Filter

float−>float pipeline BandPassFilter
(float rate , float low, float high , int taps) {

add BPFCore(rate, low, high, taps);
add Subtracter();

}
float−>float splitjoin BPFCore

(float rate , float low,
float high , int taps) {

split duplicate;
add LowPass(rate, low, taps, 0);
add LowPass(rate, high, taps, 0);
join roundrobin;

}
float−>float filter Subtracter {

work pop 2 push 1 {
push(peek(1) − peek(0));
pop(); pop();

}
}

LowPass LowPass

DUP

1 1
RR

BPFCore

Subtracter

BandPassFilter

We implement a band-pass filter using two low-pass filters in a StreamIt
structure called a split-join. This structure contains a splitter, some number
of children that run in parallel, and a joiner. It overall has a single input
and a single output, and its children each have a single input and a single
output.

This split-join has a duplicating splitter; thus, each incoming item is
sent to both of the children. The joiner is a round-robin joiner, such that
outputs are taken from the first child, then the second, in alternating order.
There may be any number of children, in which case a round-robin joiner
takes inputs from each of them in series. The order of the children is the
order in which they are added.

roundrobin can be used as a splitter, as well as a joiner; the meaning is
symmetric. Other syntaxes are valid: roundrobin(2) reads two inputs from
each child in turn, and roundrobin(1,2,1) requires exactly three children
and reads one input from the first, two from the second, and one from the
third.

A typical use of a split-join is to duplicate the input, perform some com-
putation, and then combine the results. In this case, the desired output is
the difference between the two filters; the Subtracter filter is placed in a

7



pipeline after the split-join, and finds the desired difference. In general, a
child can be any StreamIt construct, not just a filter.

The implementation of pop() in the compiler and runtime system does
not allow multiple pops to occur in the same statement. This is reflected in
the implementation of Subtracter here.

2.5 An Equalizer

float−>float pipeline Equalizer(float rate , int bands, float[bands] cutoffs ,
float [bands] gains, int taps) {

add EqSplit(rate , bands, cutoffs , gains, taps);
add float−>float filter {

work pop bands−1 push 1 {
float sum = 0;
for ( int i = 0; i < bands−1; i++)

sum += pop();
push(sum);

}
};

}
float−>float splitjoin EqSplit(float rate , int bands, float[bands] cutoffs ,

float [bands] gains, int taps) {
split duplicate;
for ( int i = 1; i < bands; i++)

add pipeline {
add BandPassFilter(rate, cutoffs [ i−1], cutoffs [ i ], taps);
add float−>float filter {

work pop 1 push 1 { push(pop() ∗ gains[i]); }
};

};
join roundrobin;

}

This equalizer works by having a series of band-pass filters running in
parallel, with their outputs added together. The caller provides arrays of
cutoff frequency and respective gains.

In the implmentation here, the output of EqSplit is a series of bands−1
outputs from the respective low-pass filters. An inline filter is used to sum
the results together. This is akin to an anonymous class in Java; the filter
declaration does not have an explicit name, but otherwise has syntax al-

8



BandPass

Scale

...
BandPass

Scale

DUP

1 1
RR

EqSplit

+

Equalizer

Figure 2: Stream graph for an equalizer

most identical to a top-level filter. In general, inline filters should only be
used for very simple filters, such as this or the inlined amplifier in EqSplit.

EqSplit is a normal split-join, as shown previously. Its body consists
of a set of near-identical inlined pipelines; for pipelines and split-joins, the
input and output type declarations may be omitted on anonymous streams.
Since the children are so similar, they are added within a normal for loop.
The compiler is able to examine the loop provided that the loop bounds are
expressions of constants and stream parameters.

9



2.6 An Echo

float−>float feedbackloop Echo
( int n, float f ) {

join roundrobin(1,1);
body FloatAdderBypass();
loop float−>float filter {

work pop 1 push 1 {
push(pop() ∗ f);

}
};
split roundrobin;
for ( int i = 0; i < n; i++)

enqueue(0);
}
float−>float filter FloatAdderBypass {

work pop 2 push 2 {
push(peek(0) + peek(1));
push(peek(0));
pop();
pop();

}
}

AddBypass Scale

RR
11

RR

Echo

This example uses a StreamIt feedback loop to implement an echo effect.
In a sense, a feedback loop is like an inverted split-join: it has a joiner at
the top and a splitter at the bottom. A feedback loop has exactly two chil-
dren, which are added using the body and loop statements. Thus, this
implementation takes an input from the loop input and an input from the
feedback path, adds them, and outputs the result. The result is also scaled
by the value f and sent back to the top of the loop.

Feedback loops have a specialized push-like statement, enqueue. Each
enqueue statement pushes a single value on to the input to the joiner from
the feedback path. There must be enough values enqueued to prevent
deadlock of the loop components; values enqueued delay data from the
feedback path.

10



2.7 Fibonacci

void−>int feedbackloop Fib {
join roundrobin(0,1);
body int−>int filter {

work pop 1 push 1 peek 2 { push(peek(0) + peek(1)); pop(); }
};
loop Identity<int>;
split duplicate;
enqueue(0);
enqueue(1);

}

Using a feedback loop for a Fibonacci number generator is slightly un-
usual but possible. The joiner reads no items from the stream input (also
declared of type void), but reads items continuously from the feedback
path. Within a feedback loop, round-robin splitters and joiners address
the external path first and the feedback path second. This loop also uses
the special Identity filter on the loop path; this is equivalent to an empty
filter that copies its input to its output, but occurs frequently enough that a
shorthand is useful to both the programmer and the compiler.

3 Using the StreamIt Compiler

This section walks through a sample session with the compiler and runtime
system. We will use the FMRadio example from the StreamIt release as a
running example. To get started, change to the following directory:

% cd $STREAMIT_HOME/apps/examples/cookbook

The example is in FMRadio.str. The following sections describe the com-
pilation of FMRadiousing the uniprocessor backend, the cluster/multicore
backend, and the Java library. A summary of the compiler’s command-line
options can be found in Appendix B, or by typing strc -help at the com-
mand line.

3.1 Compiling for a Uniprocessor

There are two ways to compile a StreamIt program for execution on a general-
purpose processor. The first method (the default) compiles to a set of C++
files, which are linked against a StreamIt runtime library. It uses the same
infrastructure as our cluster backend and supports the full suite of StreamIt

11



features and optimizations. The second method (invoked with the-simpleC
option) emits a standalone C file in which the entire program is inlined into
a single function. The simpleC backend is not fully featured2 but the output
is readable and the C interface may be useful for some compiler projects. As
we recommend using the default backend, we focus on it for the remainder
of this section.

To compile FMRadio using the uniprocessor backend, issue the follow-
ing command (the compiler output is shown):

% strc FMRadio.str -o fm
Starting Kopi2SIR... done.
Entry to Cluster Backend (uniprocessor)
Running Constant Prop and Unroll... done.
Running Constant Field Propagation... done.
Estimating Code size of Filters... done.
Estimating Code size of Filters... done.
Running Partitioning... target number of threads: 1
Done Partitioning...
Generating cluster code...
Done generating cluster code.
gcc34 -O3 -I/u/thies/research/streams/streams/library/cluster

-c -o combined_threads.o combined_threads.cpp
gcc34 -O3 -o fm combined_threads.o

-L/u/thies/research/streams/streams/library/cluster
-lpthread -lcluster -lstdc++

This will create a number of threadXX.cpp files, one for each filter, split-
ter, and joiner in the original program. The files are concatenated into a
single file (combined threads.cpp) and compiled to create a binary named
fm. The binary can be executed for 5 steady-state iterations as follows:

% ./fm -i 5
278073.968750
278074.750000
278075.406250
278075.968750
278076.437500

During the compilation process, several dot graphs are generated. The
dot format can be displayed and converted to other formats using the
Graphviz software, which is available online3. For example, we can ex-
amine a stream graph for the FM application as follows:

2As of this release, simpleC lacks support for dynamic rates, teleport messaging, pre-
work functions, general helper functions, domain-specific optimizations, cache optimiza-
tions, and other features.

3http://www.graphviz.org/

12



Figure 3: stream-graph-simple.dot for the FMRadio example.

% dotty stream-graph-simple.dot

The result appears in Figure 3. A complete list of the dot graphs that
are produced on the normal uniprocessor path are shown in Figure 4.

Domain-specific optimizations. It turns out that our version of the FM-
Radio has a lot of redundant computation the way in which it is written.
For example, each BandPassFilter could be implemented as a single
FIR filter rather than a composition of LowPassFilter’s; in fact, the en-
tire equalizer could be collapsed to a single FIR filter. Further, some of these
operations are more efficient if executed in the frequency domain, with an
FFT/IFFT being used to translate to and from the time domain.

13



Filename Description

stream-graph-simple.dot
Original stream graph, as written by pro-
grammer.

stream-graph.dot Original stream graph, including I/O rates.

after-collapse-sjs.dot
Partial canonicalization of stream graph, after
collapsing data parallelism in the application.
(The parallelism can be restored if needed.)

canonical-graph.dot
Canonical version of stream graph, after fur-
ther eliminating unneeded synchronization.

Figure 4: Notable dot graphs produced on the uniprocessor path.

The StreamIt compiler includes a set of domain-specific optimizations
that will automatically perform the transformations described above. The
analysis considers all filters that are “linear”—that is, each of their outputs
is an affine combination of their inputs. The compiler automatically de-
tects linear filters by analyzing the code in their work functions. Then, it
performs algebraic simplification of adjacent linear filters, as well as auto-
matic translation to the frequency domain. Since these transformations can
sometimes hamper performance, the compiler also does a global cost/ben-
efit analysis to determine the best set of transformations for a given stream
graph.

The linearpartition option to strc will enable linear analysis and
optimizations4:

% strc -linearpartition FMRadio.str -o fm
Starting Kopi2SIR... done.
Entry to Cluster Backend (uniprocessor)
Running Constant Prop and Unroll... done.
Running Constant Field Propagation... done.
Estimating Code size of Filters... done.
Running linear analysis...
WARNING: Assuming method call expression non linear(atan).

4In contrast, the linearreplacement and frequencyreplacement options will
perform maximal algebraic simplification and frequency translation, respectively, even in
cases where it is not beneficial.

14



Figure 5: linear-simple.dot, which illustrates the linear sections of
FMRadio. Linear filters are shaded blue, while linear containers are shaded
pink.

Also removing all field mappings.
done with linear analysis.
Running linear partitioner...
Linear partitioner took 0 secs to calculate partitions.
Estimating Code size of Filters... done.
Running Partitioning... target number of threads: 1
Done Partitioning...
Generating cluster code...
Done generating cluster code.
gcc34 -O3 -I/u/thies/research/streams/streams/library/cluster

-c -o combined_threads.o combined_threads.cpp
gcc34 -O3 -o fm combined_threads.o

-L/u/thies/research/streams/streams/library/cluster
-lpthread -lcluster -lstdc++ -lsrfftw -lsfftw

The linear analysis produces its own set of dot files that we can use to
inspect the results of the optimizations. For example, the following com-
mand will display the stream graph with the linear sections highlighted:

% dotty linear-simple.dot

15



Figure 6: Final stream graph (after-linear.dot) for the FMRadio, com-
piling with the -linearpartition option.

As shown in Figure 5, FMRadio contains many linear components, in-
cluding the first LowPassFilter and the equalizer. To see the stream graph
after linear optimizations have been applied, we can issue the following
command:

% dotty after-linear.dot

As illustrated in Figure 6, this stream graph shows that the equalizer
was collapsed into a single filter and then was translated to the frequency
domain (by virtue of the “Freq” prefix in the filter’s name.) However, the
LowPassFilter at the top was left unmodified; this is because it has a large
pop rate that degrades the performance of the frequency transformation. In
this case, the linear optimizations lead to a 6.7X improvement in through-
put.

The linear optimizations produce additional dot graphs; see Figure 7

16



Filename Description

linear-simple.dot Stream graph with linear filters highlighted.

linear.dot Same as linear-simple, but including I/O
rates of each node.

linear-partitions.dot
Illustration of which nodes are combined by
linear optimizations.

after-linear.dot
The stream graph after linear transformations
are complete.

Figure 7: dot graphs produced by linear optimizations.

for details. For more information on the linear analysis and optimization,
please refer to http://cag.lcs.mit.edu/linear.

3.2 Compiling for a Cluster or Multicore

The -cluster N option selects a backend that compiles to N parallel threads
that communicate using sockets. When targeting a cluster of workstations,
the sockets communicate over the network using TCP/IP. When targeting
a multicore architecture, the sockets provide an interface to shared mem-
ory. A hybrid setup is also possible, in which there are multiple machines
and multiple threads per machine; some threads communicate via memory,
while others communicate over the network.

3.2.1 Multicores

By default, the StreamIt compiler will map all of the threads to the current
host (i.e., the one that issued the compile command). This is suitable for
multicores, as running the resulting executable will spawn the threads on
a single machine.

For example, consider compiling the FMRadio to eight parallel threads:

% strc -cluster 8 FMRadio.str -o fm
Starting Kopi2SIR... done.
Entry to Cluster Backend
Running Constant Prop and Unroll... done.

17



Running Constant Field Propagation... done.
Estimating Code size of Filters... done.
Estimating Code size of Filters... done.
Running Partitioning... target number of threads: 8
Running Partitioning... target number of threads: 8

Found 0 tiles.
Building stream config...

Trying 8 tiles.
Calculating partition info...
Tracing back...
Work Estimates:

Fused_SplitJoin0_EqSplit_81... 1545 (21%)
Fused_SplitJoin0_EqSplit_81... 1545 (21%)
Fused_SplitJoin0_EqSplit_81... 1545 (21%)
Fused_SplitJoin0_EqSplit_81... 1545 (21%)
LowPassFilter__13 730 (10%)
FMDemodulator__17 221 (3%)
Fused_Spl_Ano_Flo 89 (1%)
FloatOneSource__3 35 (0%)

Building stream config...
Trying 8 tiles.

Calculating partition info...
Tracing back...

Done Partitioning...
Generating cluster code...
NOTE: Missing or empty $STREAMIT_HOME/cluster-machines.txt file,

so all threads assigned to cagfarm-49 in cluster-config.txt.
Done generating cluster code.
gcc34 -O3 -I/u/thies/research/streams/streams/library/cluster

-c -o combined_threads.o combined_threads.cpp
gcc34 -O3 -o fm combined_threads.o

-L/u/thies/research/streams/streams/library/cluster
-lpthread -lcluster -lstdc++

The compiler used a partitioning algorithm to fuse filters in the graph
down to eight load-balanced units. The stream graph following this parti-
tioning can be found in after-partition.dot:

% dotty after-partition.dot

The result appears in Figure 9. The array of eight low-pass filters was
collapsed to a width of four, and the bottom half of the application (Sub-
tracter, Amplify, Printer filters) was fused into a single filter. The other
auto-generated files provide more information about the distribution of
work amongst these filters; see Figure 8 for details.

Running the fm binary will spawn all eight threads on the current host.

18



Filename Description

before-partition.dot
Stream graph before partitioning into re-
quested number of threads.

after-partition.dot
Stream graph after partitioning into re-
quested number of threads.

work-before-partition.dot

The stream graph before partitioning, anno-
tated with estimates of the steady-state work
within each node. Nodes with the same
amount of work are given the same color (al-
though the colors themselves are meaning-
less.)

work-before-partition.txt
Text listing of the work estimates for filters in
the graph, before load balancing.

work-after-partition.dot The stream graph after partitioning, anno-
tated with work estimates as above.

work-after-partition.txt
Text listing of the work estimates for filters in
the graph, after load balancing.

work-estimate.txt
Same as above, but indexed by the thread
numbers in cluster-config.txt.

cluster-config.txt Mapping from threads to machines.

Figure 8: Files produced by the cluster/multicore backend, above and be-
yond those produced by the uniprocessor backend.

3.2.2 Cluster of Workstations

In order to compile for a cluster of workstations, one should create a list of
available machines and store it in the following location:

$STREAMIT_HOME/cluster-machines.txt

19



Figure 9: The FMRadio example partitioned to eight threads
(after-partition.dot).

This file should contain one machine name (or IP address) per line. When
the compiler generates N threads, it will assign one thread per machine
(for the first N machines in the file). If there are fewer than N machines
available, it will distribute the threads across the machines.

For example, consider that our cluster-machines.txtfile contains
the following:

machine-1
machine-2
machine-3
machine-4

Let’s say that each machine is a dual-processor, so we again compile
FMRadio for eight threads as shown previously. The resulting mapping
from threads to machines can be found in cluster-config.txt:

% strc -cluster 8 FMRadio.str -o fm
...
% cat cluster-config.txt
0 machine-1
1 machine-1
2 machine-1
3 machine-2
4 machine-2
5 machine-2

20



6 machine-3
7 machine-3
8 machine-4
9 machine-4

This file indicates that threads 0, 1, and 2 are mapped to machine-1;
threads 3, 4, and 5 are mapped to machine-2, and so on. The cluster-config
file contains 10 threads (rather than eight) because a thread is also gener-
ated for each splitter and joiner in the stream graph. However, as these
threads rarely do as much work as the filters, it is not detrimental for a
processor to acquire them.

To execute the program on the cluster, one should run the fm executable
from each machine that is assigned one or more threads. Each instance of
the program will wait until all of its network connections are established
before starting to process data. To measure performance, a built-in timer
keeps track of the elapsed time after the connections are made.

As the cluster-config file is read at application load time, one can freely
modify it to experiment with various layouts or to move the program from
one cluster to another. Mapping all the threads to a single machine will
have the same effect as compiling to a multicore (as described previously).

3.3 Using the Java Library

A convenient aspect of the StreamIt compilation toolchain is that all StreamIt
programs are first translated to Java files that can be executed against a Java
runtime library using a normal Java Virtual Machine. This is especially use-
ful for testing and debugging applications, as well as validating the output
of the compiler.

The library can be invoked with the -library flag. Since strc will
both compile and execute the file in the library, you can specify the number
of iterations to execute with the -i flag. For example, to compile FMRadio
and run for 5 iterations in the library, do as follows5:

% strc -library -i 5 FMRadio.str
278073.94
278074.75
278075.38
278075.94
278076.4

5In this case, the library’s output is marginally different from the compiler’s due to nu-
merical precision issues.

21



You can also inspect the FMRadio.java file, which was generated for
execution in the library. It can be compiled and run with a standard Java
compiler and JVM. The library also produces a dot graph of the program;
it is given the same name as the StreamIt file, but with a dot extension (i.e.,
it is FMRadio.dot in this case.)

There are a few additional options available in the library. For instance,
you can direct the library not to execute the program, but to instead just
print the schedule of filter firings:

% strc -library -norun -printsched FMRadio.str
init = [
$0 = FloatOneSource@1.work
$1 = LowPassFilter@4.work
$2 = FMDemodulator@5.work
$3 = EqSplit@8.streamit.misc.Pair@1386000
$4 = BPFCore@16.streamit.misc.Pair@a470b8
$5 = BPFCore@24.streamit.misc.Pair@cdedfd
$6 = BPFCore@32.streamit.misc.Pair@116471f
$7 = BPFCore@40.streamit.misc.Pair@12558d6
$8 = { {379 $0} {64 $1} {63 $2} {63 $3} {63 $4} {63 $5}

{63 $6} {63 $7} }
]
steady = [
$9 = LowPassFilter@18.work
$10 = LowPassFilter@19.work
$11 = BPFCore@16.streamit.misc.Pair@18e2b22
$12 = Subtracter@17.work
$13 = Amplify@15.work
$14 = LowPassFilter@26.work
$15 = LowPassFilter@27.work
$16 = BPFCore@24.streamit.misc.Pair@bf2d5e
$17 = Subtracter@25.work
$18 = Amplify@23.work
$19 = LowPassFilter@34.work
$20 = LowPassFilter@35.work
$21 = BPFCore@32.streamit.misc.Pair@1ee3914
$22 = Subtracter@33.work
$23 = Amplify@31.work
$24 = LowPassFilter@42.work
$25 = LowPassFilter@43.work
$26 = BPFCore@40.streamit.misc.Pair@12a54f9
$27 = Subtracter@41.work
$28 = Amplify@39.work
$29 = EqSplit@8.streamit.misc.Pair@1662dc8
$30 = AnonFilter_a0@9.work
$31 = FloatPrinter@3.work

22



$32 = { {5 $0} $1 $2 $3 $4 $9 $10 $11 $12 $13 $5 $14
$15 $16 $17 $18 $6 $19 $20 $21 $22 $23 $7
$24 $25 $26 $27 $28 $29 $30 $31 }

]
!ml sched size = 39
!ml buff size = 1299

Currently, the default scheduler is a minimal latency scheduler that uses
phases to compress the code size. The schedule listed above has two com-
ponents: an initialization schedule (to initialize buffers for filters that peek)
and a steady-state schedule (that can loop infinitely). Each filter and split-
ter in the graph is given a number for easy reference, and then the schedule
is printed at the bottom. A loop nest in the schedule is denoted by (N F),
where the filter F executes N times. The schedule size and buffer size re-
quired are printed at the end of the listing.

Additional options for the library can be found in Appendix B.

23



A Keyword Review

Stream object types:

filter Declares a filter with a work function

pipeline Declares a series of stream objects, with the output of the first
connected to the input of the second, etc.

splitjoin Declares a parallel set of stream objects, with a splitter and a
joiner distributing and collecting data

feedbackloop Declares a feedback loop with two children, with a joiner
combining input data and the output of the loop and a splitter dis-
tributing the output of the body to the output and the input of the
loop

Filter work or helper functions:

push Pushes an item on to the output of the filter. Must be called the exact
number of times as in the rate declaration.

pop Retrieves and removes the first item from the input of the filter. Must
be called the exact number of times as in the rate declaration.

peek(k) Retrieves the k + 1-th item from the input of the filter, without
removing it. If n items have been popped, k +n must be less than the
declared peek rate.

Composite stream declarations:

add Adds a child after the existing children. (pipeline, splitjoin)

body Adds a child as the body part of a feedback loop.

loop Adds a child as the loop part of a feedback loop.

enqueue Pushes an item on to the input of the joiner coming from the loop
part of a feedback loop.

split Declares the type and weights of the splitter. (splitjoin, feedbackloop)

join Declares the type and weights of the joiner. (splitjoin, feedbackloop)

24



duplicate Splitter type that takes each input item and copies it to the input
of each child.

roundrobin Splitter or joiner type that takes a specified number of items
from the input (or output) and copies it to the input (or output) of
each child.

B Options

--help Displays a summary of common options.

--more-help Displays a summary of advanced options (which are not de-
scribed below).

--cluster 〈n〉 Compile for a cluter or multicore with 〈n〉 nodes.

--library Produce a Java file compatible with the StreamIt Java library, and
compile and run it.

--simpleC Generate a simple C file that inlines the entire application into
a single function. This is sometimes more readable than the default
uniprocessor output, but the backend is not fully-featured.

--raw 〈n〉, -r 〈n〉 Compile for an 〈n〉-by-〈n〉 Raw processor.

--rstream, -R Generate a C-like file to be compiled by the RStream compiler
from Reservoir Labs.

--output 〈filename〉, -o 〈filename〉 Places the resulting binary in 〈filename〉.

--verbose Show intermediate commands as they are executed.

Options available for all backends

-O0 Do not optimize (default).

-O1 Perform basic optimizations that should improve performance in most
cases. Adds--unroll 16 --destroyfieldarray --partition
--wbs.

-O2 Perform extended optimizations that should improve performance in
most cases, but may also cause the compiler to become unstable. Adds
--unroll 256 --destroyfieldarray --partition --wbs --macros.

25



--iterations 〈n〉, -i〈n〉 Run the program for 〈n〉 steady-state iterations. De-
faults to infinity. For the uniprocessor, cluster, and simpleC backends,
the number of iterations can also be passed at the command line of the
final executable (a.out -i 100).

--linearreplacement Domain-specific optimization: combine adjacent “lin-
ear” filters in the program into a single matrix multiplication opera-
tion wherever possible. Corresponds to the “linear” option in the
PLDI’03 paper.

--statespace In combination with --linearreplacement, performs com-
bination and optimization of linear statespace filters as described in
the CASES’05 paper.

--unroll 〈n〉, -u〈n〉 Specify loop unrolling limit. The default value is 0.

Options specific to Uniprocessor and Cluster backends

--cacheopt Performs cache optimizations as described in the LCTES’05 pa-
per.

--l1d 〈n〉 Sets the L1 data cache size (in KB) for cache optimizations. The
default is 8 KB.

--l1i 〈n〉 Sets the L1 instruction cache size (in KB) for cache optimizations.
The default is 8 KB.

--l2 〈n〉 Sets the L2 cache size (in KB) for cache optimizations (we assume
a unified L2 cache). The default is 256 KB.

--linearpartition, -L Domain-specific optimization: perform linear replace-
ment and frequency replacement selectively, based on an estimate of
where it is most beneficial. Corresponds to the “autosel” option in
the PLDI’03 paper. (Relies on FFTW installation.)

Options specific to Raw backend

--asciifileio Specifies that FileReader’s and FileWriter’s should use ASCII
format rather than binary. Also works under the --simpleC back-
end.

--numbers 〈n〉, -N〈n〉 Instrument code to gather performance statistics on
simulated code over 〈n〉 steady-state cycles. The results are placed in
results.out in the current directory.

26



--ssoutputs 〈n〉 For applications containing a dynamic I/O rate, this op-
tion indicates how many outputs should count as a steady-state when
gathering numbers (with --numbers).

--rawcol 〈m〉, -c〈m〉 Specify number of columns in Raw processor; –raw
specifies number of rows.

--wbs When laying out communication instructions, use the work-based
simulator to estimate exactly when items will be produced and con-
sumed. This improves the scheduling of routing instructions.

27


