
StreamIt: A Compiler for Streaming Applications∗

William Thies, Michal Karczmarek, Michael Gordon, David Maze, Jeremy Wong,
Henry Hoffmann, Matthew Brown, and Saman Amarasinghe

{thies, karczma, mgordon, dmaze, jnwong, hank, morris, saman}@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

February 12, 2002

ABSTRACT
Streaming programs represent an increasingly important and
widespread class of applications that holds unprecedented
opportunities for high-impact compiler technology. Unlike
sequential programs with obscured dependence information
and complex communication patterns, a stream program is
naturally written as a set of concurrent filters with regular
steady-state communication. The StreamIt language aims
to provide a natural, high-level syntax that improves pro-
grammer productivity in the streaming domain. At the
same time, the language imposes a hierarchical structure
on the stream graph that enables novel representations and
optimizations within the StreamIt compiler. We define the
“stream dependence function”, a fundamental relationship
between the input channels of two filters in a stream graph.
We also describe a suite of stream optimizations, a deno-
tational semantics for validating these optimizations, and
a novel phased scheduling algorithm for stream graphs. In
addition, we have implemented a prototype of the StreamIt
optimizing compiler that is showing promising results.

1. INTRODUCTION
Recent years have seen the proliferation of applications

that are based on some notion of a “stream”. There is ev-
idence that streaming media applications are already con-
suming most of the cycles on consumer machines [13], and
their use is continuing to grow. The stream abstraction
is central to embedded applications for hand-held comput-
ers, cell phones, and DSP’s, as well as for high-performance
applications such as intelligent software routers, cell phone
base stations, and HDTV editing consoles.
Despite the prevalence of these applications, there is sur-

prisingly little language and compiler support for practical,
large-scale stream programming. For example, a number of
grid-based architectures have been emerging that are par-
ticularly well-suited for stream programming [19, 10, 14],
but there is no common machine language that a program-
mer can use to exploit their common properties while hiding
their differences. Thus, most programmers turn to general-
purpose languages such as C or C++ to implement stream
programs, resorting to low-level assembly codes for loops
that require high performance. This practice is labor in-

∗This document is MIT Laboratory for Computer Science
Technical Memo LCS-TM-622, February, 2002.

tensive, error-prone, and very costly, since the performance-
critical sections must be re-implemented for each target ar-
chitecture. Moreover, general purpose languages do not
provide a natural and intuitive representation of streams,
thereby having a negative effect on readability, robustness,
and programmer productivity.
StreamIt is a language and compiler specifically designed

for modern stream programming. Its goal is to raise the ab-
straction level in the streaming domain, providing a natural,
high-level syntax that conceals architectural details without
sacrificing performance. To accomplish this goal, the com-
piler needs to be “stream-aware”–that is, it needs to be able
to recognize, analyze, and manipulate data streams as would
an expert assembly programmer in lowering an application
to a given target. Towards this end, this paper makes the
following contributions:

• “Structured” streams as a language construct for en-
abling novel compiler analyses of stream programs.

• The identification of a fundamental property of a stream
graph–the stream dependence function–that establishes
a notion of relative time and dependence information.

• A semantic model of structured stream programs that
allows one to formulate and validate stream transfor-
mations.

• A parallel fusion transformation that collapses several
filters into one.

• A suite of optimizations that are specific to the stream-
ing domain.

• A novel phased scheduling algorithm that finds a min-
imal latency schedule over a structured stream graph.

• A prototype implementation of the StreamIt optimiz-
ing compiler that is showing promising results.

2. THE STREAMIT LANGUAGE
In this section we provide a very brief overview of the

StreamIt language; please see [17] for a more detailed de-
scription. The current version of StreamIt is legal Java syn-
tax to simplify our presentation and implementation, and it
is designed to support only streams with static input and
output rates. Designing a cleaner syntax and considering
dynamically varying rates will be the subject of future work.

1

class Adder extends Filter {
int N;

void init (int N) {
this.N = N;
input = new Channel(Float.TYPE, N);
output = new Channel(Float.TYPE, 1);

}

void work() {
float sum = 0;
for (int i=0; i<N; i++) {

sum += input.popFloat();
}
output.pushFloat(sum);

}
}

public class Equalizer extends Pipeline {
void init(float samplingRate, int N) {

add(new SplitJoin() {
void init() {

int bottom = 2500;
int top = 5000;
setSplitter(DUPLICATE());
for (int i=0; i<N; i++, bottom*=2, top*=2) {

add(new BandPassFilter(samplingRate, bottom, top));
}
setJoiner(ROUND_ROBIN());

}});
add(new Adder(N));

}
}

class FMRadio extends Pipeline {
void init() {

add(new DataSource());
add(new LowPassFilter(samplingRate, cutoffFrequency, numTaps));
add(new FMDemodulator(samplingRate, maxAmplitude, bandwidth));
add(new Equalizer(samplingRate, 4));
add(new Speaker());

}
}

Figure 1: Parts of an FM Radio in StreamIt.

2.1 Filters
The basic unit of computation in StreamIt is the Filter.

An example of a Filter is the Adder, a component of our
software radio (see Figure 1). Each Filter contains an init
function that is called at initialization time; in this case, the
Adder records N, the number of items it should filter at once.
A user should instantiate a filter by using its constructor,
and the init function will be called implicitly with the same
arguments that were passed to the constructor1.
The work function describes the most fine grained exe-

cution step of the filter in the steady state. Within the
work function, the filter can communicate with its neigh-
bors using the input and output channels, which are typed
FIFO queues declared within the init function. These high-
volume channels support the intuitive operations of push(value),
pop(), and peek(index), where peek returns the value at
position index without dequeuing the item.

2.1.1 Rationale
StreamIt’s representation of a filter is an improvement

over general-purpose languages. In a procedural language,
the analog of a filter is a block of statements in a complicated
loop nest. There is no clear abstraction barrier between
one filter and another, and high-volume stream processing
is muddled with global variables and control flow. The loop
nest must be re-arranged if the input or output ratios of a

1This design might seem unnatural, but it is necessary to
allow inlining (Section 2.2) within a Java-based syntax.

filter changes, and scheduling optimizations further inhibit
the readability of the code.
In an object-oriented language, one could implement a

stream abstraction as a library. This avoids some of the
problems associated with a procedural loop nest, but the
programming model is complicated by efficiency concerns–to
optimize cache performance, the entire application processes
blocks of data that complicate and obscure the underlying
algorithm.
In contrast to these alternatives, StreamIt places the filter

in its own independent unit, making explicit the parallelism
and inter-filter communication while hiding the grungy de-
tails of scheduling and optimization from the programmer.

2.2 Connecting Filters
The basic construct for composing filters into a commu-

nicating network is a Pipeline, such as the FM Radio in
Figure 1. Like a Filter, a Pipeline has an init func-
tion that is called upon its instantiation. However, there
is no work function, and all input and output channels are
implicit; instead, the stream behaves as the sequential com-
position of filters that are specified with successive calls to
add from within init.
There are two other stream constructors besides Pipeline:

SplitJoin and FeedbackLoop (see Figure 2). From now on,
we use the word stream to refer to any instance of a Filter,
Pipeline, SplitJoin, or FeedbackLoop.
A SplitJoin is used to specify independent parallel streams

that diverge from a common splitter and merge into a com-
mon joiner. There are two kinds of splitters: 1) Duplicate,
which replicates each data item and sends a copy to each par-
allel stream, and 2) RoundRobin(w1, . . . , wn), which sends
the first w1 items to the first stream, the next w2 items to
the second stream, and so on. RoundRobin is also the only
type of joiner that we support; its function is analogous to
a round robin splitter. If a RoundRobin is written without
any weights, we assume that all wi = 1.
The splitter and joiner type are specified with calls to

setSplitter and setJoiner, respectively (see Figure 1); the
parallel streams are specified by successive calls to add, with
the i’th call setting the i’th stream in the SplitJoin. Note
that a RoundRobin can function as an exclusive selector if
one or more of the weights are zero.
The last control construct provides a way to create cy-

cles in the stream graph: the FeedbackLoop. It contains a
joiner, a body stream, a splitter, and a loop stream, which
are set with calls to setJoiner, setBody, setSplitter, and
setLoop, respectively.
The feedback loop has a special semantics when the stream

is first starting to run. Since there are no items on the feed-
back path at first, the stream instead inputs items from
an initPath function defined by the FeedbackLoop; given
an index i, initPath provides the i’th initial input for the
feedback joiner. With a call to setDelay from within the
init function, the user can specify how many items should
be calculated with initPath before the joiner looks for data
items from the feedback channel.
Evident in all of these examples is another feature of the

StreamIt syntax: inlining. The definition of any stream or
filter can be inlined at the point of its instantiation, thereby
preventing the definition of many small classes that are used
only once, and, moreover, providing a syntax that reveals
the hierarchical structure of the streams from the indenta-

2

tion level of the code. In our Java syntax, we make use of
anonymous classes for inlining [4].

2.2.1 Rationale
StreamIt differs from other languages in that it imposes a

well-defined structure on the streams; all stream graphs are
built out of a hierarchical composition of Pipelines, SplitJoins,
and FeedbackLoops. This is in contrast to other environ-
ments, which generally regard a stream as a flat and ar-
bitrary network of filters that are connected by channels.
However, arbitrary graphs are very hard for the compiler to
analyze, and equally difficult for a programmer to describe.
Most programmers either resort to straight-line code that
links one filter to another (thereby making it very hard to
visualize the stream graph), or using an ad-hoc graphical
programming environment that is awkward to use and ad-
mits no good textual representation.
In contrast, StreamIt is a clean textual representation

that–especially with inlined streams–makes it very easy to
see the shape of the computation from the indentation level
of the code. The comparison of StreamIt’s structure with ar-
bitrary stream graphs could be likened to the difference be-
tween structured control flow and GOTO statements. Though
sometimes the structure restricts the expressiveness of the
programmer, the gains in robustness, readability, and com-
piler analysis are immense.
A final benefit of stream graph construction in StreamIt is

the ability to parameterize graphs. For instance, the Equal-
izer in Figure 1 inputs a parameter N that controls the num-
ber of parallel streams that it contains. This further im-
proves readability and decreases code size.

2.3 Messages
StreamIt provides a dynamic messaging system for pass-

ing irregular, low-volume control information between filters
and streams. Messages are sent from within the body of a
filter’s work function, perhaps to change a parameter in an-
other filter. The central aspect of the messaging system is a
sophisticated timing mechanism that allows filters to specify
when a message will be received relative to the flow of infor-
mation between the sender and the receiver. Due to space
constraints, we do not describe the syntax for message state-
ments, but we do consider the semantics of message timing
in Section 3.2.2.

3. STREAMING MODEL OF COMPUTATION
In this section, we develop an abstract model of stream-

ing computation to serve as a basis for reasoning about pro-
gram transformations and compilation techniques within the
streaming domain. A stream graph differs from a tradi-
tional, sequential program in that all of the filters of the
graph are implicitly running in parallel, with the execution
order constrained only by the availability of data on chan-
nels between the filters. Further, filters communicate only
with their immediate neighbors, thereby removing any no-
tion of global time or non-local dependences of one filter
on another. These properties merit the development of a
new model of computation, in which the notions of timing,
scheduling, and dependence analysis are in terms that are
relative to a given filter in the graph, instead of being global
characteristics of a program.
We will arrive at this notion of relative timing and de-

pendence via a stream dependence function, sdep, that

O
A

I
B

=
BA

O
B

I
A

(a) A Pipeline.

O
An

I
1,J

=

BmB1

O
2,S

I
B1

=

An

J
I

S

A1

S
O

JO
Bm

I
2,J

=

O
A1

I
An

O
B1 I

Bm

O
1,S

I
A1

=

(b) A SplitJoin.

O
FJ

 I
1,FJ O

1,FS

FSFJ Body

 I
2,FJ

Loop

 O
2,FS

O
FS

(c) A FeedbackLoop.

Figure 2: StreamIt structures with labeling.

is defined for a given stream graph. In Section 3.1 we pro-
vide a definition of sdep along with some notation. We
then motivate the sdep function in 3.2 by deriving a con-
cept of relative time and a meaning for StreamIt’s messaging
system. Only then, in Section 3.3, do we turn to deriving
expressions for the sdep function itself; Sections 3.4, 3.5 and
4 further employ the function in the respective contexts of
program verification, denotational semantics, and program
optimization.

3.1 Notation
We use the following notation:

• A tape is an infinite history of the values that have
been pushed onto a channel between two filters. We
use IS and OS to denote the input and output tapes of
stream S, respectively, with numbering used to distin-
guish between multiple input or output tapes (see Fig-
ure 2). Finally, n(T) represents the number of items
on tape T at a given point of execution.

• We say that a filter A is upstream of filter B (or, equiv-
alently, B is downstream of A) if there is a directed
path in the stream graph from OA to IB . We use this
terminology for tapes as well as filters.

• The number of items that are pushed, popped, and
peeked by filter A during a single execution of its work
function are denoted by pushA, popA, and peekA, re-
spectively. Note that peekA includes the items that
are popped, such that popA ≤ peekA.

Now, we are ready to give a definition of the stream de-
pendence function, sdep:

Definition 1. sdepb→a(x) is the minimum number of
items that must appear on tape a given that there are x items
on tape b, where b is downstream of a.

Thus, one can think of sdep as an inter-filter data depen-
dence mapping. Though the actual data references in a
stream program appear from within the work functions,
there is an aggregate dependence that restricts a filter from
firing until it has enough items on its input tape to sat-
isfy all its internal references (we assume that each firing

3

is atomic). The sdep function generalizes this dependence
to answer a different question: how many items are needed
on another filter’s input tape before my filter can fire? The
following sections will provide some additional intuition as
to the meaning and applications of the sdep function.

3.2 Information Flow
Above, the sdep function is described in terms of data

dependences. However, we can also think of this function
as defining a common timing mechanism that asynchronous
filters can use to synchronize events. We present this timing
mechanism in terms of “information flow”, which we believe
is a central concept of the streaming domain.

3.2.1 Information Wavefronts
When an item enters a stream, it carries with it some new

information. As execution progresses, this information cas-
cades through the stream, affecting the state of filters and
the values of new data items which are produced. We refer
to an “information wavefront” as the set of filter executions
that first sees the effects of a given input item. Thus, al-
though each filter’s work function is invoked asynchronously
without any notion of global time, two invocations of a work
function occur at the same “information-relative time” if
they operate on the same information wavefront.
The sdep function can be used to give a precise definition

to an information wavefront. One interpretation of y =
sdepb→a(x) is that the item at position y of tape a is the
the latest item on tape a to affect the item at position x of
tape b. This is because item x on tape b can be produced if
and only if tape a contains at least y items. Note that this
effect might be via a control dependence rather than a data
dependence–for instance, if item y needs to pass through
a round robin joiner before some data from another stream
can be routed to tape b. This is why we choose “information
flow” instead of “data flow” to describe the timing concept.

3.2.2 Message Timing
We can also use the sdep function to give a precise mean-

ing to the message delivery guarantees in StreamIt. Though
we cannot give the details here due to space constraints (see
[17] for a careful treatment), the general idea is as follows.
A filter A can send a message to filter B to communi-

cate low-bandwidth, asynchronous data. To send a mes-
sage, there needs to be an upstream or downstream path
from A to B in the stream graph (the filters need not be
directly connected.) The message statement appears in A’s
work function and includes a specified latency n that indi-
cates “when” the target filter B should receive the message.
The StreamIt language specification measures the latency n
in terms of information wavefronts: if A is upstream of B,
then B will receive the message immediately preceding the
first invocation of its own work function which reads items
that were affected by some output of the n’th invocation
of A’s work function. That is, the message handler in B is
invoked when B sees the information wavefront that A sees
in n execution steps.
In some cases, the ability to synchronize a message with

an information wavefront can be very useful. For instance,
if the input port of a hand-held computer detects a change
in the networking protocol, it can send a reconfiguration
message to all downstream filters with latency 0. This guar-
antees that each filter will reconfigure just in time to un-

derstand the new protocol, but will still process previous
elements in the pipeline according to the old protocol.

3.3 The Stream Dependence Function
We now turn to deriving sdepb→a for all pairs of tapes a

and b in a filter graph where a is upstream of b.

3.3.1 Filters
Let us derive sdepOA→IA

(x), which represents the time
shift across a single filter A. Since the filter produces pushA

items on every invocation, it must be invoked
⌈

x
pushA

⌉

to

produce the x’th item. On each invocation, it consumes
popA items, and peeks at an additional peekA− popA items.
Thus, the total number of items that must be present on the
input is:

sdepOA→IA
(x) =

⌈

x

pushA

⌉

∗ popA + (peekA − popA) (1)

3.3.2 Pipelines
Let us now derive an expression for sdep in the case of

a pipeline. In the base case, consider that two filters are
connected, with the output of A feeding into the input of
B (see Figure 2). We are seeking sdepOB→IA

(x): the min-
imum number of items that must appear on tape IA given
that there are x items on tape OB . Observing that a mini-
mum of sdepOB→IB

(x) items must appear on tape IB , and
that IB must equal OA since the filters are connected, we
see that a minimum of sdepOA→IA

((sdepOB→IB
)(x)) items

must appear on IA. Using ◦ to denote function composition,
we have:

sdepOB→IA
= sdepOA→IA

◦ sdepOB→IB

By identical reasoning, this composition law holds for pipelined
streams as well as filters. That is, a Pipeline of streams
S1 . . . Sn has the following sdep function:

sdepSn→S1 = sdepOS1→IS1 ◦ · · · ◦ sdepOSn→ISn
(2)

One might be tempted to define the sdep function for any
pair of connected tapes as the composition of functions for
the operators connecting those tapes. However, such a def-
inition turns out to be problematic for the SplitJoin and
FeedbackLoop constructs, which require a slightly different
composition law for their components (as shown below). In-
stead, we can further extend our notation to include the
components of streams that are connected in a pipeline.
That is, if tapes ti and tj are contained within stream con-
structs Si and Sj , respectively, and Si and Sj belong to a
pipeline of streams S1 . . . Sn, then:

sdeptj→ti = sdepOSi
→ti ◦ sdepOSi+1

→ISi+1
◦ · · · ◦ sdeptj→ISj

(3)

3.3.3 SplitJoins
We now derive sdep expressions for the components of a

SplitJoin, and for the SplitJoin construct as a whole. We
denote the n output tapes of the splitter S by O1,S . . . On,S ,
and the n input tapes of the joiner J by I1,J . . . In,J (see
Figure 2).
Duplicate splitter. We consider the i’th output tape of

an n-way duplicating splitter. Since the splitter duplicates
each input item onto each output tape, there must be at

4

n(Oi,S) sdepOi,S→IS
(n(Oi,S))

0 ≤ 0
1 X + 1
2 X + 2

.

wi X + wi

wi + 1 X + W + 1
wi + 2 X + W + 2

.

2 ∗ wi X + W + wi

2 ∗ wi + 1 X + 2 ∗W + 1
2 ∗ wi + 2 X + 2 ∗W + 2

.

Table 1: SDEP values for a round robin splitter, where

X =
∑i−1

j=0 wj and W =
∑n

j=0 wj . A closed-form solution

appears in Equation 4.

least x items on IS if there are x items on Oi,S . This yields
a simple expression for sdep:

sdepOi,S→IS
(x) = x

Round robin splitter. We consider an n-way splitter
with weights w1 . . . wn. Let X denote the sum of the weights
before the i’th output tape, andW denote the sum of all the
weights. That is, for a given output tape i, X =

∑i−1
j=0 wj

and W =
∑n

j=0 wj . To derive sdepOi,S→IS
, the reader is

referred to Table 1, which lists sdep for a number of rep-
resentative inputs. Generally speaking, the table illustrates
that for each set of wi items appearing on tape Oi,S , the
splitter must have executed a full round. Additionally, X
items must have gone through the splitter before the first
item could appear on Oi,S . The reader can verify that the
following expression gives the values of sdep shown in the
table:

sdepOi,S→IS
(x) = (4)

X +W ∗

⌊

n(Oi,S)− 1

wi

⌋

+ 1 + (n(Oi,S)− 1) mod wi

Note that this equation does give a negative value for sdep in
the case when n(Oi,S) = 0. However, this is not problem-
atic, since an output tape can contain zero items regardless
of the number of items on the input. In general, sdep is
only meaningful within the domain of strictly positive tape
values.
Round robin joiner. Let us consider an n-way joiner

with weights w1 . . . wn, withX =
∑i−1

j=0 wj andW =
∑n

j=0 wj

for a given input tape i. The values of sdepOJ→Ii,J
for rep-

resentative inputs is shown in Table 2. No items are required
on tape Ii,J until there are X + 1 items on the output of
the joiner, since the first X items are drawn from tapes 0
to i− 1. Then, the joiner reads from tape Ii,J as it outputs
items X +1 through X +wi, thereby requiring wi items on
Ii,J to produce output X + wi. The joiner does not read
from the i’th input tape until the next round, when it is
producing item X +W + 1. From here, the cycle repeats.
The reader can verify that the following expression gives the
correct values for sdep:

sdepOJ→Ii,J
(x) = (5)

wi ∗
⌊ x

W

⌋

+MIN(MAX(0, x mod W −X), wi)

SplitJoin construct. As with the Pipeline construct,
we can derive the sdep function across an entire SplitJoin
as a composition of the component functions. However, a

n(OJ) sdepOJ→Ii,J
(n(OJ))

0 0
.

X 0
X + 1 1
X + 2 2

.

X + wi wi

X + wi + 1 wi

.

X + W wi

X + W + 1 wi + 1
X + W + 2 wi + 2

.

X + W + wi 2 ∗ wi

X + W + wi + 1 2 ∗ wi

.

X + 2 ∗W 2 ∗ wi

X + 2 ∗W + 1 2 ∗ wi + 1
X + 2 ∗W + 2 2 ∗ wi + 2

.

Table 2: SDEP values for a round robin joiner, where

X =
∑i−1

j=0 wj and W =
∑n

j=0 wj . A closed-form solution

appears in Equation 5.

SplitJoin differs from a Pipeline in that the joiner imposes
a control dependence between the parallel streams. That
is, for there to be x items on the output of the joiner,
there must be at least sdepOJ→Ii,J

(x) items on every in-
put tape Ii,J . Applying the composition law for pipelines
(Equation 2), it follows that there must be at least at least
sdepIi,J→Oi,S

◦ sdepOJ→Ii,J
(x) items on every output tape

Oi,S of the splitter. Finally, the minimum number of items
appearing on the input tape IS of the splitter is the max-
imum of the item requirement from any output tape Oi,S .
By this reasoning, the sdep function for a SplitJoin is as
follows:

sdepOJ→IS
(x) =

MAX
i∈[1,n]

(sdepOi,S→IS
◦ sdepIi,J→Oi,S

◦ sdepOJ→Ii,J
)(x)

3.3.4 FeedbackLoops
The sdep function for a feedback loop requires extra care.

Although the feedback splitter FS serves as a normal split-
ter, with the same sdep function as derived above, the feed-
back joiner FJ is slightly different due to the initialization
phase of the loop. Also, the sdep function does not com-
pose across all components of the loop, since otherwise there
would be conflicting definitions for paths that circle the loop
several times.
Feedback joiner. For a feedback loop with delay d,

the feedback joiner must fabricate its first d input values,
since no items have yet been pushed onto the loop tape
I2,FJ . This means that there must be an offset of d in the
sdep function, since the first d items are direct inputs to
the joiner instead of appearing as items on the input tape.
Using J to denote a round robin joiner as considered above,
we thus have the following expression for the sdep function
across the feedback path:

sdepOF J→I2,F J
(x) = sdepOJ→I2,J

(x)− d

However, the sdepfunction remains unchanged with respect
to the input from the main stream:

sdepOF J→I1,F J
(x) = sdepOJ→I1,J

(x)

Feedback components. Within a feedback loop, the

5

sdepfunction between tape a and any downstream tape b
can be uniquely defined by composing the sdepfunctions
along the directed acyclic path between a and b. We re-
quire an acyclic path to avoid successive passes around the
loop, which would prevent a unique definition of the func-
tion. Denoting this path of tapes by (a, t1, . . . , tn, b), the
composition follows the form of Equation 2:

sdepb→a(x) = sdept1→a ◦ sdept2→t1 ◦ . . . sdepb→tn

Note that these functions can then be composed with those
of constructs neighboring the feedback loop to obtain, for
instance, the relation between the loop tape I2,FJ and a
downstream pipeline (by application of Equation 3).
Feedback loop construct. As a special case of the equa-

tion above, we can see that the sdepfunction for the feed-
back loop as a whole is the composition of the sdepfunctions
along the main path:

sdepOF S→I1,F J
(x) = sdepOJ→I1,J

(x) ◦ sdepOJ→I1,J
(x)

Intuitively, this is because–in any semantically correct stream
program–the loop itself is guaranteed to have enough inputs
to feed the joiner, such that the output tape of the feed-
back loop places a restriction only on the input tape of the
feedback loop.

3.3.5 Summary
In the preceding sections, we have derived a sdepfunction

for the components of each stream construct, as well as for
the stream construct as a whole. By application of Equation
3, this yields a function sdepb→a for every pair of tapes a
and b where b is downstream of a.

3.4 Program Veri£cation
A number of program analysis techniques are immediately

afforded by the sdepfunction. In particular, it is very simple
to compute 1) whether or not the program will deadlock as
a result of a starved input channel, and 2) whether or not
any buffer will grow without bound during the steady-state
execution of the program.
Deadlock detection. The deadlock detection algorithm

takes advantage of the fact that the only loops in our stream
graph are part of a FeedbackLoop construct. A stream graph
will be deadlock-free if and only if every feedback loop pro-
duces enough data to satisfy its own feedback joiner. This
can be formulated in terms of the sdepfunction by consid-
ering sdept→t, the data that a tape t in a feedback loop re-
quires of itself. However, since we didn’t define sdepacross
circular paths in the stream graph, we will denote this func-
tion by loopdepand define it at the loop input to the feed-
back joiner:

loopdep(x) ≡ sdepOF J→I2,F J
◦ sdepI2,F J→OF J

Now, the loop will be deadlock-free if and only if ∀x ∈
N , x − loopdep(x) > 0. This condition follows directly
from causality–the x’th item can be produced if and only
if its production depends only on some subset of the x − 1
items that are already on the channel.
Overflow detection. There are two places that a buffer

can grow to an unbounded size in the stream graph. The
first is in a feedback loop, when2 x − loopdep(x) = ω(1).
That is, if loopdep(x) items on the feedback tape enables

2f(x) = ω(g(x)) if limx→∞
f(x)
g(x)

=∞

the production of an additional x− loopdep(x) items that
grows asymptotically with the position x on the tape, then
the constant consumption rate will not keep up with the
growing production rate, and the buffer will overflow.
The second case of buffer overflow is when the parallel

streams of a SplitJoin have asymptotically different produc-
tion rates. For a given stream i in a SplitJoin construct,
the buffer corresponding to the joiner input tape Ii,J will
overflow if and only if there is a stream j in the SplitJoin
for which:

(sdepOi,S→IS
◦ sdepIi,J→Oi,S

◦ sdepOJ→Ii,J
)(x)−

(sdepOj,S→IS
◦ sdepIj,J→Oj,S

◦ sdepOJ→Ij,J
)(x) = ω(1)

Both of these cases could be detected by a compiler to verify
that no buffers will overflow during steady-state execution.

3.5 Denotational Semantics
In this section, we develop a denotational semantics for

obtaining the meaning of an entire stream graph. In Section
4, this semantics is used to show that a optimizing transfor-
mation on the stream graph preserves the meaning of the
entire program.
Our denotational semantics contains three algebras: one

for literal StreamIt syntax, one for an intermediate abstract
syntax, and one for the semantic analysis. The purpose
of the intermediate algebra is to provide a simplified syntax
for developing stream transformations, and to abstract away
the StreamIt-specific aspects of the program. We provide an
informal description of how to translate back and forth be-
tween StreamIt programs and the abstract syntax, and then
consider more formal valuation functions for determining the
meaning of the abstract syntax within the semantic algebra.
Throughout the analysis, we assume that filters are stateless
and that the stream program is semantically correct.

3.5.1 Intermediate Algebra
The intermediate algebra provides a common mathemati-

cal representation for manipulating stream programs. Though
we have referred to this algebra as providing an abstract
syntax for stream programs, the representation is strictly
a mathematical framework within semantic domains rather
than a program that is fit for execution. Nonetheless, the
LISP-like syntax allows us to think of the representation as a
program that is amenable to straightforward transformation
techniques.
The domains of the intermediate algebra are shown in Fig-

ures 3 and 4. The algebra represents a tape as an infinite
mapping from indices to items. Generally, stream constructs
are represented as lists of their component streams, and fil-
ters’ work functions are encoded as lists of push statements
that–given the transform from their local indexing to the
global tape position–return a mapping from a tape to an
output item.
Converting to the intermediate algebra. It is straight-

forward to generate an expression in the intermediate alge-
bra that reflects the meaning of a given StreamIt program.
Due to space limitations, we consider here only the transla-
tion of the work functions.
The translation of a filter’s work function contains two

steps. First, the function is arranged in a canonical form, in
which each pushed item is given as a direct function of the
peeked items, and all of the pop statements are at the end
of the function. Let us consider a work function with I/O

6

Item = R

i ∈ Index = N

g ∈ IndexTransform = Index → Index

t ∈ Tape = Index → Item

Pop, Peek, Push = N

f ∈ WorkStatement = IndexTransform → (Tape → Item)

WorkFunction = WorkStatement
+

S ∈ SplitType = {Duplicate, RoundRobin}

J ∈ JoinType = {RoundRobin}

Figure 3: Semantic domains that are shared between

the intermediate and transform algebras.

s ∈ Stream = Filter + Pipeline + SplitJoin + FeedbackLoop

Filter = Push× Pop× Peek ×WorkFunction

Pipeline = Stream
+

SplitJoin = SplitType× Stream
+ × JoinType

InitFeedback = Int
+

BodyStream, LoopStream = Stream

FeedbackLoop = JoinType× BodyStream×

LoopStream× SplitType× InitFeedback

Figure 4: Semantic domains specific to the interme-

diate algebra.

TapeTransform = Tape → Tape

StreamTransform = IndexTransform → TapeTransform

Figure 5: Semantic domains specific to the trans-

form algebra.

rates PUSH, POP, and PEEK. The canonical form of this
work function gives us an element w of the syntactic domain
StreamItWorkFunction:

w = void work() {
output.push((f1 input.peek(0) ... input.peek(PEEK-1))
. . .
output.push((fP USH input.peek(0) ... input.peek(PEEK-1))
for (int i=0; i<POP; i++) { input.pop(); }

}

Above, we model the computation of the work function as
pure mathematical functions that can be injected into the
semantic domain. To simplify our notation, we define the
valuation W : StreamItWorkFunction → WorkFunction
in terms of w, the example syntactic work function from
above. The valuation, then, is the alternate application of
each push statement’s function f , with the index expressions
transformed from their local index x to a global index g(x)
on the input tape:

W[w] =[h1 . . . hpush]

where hi =[λ g t . fi(t(g(0)), . . . , t(g((PEEK − 1))))]

Converting from the intermediate algebra. To con-
vert back to StreamIt, we can perform the inverse of the
translation shown above, with a push statement for each
function and a local index expression x in place of the global
index g(x). Common sub-expression elimination can be used
to eliminate duplicate peek statements or shared portions of
the fi’s.

3.5.2 Transform Algebra
The transform algebra is designed to express the meaning

of a stream graph as a transformation from an input tape to
an output tape. Its semantic domains are given in Figures 3
and 5. Our goal is to express the meaning of a Stream in the
intermediate algebra as a TapeTransform in the transform
algebra.
To do this, we introduce the StreamTransform domain,

each element of which maps an IndexTransform (let us
call it g) to a TapeTransform. The intuition is that g
represents a relative indexing function that is imposed by
an enclosing stream construct. For instance, in a two-way
SplitJoin with a RoundRobin splitter, the SplitJoin con-
struct imposes a g = λ i . 2∗ i on the second parallel stream
component. That is, index i on the component stream’s in-
put tape corresponds to index g(i) on the input tape of the
SplitJoin. Thus, if the component stream is transforming
the input tape of the entire SplitJoin, it must apply g to its
original index references.
Let us denote our valuation functions asM : Stream →

TapeTransform and S : Stream → StreamTransform .
Then the meaning of a top-level stream s is as follows:

M[s] = S[s](I)

where I denotes the identity function

That is, the meaning of an entire stream program is sim-
ply the Stream-Transform for that program applied to
the identity function as the Index-Transform, since at the
top level there is no enclosing stream constructs and the
the tape transformation is relative to the input tape of the
stream itself. We now turn our attention to deriving S for
Filters, Pipelines, and SplitJoins. Letting % denote themod
function, for a filter we have that:

S[(in Filter push pop peek (h1 . . . hpush))] = λ g t i .

(hi % push)(λ ilocal . g((sdepOF →IF
(i)− peek + 1 + ilocal)))(t)

That is, the value that a filter pushes onto the i’th position
of its output tape is calculated with its function at index
i % push. By the definition of sdep, the index offset to
the last value the filter peeks is sdepOF →IF

(i), where IF

and OF denote the input and output tapes of the filter (as
shown in Equation 1, this is a pure function of push, pop,
and peek). Thus, the offset to the first value the filter peeks
is sdepOF →IF

(i)− peek+1, and we obtain the global index
by adding this offset to the local index ilocal.
For a pipeline, the transform function is simply the com-

position of the transforms of component streams. At the
internal connections of the pipeline, the index transform is
the identity function, but at the start of the pipeline we ap-
ply the transform g to interface the pipeline to its outside
connection.

S[(in Pipeline s1 s2 . . . sn)] =

λ g . (S[sn](I) ◦ · · · ◦ S[s2](I) ◦ S[s1](g))

where I denotes the identity function

The valuation function for a SplitJoin follows the same idea,
but the notation is slightly heavier. Given that we have a
round robin joiner with weights w1 . . . wn and W =

∑

w,
we first represent the parallel stream p(i) which computes

7

the i’th output of the joiner:

p(i) =MIN(j s.t.

j−1
∑

k=0

wi ≤ i mod W) (6)

Now, the i’th tape position assumes the value that is pro-
duced along stream p(i) in the SplitJoin, and the value of
interest appears at position sdepOJ→Ip(i),J

(i) on the output

tape of stream p(i). The indexing function transforms the
stream’s local index ilocal for its own input tape to the cor-
responding index sdepOp(i),S→IS

(ilocal) for the input tape
of the splitter:

S[(in SplitJoin S s1 s2 . . . sn J)] = λ g t i .

((S[sp(i)])(λ ilocal . g(sdepOp(i),S→IS
(ilocal))))(sdepOJ→Ip(i),J

(i))

This completes our description of the transform algebra, as
we have not yet formulated the valuation function for Feed-
backLoops. Given the valuation functions above, however,
we express the meaning of any combination of Pipelines and
SplitJoins as a mathematical transformation between infi-
nite tapes. We will utilize this formulation to prove that
certain transformations of the stream graph preserve the
meaning of the program.

4. OPTIMIZATION
We now turn our attention to the problem of optimizing

a stream program. Unlike other program domains, where
the principle aim of compiler optimization is to shorten the
total execution time, there are many distinct optimization
metrics for streaming applications, including throughput, la-
tency, data size, and code size. The latter two of these are
especially important in embedded domains, where memory
is in short supply; latency can be critical for real-time ap-
plications, and throughput is always of interest.
In this section we present some transformations that im-

prove a stream program by one or more of these metrics.
However, there is often a tradeoff between throughput and
latency, or code size and data size, such that the optimality
of a stream program depends on the metric of interest.

4.1 Fusion Transformations
A primary stream optimization is the fusion of multiple fil-

ters and streams into a single atomic unit. This can be ben-
eficial for throughput, latency, and data size, as data buffers
are eliminated in favor of local variables with short live
ranges. Fusion is also important for adapting a fine-grained
stream program to a coarse-grained target; the program-
mer benefits from dividing the program into many modular
components without losing the performance of a single, in-
tegrated procedure.
An algorithm for fusing a pipeline of two filters that con-

tain only push and pop statements is given in [12]. However,
in a stream program, it pays to consider not only vertical
fusion of pipeline constructs, but also horizontal fusion of
parallel streams in a SplitJoin. Here we present a transfor-
mation on the abstract syntax of Section 3.5.1 that collapses
a SplitJoin construct containing n parallel filters s1 . . . sn
into a single filter sc. Let us denote the weights of the joiner
J by w1 . . . wn with W =

∑n

i=1 wi:

Merge[(S s1 . . . sn J)]

= (in Filter pushsc popsc peeksc worksc)

where : pushsc = totalRounds ∗W

popsc = totalPop if S = RoundRobin

= totalPop/n if S = Duplicate

peeksc =MAXj∈[1,pushsc](shiftj(peeksj))

worksc = hsc,1 . . . hsc,pushsc

totalRounds = lcm(lcm(pushs1, w1), . . . , lcm(pushsn, wn))

totalPop =
n
∑

i=1

(totalRounds ∗ wi ∗ popsi/pushsi)

shiftj(x) = sdepIsj→IS
(x+

(sdepOsj→Isj ◦ sdepOJ→Osj)(j)− peeksj)

hsc,j = λ g . hs,p(j)(λ ilocal . shiftj(g(ilocal)))

We have proven that this transformation preserves the mean-
ing of the program with respect to our transform algebra for
the case when n = 2, w1 = w2 = 1, and S is a duplicate
splitter. The proof involves only straightforward algebra,
but we omit it due to space constraints.
This transformation is very powerful–it allows us to fuse

any set of parallel filters in a SplitJoin construct into a
single filter, regardless of the splitter/joiner types and the
push/pop/peek requirements. We have implemented this
transformation in the StreamIt compiler for cases with a
duplicate splitter and filters with output rates matching
the joiner’s weights; performance improves significantly (see
Section 6) due to decreased channel operations.
In the sections that follow, we give an overview of other

optimizations that we are implementing in the StreamIt
compiler. Due to space limitations, we cannot describe them
at the above level of detail.

4.2 Fission Transformations
When the machine target is more fine-grained than the

stream graph, it is advantageous to break filters up into
smaller pieces so that more hardware resources can be uti-
lized. We propose three fission transformations:

1. Parallelizing stateless filters. If a filter has no
state, then we can gain data parallelism by duplicat-
ing the filter n times and embedding it in an n-way
SplitJoin with a round robin splitter and joiner.

2. Parallelizing stateless feedback loops. If the body
of a feedback loop is stateless and its input/output
rates evenly divide the delay of the loop, then the en-
tire loop can be replicated and parallelized as in (1),
with the quantity and delay of the new loops being
(approximately) equal to the quotient of the old de-
lay and the body stream’s I/O rates. This exploits
the fact that for certain feedback loops there are in-
terleaved subsequences of the input stream that are
transformed completely independently by the loop.

3. Splitting stateful filters. If a filter has persistent
state, we can still gain pipeline parallelism by breaking
the the filter into an n-stage pipeline in which the state
is communicated through the data channels.

8

4.3 Steady-State Invariant Code Motion
In the streaming domain, the analog of loop-invariant code

motion is the motion of code from the steady-state work

function to the init function if it does not depend on any
quantity that is changing during the steady-state execution
of a filter. Quantities that the compiler detects to be con-
stant during the execution of work can be assigned to fields
in the init function and then referenced from work.

4.4 Induction Variable Detection
The work function can also be analyzed as would the body

of a loop to see if there are induction variables from one
steady-state execution to the next. This analysis is useful
both for strength reduction, which adds a dependence be-
tween invocations by converting an expensive operation to
a cheaper, incremental one, as well as for data paralleliza-
tion, which removes a dependence from one invocation to
the next by changing incremental operations on filter state
to equivalent operations on privatized variables.

4.5 Decimation Propagation
Decimation refers to the regular discarding of a fraction

of a filter’s input items, perhaps to reduce the sampling rate
in a stream. In the streaming domain, the analog of dead
code elimination is the propagation of this decimation up
through the stream graph, thereby eliminating the compu-
tations that produce the unused items.

4.6 Synchronization Removal
In a StreamIt graph, the SplitJoin construct provides a

way to define independent units of parallel computation.
However, when two SplitJoins s1 and s2 are connected in a
pipeline, there is a joiner/splitter pair that serializes all of
the items passing from s1 to s2. If the joiner of s1 and the
splitter of s2 are both round robins with equal weights, then
this node can be eliminated in favor of a single SplitJoin sc

with the i’th parallel stream in sc being a pipeline of the
corresponding streams in s1 and s2.

5. SCHEDULING
The tradeoffs between different optimization criteria are

particularly pronounced in the scheduling stage of a stream-
ing compiler. As shown in Figure 6, at the extreme ends of
the optimization space are schedules which minimize code
size (at the expense of latency and buffer size) and which
minimize buffer size and latency (at the expense of code
size). We give an overview of this scheduling space, and
present a new phased scheduling technique that takes ad-
vantage of the structured streams in StreamIt to obtain a
minimum latency schedule without a large increase in code
size.

5.1 Initialization vs. Steady State
Firstly, one must note that StreamIt programs can require

a separate schedule for initialization and for the steady state.
The steady state schedule must be periodic–that is, its exe-
cution must preserve the number of live items on each chan-
nel in the graph. We need a separate initialization schedule
if there is a filter with peek > pop, since no periodic sched-
ule could eliminate all of the live items on the filter’s input
channel (which would be needed to return the graph to its
initial configuration). In the StreamIt compiler, this initial-
ization schedule is constructed via symbolic execution of the

4 1 0

2 4 0

2 2 1

1 1 0

0 3 2

0 1 3

0 1 0

2 0 2

1 4 0

1 2 1

1 0 2

3 1 0

2 3 2

2 1 3

2 1 0

4 0 2

0 2 1

0 0 2

3 0 2

0 4 0

1 1 3

1 1 0

1 3 2

4 1 0

7 1 0

10 1 0

1 1 0

11 4 0

9 7 0

7 10 0

13 1 0

3 16 0

1 19 0

1 17 1

6 13 0

1 13 3

1 11 4

1 9 5

1 15 2

1 5 7

1 3 8

1 1 9

1 7 6

1 1 3

1 1 0

1 1 6

4 1 0

2 4 0

0 7 0

1 1 0

0 3 2

0 1 3

0 1 0

0 5 1

6 1 0

4 4 0

2 7 0

3 1 0

2 3 2

2 1 3

2 1 0

2 5 1

3 4 0

1 7 0

1 5 1

5 1 0

1 1 3

1 1 0

1 3 2

�����
=1

push=3

�����
=2

push=3

�����
=2

push=1

�����
=3

push=1
A B C D

� �����
	 ���� �
App

����� ����
e Schedule (b) Pull Schedule (c) Phased Pull Schedule

Figure 6: The three different scheduling schemes.

The channels are labeled with the number of live

data items they contain.

stream graph, until each filter has peek − pop items on its
input channel.
For graphs without peeking, one can find a unique and

minimal set of multiplicities for a periodic schedule, and
all other periodic schedules will be a multiple of these [2].
Thus, the challenge in scheduling is to impart an order on
the steady state execution set so that a given metric is op-
timized. In what follows, we consider three approaches to
this problem.

5.2 Minimizing Code Size
A schedule with minimal code size is a Single Appearance

Schedule (SAS): one where each node appears exactly once
in the loop nest denoting the schedule (e.g., (4A)(6B)(9C)(3D)
in Figure 6). There has been a lot of attention (e.g., [2]) on
SAS’s because their minimal code size allows extensive func-
tion inlining, which enables compiler optimizations and im-
proves performance. In the StreamIt compiler, we compute
a simple SAS with hierarchical ordering according to the
original stream structure. The problem with this and other
SAS’s is that the data buffer size can grow quite large, which
motivates other techniques. Moreover, the inlining benefits
afforded by SAS’s are less important in StreamIt, where the
compiler itself can consider inter-procedural optimizations.

5.3 Minimizing Buffer Size
On the other end of the spectrum, one can minimize buffer

size by implementing a “pull schedule”, in which filters are
executed in demand-driven order to fire the output node of
the stream. A pull schedule guarantees the minimal static
buffer size (assuming each filter has its own input buffer),
with each channel not exceeding

⌈

peekB

gcd (pushA, popB)
− 1

⌉

gcd (pushA, popB) + pushA

However, a pull schedule is very irregular, and could require
an exponential number of instructions to encode.

5.4 Minimizing Latency
The pull schedule also minimizes the average latency of

9

Benchmark Lines Filters Graph Size

PCA Demo 484 5 7
FM Radio 411 5 27
perftest4 347 5 20
GSM Decoder 3050 11 21

Table 3: Application Characteristics

the stream, which could be important for real-time applica-
tions. We define the latency of an output item as the number
of work functions that were executed within the stream be-
fore the item was output; the stream’s average latency is
taken over all of its output items. While the pull schedule
is sufficient to minimize latency, it is possible to factor more
of the schedule into shared loop nests. For this we present
the notion of a “phased schedule”.

5.5 Phased Schedules
We invented phased schedules–which rely heavily on the

structured streams of StreamIt–to achieve a minimum-latency
schedule without risking the code explosion of a pull sched-
ule (see Figure 6). A phase is a (possibly non-periodic)
schedule for a stream structure in which the bottom-most
filter in that structure fires exactly once. There could be sev-
eral phases for a given stream component, and each phase
has an associated push, pop, and peek count. In the base
case, a filter has just one phase with its own push, pop, and
peek. For stream constructs, the list of phases is determined
by simulating a “phased pull”–that is, just like a pull sched-
ule, except that child streams must execute in steps of their
own phases.
Due to space limitations, we cannot give a more detailed

description of the phased scheduling algorithm. However,
it is the case that phased schedules have minimum latency
because they invoke the same set of filters as the pull model
for a given output item; only the ordering of those filter
executions can be rearranged to improve the code size.

5.6 Respecting Message Constraints
Another responsibility of the scheduler in StreamIt is to

satisfy the message delivery guarantees. Each downstream
message with a negative latency imposes a lower bound on
the buffer size between the source and target filter. Likewise,
an upstream message with a positive latency imposes an
upper bound on this buffer size.

6. IMPLEMENTATION AND EVALUATION
We have implemented a fully-functional prototype of the

StreamIt optimizing compiler as an extension to the Kopi
Java Compiler, a component of the open-source Kopi Project
[18]. Our compiler generates C code that is compiled with
a StreamIt runtime library to produce the final executable.
We have also developed a library in Java that allows StreamIt
code to be executed as pure Java, thereby providing a veri-
fication mechanism for the output of the compiler.
The compilation process for streaming programs contains

many novel aspects because the basic unit of computation
is a stream rather than a procedure. In order to compile
stream modules separately, we have developed a runtime
interface–analogous to that of a procedure call for traditional
codes–that specifies how one can interact with a black box
of streaming computation. The stream interface contains
separate phases for initialization and steady-state execution;

StreamIt Hand Coded
Benchmark Baseline Fusion Spectra C

PCA Demo 1.3 - 3.4 N/A
FM Radio 5.8 4.9 9.9 N/A
perftest4 330 - 330 N/A
GSM Decoder 4.88 - N/A .47

Table 4: Performance Results (in µsec/output)

in the execution phase, the interface includes a contract for
input items, output items, and possible message production
and consumption. The interface relies on the sdep function
to specify message timing in terms of a stream’s input tape.
We have evaluated our compiler with StreamIt versions

of the following applications: 1) A GSM Decoder, which
takes GSM-encoded parameters as inputs, and uses these
to synthesize audible speech, 2) A system from the Poly-
morphic Computing Architecture (PCA) [8] which encap-
sulates the core functionality of modern radar, sonar, and
communications signal processors, 3) A software-based FM
Radio with equalizer, and 4) A performance test from the
SpectrumWare system that implements an Orthogonal Fre-
quency Division Multiplexor (OFDM) [16]. Table 3 gives
characteristics of the above applications including the num-
ber of filters implemented and the size of the stream graph
as coded.
In the Table 4, we evaluate the performance of our com-

piler by comparing the StreamIt implementation against ei-
ther the SpectrumWare implementation or (in the case of
GSM) a hand-optimized C version. SpectrumWare [16] is a
high-performance runtime library for streaming programs,
implemented in C++. The StreamIt language offers a higher
level of abstraction than SpectrumWare (see Section 2.1.1),
and yet the StreamIt compiler is able to beat the Spec-
trumWare performance by a factor of two for the PCA Demo
and FM Radio.
For the GSM application, the extensively hand-optimized

C version incorporates many transformations that rely on
the high-level knowledge of the algorithm, and the StreamIt
performs an order of magnitude slower.
The StreamIt compiler infrastructure is far from complete.

We are in the process of discovering all the optimization pos-
sibilities in this new domain. Our code generation strategy
currently has many inefficiencies, and in the future we plan
to generate optimized assembly code by interfacing with a
code generator. We strongly believe that we can improve
the current performance by at least an order of magnitude
on uniprocessors, and we have yet to take advantage of the
inherent data and pipeline parallelism in StreamIt programs
for parallel execution.

7. RELATED WORK
A large number of programming languages have included

a concept of a stream, with various semantic formalisms; see
[15] for a survey. Those that are perhaps most related to
the static-rate version of StreamIt are synchronous dataflow
languages such as LUSTRE [6] and ESTEREL [1] which
require a fixed number of inputs to arrive simultaneously
before firing a stream node. However, most special-purpose
stream languages are functional instead of imperative, and
do not contain features such as messaging and support for
modular program development that are essential for modern
stream applications. Also, these languages lack the struc-
tured streams of StreamIt, which enable a suite of hierar-
chical compiler optimizations and a clean semantics for ver-

10

ifying program transformations.
At an abstract level, the stream graphs of StreamIt share a

number of properties with the synchronous dataflow (SDF)
domain as considered by the Ptolemy project [9]. Each node
in an SDF graph produces and consumes a given number
of items, and there can be delays along the arcs between
nodes (corresponding loosely to items that are peeked in
StreamIt). As in StreamIt, SDF graphs are guaranteed to
have a static schedule, testing for deadlock is decidable, and
there have been many efforts to minimize their memory re-
quirements [2, 11, 5, 3]. However, nodes such as round
robins that have a cyclic pattern of I/O rates fall outside of
SDF and within the Cyclo-Static domain [7] where there are
fewer scheduling results. To the best of our knowledge, the
phased scheduling algorithm for minimal latency is novel.

8. CONCLUSION
We have implemented a prototype optimizing compiler for

StreamIt: a high-level stream language that aims to raise the
abstraction level of stream programming without sacrificing
performance. We have demonstrated that the hierarchical
structure imposed by the language enables new compiler
analyses and optimizations for the streaming domain. In
particular, we believe that the stream dependence function is
a critical compiler representation for streaming applications,
comparable to distance and direction vectors for scientific
applications.
In all, we believe that optimizing compilers will be of im-

mense importance in the streaming domain. Though our
compiler cannot yet match the performance of hand-coded
applications, there is a ripe field of optimizations that are
enabled by the structured nature of the stream programming
model. Moreover, it is a young domain where languages and
tools are lacking, but performance is very critical; the de-
velopers that we have interacted with have been very eager
to explore new language and compiler solutions. In an age
when many are skeptical of the utility of traditional compiler
optimization, we hope that the streaming domain proves to
be an important frontier.

9. REFERENCES

[1] G. Berry and G. Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics,
Implementation. Science of Computer Programming,
19(2):87–152, 1992.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.
Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996. 189 pages.

[3] S. Goddard and K. Jeffay. Managing Memory
Requirements in the Synthesis of Real-Time Systems
from Processing Graphs. pages 59–70, 1998.

[4] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison Wesley, 1997.

[5] R. Govindarajan, G. Gao, and P. Desai. Minimizing
Memory Requirements in Rate-Optimal Schedules.
Proc. of the Intl. Conf. on Application Specific Array
Processors, San Francisco, 1994.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[7] R. Lauwereins, P. Wauters, M. Ade, and
J. Peperstraete. Geometric parallelism and cyclo-static
data flow in Grape-II, 1994.

[8] J. Lebak. Polymorphous Computing Architecture
(PCA) Example Applications and Description.
External Report, Lincoln Laboratory, Massachusetts
Institute of Technology, August 2001.

[9] E. A. Lee. Overview of the Ptolemy Project.
UCB/ERL Technical Memorandum UCB/ERL
M01/11, Dept. EECS, University of California,
Berkeley, CA, March 2001.

[10] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart memories: A modular
recongurable architecture, 2000.

[11] P. K. Murthy and S. S. Bhattacharyya. Shared Buffer
Implementations of Signal Processing Systems using
Lifetime Analysis Techniques. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 20(2):177–198, February 2001.

[12] T. A. Proebsting and S. A. Watterson. Filter Fusion.
In Symposium on Principles of Programming
Languages, pages 119–130, 1996.

[13] S. Rixner, W. J. Dally, U. J. Kapani, B. Khailany,
A. Lopez-Lagunas, P. R. Mattson, and J. D. Owens. A
Bandwidth-Efficient Architecture for Media
Processing. In HPCA, Dallas, TX, November 1998.

[14] K. Sankaralingam, R. Nagarajan, S. Keckler, and
D. Burger. A Technology-Scalable Architecture for
Fast Clocks and High ILP. The University of Texas at
Austin, Department of Computer Sciences Technical
Report TR-01-02, 2001.

[15] R. Stephens. A Survey of Stream Processing. Acta
Informatica, 34(7):491–541, 1997.

[16] D. Tennenhouse and V. Bose. The SpectrumWare
Approach to Wireless Signal Processing. Wireless
Networks, 1999.

[17] B. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A Language for Streaming Applications.
MIT-LCS Technical Memo LCS-TM-620, Cambridge,
MA, 2001.

[18] A.-G. L. Vincent Gay-Para, Thomas Graf and
E. Wais. Kopi Reference manual.
http://www.dms.at/kopi/docs/kopi.html, 2001.

[19] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar,
W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua,
J. Babb, S. Amarasinghe, and A. Agarwal. Baring it
all to Software: The Raw Machine. MIT/LCS
Technical Report TR-709, Cambridge, MA, 1997.

11

