
Appears in33rd International Symposium on Microarchitecture, Monterey, CA, December 2000

Dynamic Zero Compression for Cache Energy Reduction

Luis Villa�, Michael Zhang, and Krste Asanovi´c
MIT Laboratory for Computer Science, Cambridge, MA 02139

fluisv|rzhang|krste g@lcs.mit.edu

Abstract

Dynamic Zero Compressionreduces the energy required
for cache accesses by only writing and reading a single bit
for every zero-valued byte. This energy-conscious com-
pression is invisible to software and is handled with ad-
ditional circuitry embedded inside the cache RAM arrays
and the CPU. The additional circuitry imposes a cache area
overhead of 9% and a read latency overhead of around two
FO4 gate delays. Simulation results show that we can re-
duce total data cache energy by around 26% and instruction
cache energy by around 10% for SPECint95 and Media-
Bench benchmarks. We also describe the use of an instruc-
tion recoding technique that increases instruction cache en-
ergy savings to 18%.

1 Introduction

Cache accesses consume a significant fraction (30–60%
[7, 11]) of total energy dissipation in modern processors.
A large portion of cache energy is dissipated in driving
the bitlines, which are heavily loaded with multiple storage
cells, and so most cache energy reduction techniques have
concentrated on reducing bitline energy. One approach
is to reduce the bitline capacitance switched on each ac-
cess, by using a combination of sub-banking, segmented
bitlines, and hierarchical bitlines [6]. Another complemen-
tary approach is to limit the voltage swing on the bitlines
during a read access by pulsing word line drivers [1, 5].

In this paper, we introduce a novel technique for cache
energy reduction,dynamic zero compression(DZC), which
exploits the prevalence of zero bytes stored in the cache.
DZC adds an additionalzero indicator bit(ZIB) to each
cache byte that indicates whether the byte contains all zero
bits. On a read access, we prevent bitline discharge by
disabling the local word line for each byte when the ZIB is
set. If the ZIB is clear, the eight data bits are read normally.
On a write access, only the ZIB is written if the byte is zero,
otherwise both the data bits and the ZIB are written. The

�On leave from the Centro de Innovaci´on y Desarrollo Tecnol´ogico en
Cómputo, Instituto Polit´ecnico Nacional - M´exico D.F.

ZIB is also used to disable bus drivers connecting the CPU
datapath with the cache sub-banks to further reduce cache
access energy.

Our initial simulations revealed that over 70% of the bits
that are read from or written to the data cache are zeros.
Previous work has shown how to exploit this asymmetry
in the distribution of ones and zeros to reduce energy for
storage arrays with single-ended read bitlines. A single-
ended read bitline is typically precharged high and condi-
tionally discharged based on the stored data bit. Register
files are often built with single-ended read ports to reduce
total wiring cost. The register file bit cell can be modified
so that reading a zero on any port causes no bitline dis-
charge, resulting in a savings of 27% of total register file
energy [10]. Chang et. al. [12] describe another scheme
for ROMs and small RAMs with single-ended bitlines that
conditionally inverts stored words to reduce the total num-
ber of bitline discharges, and achieves an average of 30%
energy reduction for a RAM array.

For larger SRAM array designs, differential bitlines are
preferred over single-ended bitlines because they provide
greater noise immunity and faster sensing. In a differ-
ential design, one of the two bitlines must be discharged
for each access regardless of the stored data value. The
energy penalty for reads can be reduced by employing a
pulsed-word-line technique to turn off the word lines when
a sufficient voltage differential has developed on the bit-
lines [1, 5]. Writes to an SRAM are also usually performed
differentially but typically require a full voltage swing on
the bitlines and hence consume considerably more energy
than low-voltage-swing reads.

Our DZC technique allows us to retain the benefit of dif-
ferential bitlines while taking advantage of the asymmetric
distribution of 1’s and 0’s to reduce energy dissipation. In-
stead of treating each bit independently, we group multiple
bits together and attach an extra zero indicator bit to in-
dicate when the whole bit field is zero. This scheme also
allows us to save energy on write accesses as well as reads
since we only write the ZIB rather than the whole bit field.
We similarly make use of the ZIB to reduce energy when
driving the data bus between the processor and cache.

Several other techniques have been proposed that also

Benchmark Instructions Executed Symbol Description
Name (millions)

compressftestg 28 comp An in-memory version of a common UNIX utility
liftestg 1,120 li xlisp interpreter
ijpegftestg 577 jpeg JPEG 24-bit image compression standard
goftestg 17,280 go An internationally ranked go-playing program
vortexftestg 10,058 vor An object oriented database
m88ksimftestg 519 m88k Motorola 88100 microprocessor simulator program
gccftestg 1,497 gcc Based on the GNU C compiler version 2.5.3
perlftestg 369 perl A Perl Interpreter
adpcm enc: 17 dec: 13 enc:ade dec:add A speech compression and decompression program
epic enc: 3,417 dec: 176 enc:epe dec:epd An image data compression utility in C
g721 enc: 134 dec:1,620 enc:g7e dec:g7d Adaptive differential PCM voice compression
mpeg2 enc:14,432 dec:9,724 enc:mpe dec:mpd A player for MPEG video
pegwit enc: 33 dec: 18 enc:pee dec:ped A program for public key encryption and decryption

Table 1:Benchmarks and descriptions. Each benchmark from the MediaBench Suite has two separate programs: encoding and decoding.

exploit the prevalence of zero values in data streams. Dy-
namic ALU width adjustment [3] exploits the zeros present
in the high order bits of machine words to switch off por-
tions of the ALU, and RAM compression schemes (e.g.,
[2]) exploit the large number of zero values created by the
operating system clearing memory pages prior to allocat-
ing them to a new process.

The rest of this paper is structured as follows. Sec-
tion 2 presents motivation and simulation results for the
data cache which reveal that compressing zeros at the byte
granularity gives the optimal energy reduction ratio for our
benchmark set. Section 3 presents an overview of the struc-
ture of a conventional cache array and describes the neces-
sary circuitry changes to implement the DZC technique. It
also analyzes the energy consumption in both the conven-
tional cache and the DZC cache. Section 4 presents the
resulting data cache energy reduction for our benchmarks.
Section 5 shows the energy savings from using DZC on the
instruction cache. It then describes how we can use a re-
coding scheme for MIPS RISC instructions to increase the
number of zero bytes, thus increasing the energy savings.
Section 6 concludes the paper.

2 Data Cache Accesses

In this section, we present the distribution of zero val-
ues in data cache accesses and show how to maximize
the energy savings with minimal area overhead. All our
simulation numbers are for SPECint95 [4] and the integer
programs from MediaBench [8] programs compiled with
gcc version 2.7.0 for a MIPS-II-compatible processor us-
ing optimization level-O3 and linked with a version of the

newlib standard C library. We have extended our MIPS
processor simulator to gather statistics on the presence of
zero values in cache accesses. Refer to Table 1 for our
benchmark workload.

We conducted a study to see how various granularities
of zero compression would affect the possible energy sav-
ings. Figure 1 shows the reduction in bitline swings ob-
served when we apply zero compression to various sized
bit fields for read accesses (write accesses have a similar
pattern). We show results for 32-bit, 16-bit, 8-bit, and 4-bit
groups, where the figures include the bitline swings of the
additional ZIBs in each group. We see that the 8-bit group-
ing gives the greatest savings overall. The 32-bit grouping
actually increases the total number of bitline swings for the
pee and ped benchmarks because there are insufficient
zero words to compensate for the additional ZIB accesses
required on every word. Adopting a word or half-word
granularity would be difficult for a processor that allowed
stores to individual bytes, while a 4-bit granularity would
almost double the RAM area overhead. Thus, we will only
consider the byte granularity design for the data cache.

3 Cache Circuit Design

In this section we present the circuitry we have devel-
oped for the DZC caching scheme. We first briefly discuss
the design of a conventional low-power cache and each
component of its energy dissipation. We then present the
necessary circuit changes required to implement the DZC
technique and discuss the effect of the circuit changes on
area and delay.

2

comp li ijpeg go vor m88k gcc perl ade add epe epd g7e g7d mpe mpd pee ped avg

0

5

10

15

20

25

30

35

40

45

50

55

Benchmarks

%
 R

ed
uc

tio
n

of
 D

at
a

C
ac

he
 B

itl
in

e
S

w
in

g

Word
Half−Word
Byte
Half−Byte

Figure 1:Reduction in the number of bitline swings for read ac-
cesses when applying dynamic zero compression to various sized
bit fields.

3.1 Baseline Cache Design

We have implemented a low-power 16 KB cache in a
TSMC 0.25�m CMOS process with a nominal 2.5 V sup-
ply. The cache is direct mapped and is structured as eight
sub-banks of 2 KB each. Tags for each sub-bank are kept
in a separate RAM array of 24 bits for each of the 64 cache
lines. Figure 2 shows a 2 KB sub-bank. All bitlines are
shielded between power and ground rails to minimize ca-
pacitative coupling. On any memory access, only the ap-
propriate sub-bank is enabled. Each sub-bank is organized
as 128 rows of 128 bits. Each cache line is 32 bytes long,
and is held in two consecutive rows of the sub-bank. We
reduce the number of active bitlines with local word lines
that enable only the required 32-bit segment of any row on
any CPU access; we only enable all 128 bit columns dur-
ing cache refills. In addition, a self-timed circuit is used to
limit the voltage swing of bitlines during read accesses by
pulsing the word lines [1, 5]; this reduces bitline swing to
around 15% of full rail. The CPU to cache interface is a

CENTRAL

 SENSEAMP

DUMMY ROW & COLDUMMY ROW & COL

 PRE-DECODER

& I/O DRIVERS
 SENSEAMP
& I/O DRIVERS

 SENSEAMP
& I/O DRIVERS

 SENSEAMP
& I/O DRIVERS

 PRE-DECODER

DECODER

S
ID

E
 D

E
C

O
D

E
R

S
ID

E
 D

E
C

O
D

E
R

SRAM
CELLS

SRAM
CELLS

SRAM
CELLS

SRAM
CELLS 128

32

PRE-DECODER

Figure 2:Structure of one 2 KB cache sub-bank.

Read Write
(pJ) (%) (pJ) (%)

Total 44.4 100.0 99.1 100.0

Decoder 5.5 12.4 5.5 5.5
word lines 1.1 2.5 1.1 1.1
Tag bitlines
and sense-amp 3.0 6.2 3.0 3.0
Data bitlines
and sense-amp 14.5 32.7 69.2 69.9
I/O buses 12.1 27.3 12.1 12.2
Other 8.4 18.9 8.4 8.5

Table 2: Breakdown of energy consumption for 32-bit ac-
cesses in base line cache design.

32-bit bus, while the CPU datapath contains the circuitry
to align and sign-extend appropriate bytes for a byte or
half-word load, and also the logic to align byte or halfword
store data on to the appropriate bytes within the 32-bit bus
for stores. The bus employs pulsed differential low-voltage
swing drivers to reduce data I/O energy.

Energy consumption figures for the baseline cache de-
sign were obtained from HSpice simulations of extracted
layout. Table 2 shows a breakdown of the cache energy
consumption for 32-bit reads and writes. Writes take over
twice the energy of reads primarily because of the greater
energy expended in driving the bitlines full swing. Most
energy is dissipated in the bitlines and the I/O drivers,
which are areas where we expect to obtain savings with
the DZC scheme. We next show how we can change the
cache circuitry to implement DZC.

3.2 Circuit Modifications

The primary modification to the cache circuitry is to add
the zero indicator bit for each byte in the cache as shown
in Figure 3. On a write to the cache, we need to check
whether the eight data bits are all zero, and if so, we write
only the ZIB and disable the write of the eight data bits. If
the byte is not zero, we clear the ZIB and write the eight
data bits normally. On a read, we want to disable the word
line for each byte to avoid swinging the bitlines, thus we
add local byte word line gating circuitry controlled by the
ZIB. We also add control logic into the drivers connecting
cache sub-banks to the CPU to avoid driving the I/O busses
for zero bytes. The following sections explain each circuit
modification in detail.

3.2.1 CPU Zero-Detect and Store Bus Drivers

During a cache write, the CPU detects whether each byte
is zero. If so, it disables the store data bus drivers and

3

LWL

ZIBBWL

BYTE_EN

DATA CELL

WORD-LINE
GATING CIRCUIT

SENSE
AMPLIFIER

ZIB CELL

Figure 3:Organization for one 32-bit wide segment of a cache
with DZC.

BYTE_W DATA

BYTE_EN

8

8 8
ZIB

8

8

Figure 4:CPU store data driver.

only sends a one on the ZIB bus to the cache, otherwise, it
enables the store data drivers and sends a zero for the ZIB.
The circuit change for write access is shown in Figure 4. If
the byte is not zero, it enables the tristate drivers to drive
the data onto the bus. The CPU also emits the usual byte
write (BYTE W) enables for each byte. At the cache side, the
byte write enables are combined with the ZIB bit to control
whether the eight data bits are written (BYTE EN).

3.2.2 Word Line Gating Circuitry

Extra word line gating circuitry is used to disable the byte
word line when reading or writing zero bytes. Figure 5
shows the modified byte word line gating circuitry. On a
cache write access, the cache determines whether to enable
the writing of a byte based on the byte write enable signal,
BYTE EN, and the local word line,LWL. If BYTE EN and the
local word lineLWL are both asserted, the byte level word
line BWL will be asserted.

LWL

Bit Bit

ZIBZIB

Zero Indicator Bit

LWL

BWL

BYTE_EN

BYTE_EN

Figure 5: Modified byte word line gating circuit for DZC
scheme.

Out Out

VGND

ZERO

OutOut

 SENSE

BitBit BitBit

(a) Conventional Latching Sense Amplifier (b) Modified Sense Amplifier for DZC

 SENSE

Out ZERO

Data Sense AmplifiersZIB Sense Amplifier

M1 M2

Figure 6: (a) Conventional Senseamp, only used for ZIB. (b)
Modified Senseamp for DZC Scheme, used for data bits. The
dummy inverter at nodeOut in (a) is only used for capacitance
balancing.

On a cache read access, the byte level word line will be
turned on only if the byte is not zero, which is indicated
by the ZIB storage output. The CPU keepsBYTE EN low
during a read cycle. The word line gating circuitry adds lit-
tle delay to read accesses because we have simply replaced
the usual per 32-bit word gating circuitry with per 8-bit
byte gating circuitry and resized buffers in the new fanout
tree.

3.2.3 Sense Amplifier Modification

Our baseline senseamp design is a conventional latching
sense amplifier with isolated bitlines as shown in the dot-
ted box (a) in Figure 6. While not sensing, nodesOut and
Out follow the values ofBit andBit. When theSENSE
signal is asserted, it turns off the p-type transistors con-
nectingBit to Out andBit to Out and groundsVGND. If
there is a small voltage differential between NodesOut and
Out, the inverter pair will amplify this differential to a full
rail-to-rail signal.

The word line gating circuitry disables bitline discharge
for a read of a zero byte. To avoid having the senseamp
hang and burn static current, or swing due to threshold
voltage mismatches or noise, we add two n-type transis-
tors (M1 and M2) to the senseamps of the data bits to force
them towards zero if ZIB is set. The modifications to the
senseamp are shown in the dotted box (b) in Figure 6. The
zero transistors are only used here to force a known state on
the senseamp; the resulting zero value is not driven to the
CPU and is not on any critical path. Shown in Figure 6, the
zero transistors of the data bit senseamps are driven from
the conventional senseamp used for the ZIB. The ZIB and
data bits are read at the same time, i.e., they share the same
sense signal. The data bits will not discharge the bitlines

4

Zero Indicator Bit

From Decoder

Differential Data Bits

8 8

Data to CPU

 BUS

88

88

8

8

Figure 7:Cache I/O Driver

for a zero byte. If the byte is not zero, theZERO signal from
the ZIB senseamp will stay low, and the data bit senseamps
behave exactly the same as the original one and sense the
non-zero data byte. If the byte is zero, the ZIB senseamp
will assert theZERO signal to push the data bit senseamps
into a stable zero state. TransistorM2 balances the capaci-
tances at the differential nodesOut andOut. Note that for a
non-zero byte, the sensing time will only increase slightly
due to the additional capacitative load of the drains of the
zeroing transistors.

3.2.4 Cache Read Drivers

The circuit change for read access is shown in Figure 7.
On the cache side, the ZIB controls the tristate enables for
the data bus drivers. The ZIB begins set and condition-
ally clears after sensing. If it is cleared, we enable the bus
drivers in the cache, otherwise they remain tristated. When
the data is received in the CPU datapath, a bank of NOR
gates produces a zero byte in the case of a set ZIB, or al-
lows the data byte to propagate through if the ZIB is clear.

3.3 Energy Breakdown in DZC Cache

In order to obtain energy consumption figures, we again
used HSpice simulation results from extracted DZC cache
layout. In the DZC cache the energy consumption can be
separated into two major components. First, there is a fixed
cost that all accesses must incur regardless of data patterns,
caused by the peripheral circuitry including decoders and
the self-timing circuitry. The second component, caused
by the discharging of the bitlines and I/O buses, varies ac-
cording to the data patterns. Table 3 shows the energy con-
sumption figures for the DZC cache. The energy figures are
lumped into the read or write energy for either a zero byte
or a non-zero byte. As expected, writes give much larger
savings than reads, because of the greater energy used to
swing the bitlines full rail.

Read (pJ) Write (pJ)

Zero Byte 5.0 6.7
Non-Zero Byte 11.4 26.9

Table 3:Breakdown of energy consumption for DZC cache de-
sign for zero byte or non-zero byte.

3.4 Area and Delay Overhead

Most area overhead is introduced by the ZIBs; there is
very little area overhead in the senseamps and word line
gating circuitry. The changes in the I/O bus drivers also
add insignificant area. In total for the entire cache, the extra
circuitry imposes around a 9% area overhead.

We consider read and write delay overhead separately.
For a cache write access, write data is usually held in a
pipeline buffer for a cycle while the cache tags are checked.
The zero check can occur while the write data is waiting in
the buffer and hence we expect no visible delay penalty.

For reads, the ZIB is read out in parallel with all the
data bits. On the cache side, the data bits are delayed
by the need to gate their tristate enables with the zero
bit which adds around one FO4 gate delay. On the CPU
side, a NOR gate is necessary to reconstruct zeros when
the ZIB is set. In total, we estimate that DZC will add
around two FO4 gate delays on a read access. The perfor-
mance impact of this additional read latency depends on
the degree of pipelining in the machine and on the amount
of instruction-level parallelism present in the code. As a
pessimistic example, for a classic RISC five-stage pipeline
with an aggressive 16 FO4 delay clock cycle, the two gate
delays could be spread over the two cycles of memory in-
struction execution (address calculation plus cache access)
to give an overall cycle time penalty of under 7%. In prac-
tice, the machine pipeline structure or cache size might be
modified so as not to incur as large a cycle time penalty.

4 Data Cache Results

Figure 8 presents the energy savings for the data cache
using dynamic zero compression. The energy savings vary
from around 12% forli to close to 40% form88ksim ,
with an average of 26%. The energy reduction is less than
the average bitline swing reduction of around 33% shown
in Figure 1 because of the fixed peripheral circuit costs.

5 RISC Instruction Cache Results

In this section, we first present the energy savings for
instruction caching using DZC, then we show how we

5

comp li ijpeg go vor m88k gcc perl ade add epe epd g7e g7d mpe mpd pee ped avg
0

5

10

15

20

25

30

35

40

Benchmarks

%
 T

ot
al

 E
ne

rg
y

S
av

in
gs

Figure 8: Data cache energy reduction obtained with dynamic
zero compression.

can employ an instruction recoding technique [9] to obtain
greater savings in the instruction cache.

The first two bars in each column of Figure 9 show the
bitline swing reduction for read accesses with half-word
and byte granularities. It is clear that byte granularity gives
larger savings, with an average of 15% reduction in bitline
swings.

Energy savings are directly proportional to the percent-
age of zero-valued bytes in cache accesses. To increase the
percentage of zero bits, we also experimented with an in-
struction recoding technique for the MIPS instruction set,
previously presented in [9]. This technique compresses
commonly used MIPS instructions into fewer bits. For ex-
ample, many ALU operations use the same register for one
source and the destination, and so can be compressed into a
two-address form. Another example is that many branches
compare against zero and have short offsets, and so can be
compressed from the MIPS form which includes a large
16-bit offset and allows comparisons between any two ar-
bitrary registers. The compressed form of these instruc-
tions still occupy a full 32-bit slot plus additional encoding
bits in the instruction cache, but all unused bits are packed
to the low end of the instruction word and set to zero. The
instruction recoding takes place at cache refill. The instruc-
tion fetch stage is unchanged because the instructions are
still addressed as fixed-size units, but instruction decode
must be expanded to handle the larger number of instruc-
tion types.

The results for instruction word line gating (IWLG) pre-
sented in [9] assumed that the instruction word line could
be segmented at arbitrary bit positions to disable bitline
swings from the unused zero bits. It was found that the
greatest reduction in bitline swings was achieved with the
32 instruction bits grouped into three fields of 16 bits, 7

comp li ijpeg go vor m88k gcc perl ade add epe epd g7e g7d mpe mpd pee ped avg

0

5

10

15

20

25

30

35

40

Benchmarks

%
 o

f B
it

Li
ne

 S
w

in
gs

 R
ed

uc
tio

n
in

 In
st

ru
ct

io
n

C
ac

he
 R

ea
d

Half−Word without Compression
Byte without Compression
Byte with Compression
IWLG Compression

Figure 9:Bitline swing reduction in instruction fetch.

bits, and 9 bits, used to hold three compressed instruction
sizes of 16, 23, and 32 bits. The upper 16-bit field is de-
signed to always contain the opcode and the source register
specifiers and is never gated so that there is no additional
read latency. This scheme allows full speed instruction de-
code and register access. The remaining 16 bits emerge
with some delay, but only contain immediate values or
destination register specifiers and hence are not in the de-
code stage critical path. The bitline swing reduction for the
IWLG technique averages around 26%, shown as the last
bar in each column in Figure 9.

Although the IWLG scheme gives a large bit swing re-
duction with effectively no fetch delay penalty, it requires
a custom word line gating circuit that prevents using the
same cache RAM arrays to store byte-addressed data. A
small addition to the DZC compressor circuit allows the
same cache RAM array to hold either compressed instruc-
tions or data. The modified DZC scheme adds an instruc-
tion compressor that is used on cache refills and which em-
ploys instruction sizes of 16 bits, 24 bits, and 32 bits to
match the byte granularity of word line gating. The DZC
instruction recoding scheme changes the meaning of the
ZIBs of the two lower bytes to indicate whether the byte is
used in the instruction instead of whether the byte is zero-
valued. Notice that there exist instances where the byte is
used in the instruction but is actually zero-valued, causing
bitline swings for zero bytes.

The bitline reduction for the DZC instruction compres-
sion scheme is shown as the third bar of each column
in Figure 9 and is actually slightly larger than the IWLG
scheme at 27%. The DZC achieves slightly greater savings
on average because it can compress zero bytes in the top
16 bits of each instruction while the IWLG scheme avoids
gating these bits to avoid any read delay.

We experimented with all three different designs, a DZC

6

comp li ijpeg go vor m88k gcc perl ade add epe epd g7e g7d mpe mpd pee ped avg
0

5

10

15

20

25

30

Benchmarks

%
 T

ot
al

 E
ne

rg
y

S
av

in
gs

 fo
r I

ns
tru

ct
io

n
C

ac
he

DZC without Compression
DZC with Compression
IWLG Compression

Figure 10:Energy savings in instruction fetch.

cache without instruction compression, DZC cache with
instruction compression, and the IWLG cache with cus-
tom wordline gating. The energy savings are summarized
in Figure 10. The DZC cache without compression aver-
ages 10% saving. The optimized IWLG cache achieves
energy savings of 17.8%. The DZC cache with instruction
compression achieves a slightly greater energy saving of
18.2%.

The DZC cache without compression would be suitable
for a unified primary cache system. The IWLG scheme is
appropriate for systems with a dedicated instruction cache,
as it gives large energy savings and no fetch delay. The
DZC compressed cache is suitable for systems with a sin-
gle cache system that can be variably partitioned between
primary instruction and data cache.

6 Conclusion

We proposed a dynamic zero compression technique to
reduce cache energy by taking advantage of the high oc-
currence of zero-valued bytes in the cache. This technique
uses a small amount of additional hardware embedded in
the RAM array to detect and eliminate the reading and
writing of zero bytes. Simulation results show a 26% en-
ergy reduction on data cache accesses and 10% on instruc-
tion cache accesses when applied to a low-power cache de-
sign with sub-banking and low-swing bitlines. The area
overhead is about 9% and the latency overhead is around
two gate delays. For partitionable primary caches, instruc-
tion cache savings can be improved to 18% by using an
instruction recoding scheme.

Although this paper has concentrated on the energy sav-
ings possible in the primary caches, the zero indicator bits
can be propagated throughout the lower levels of the mem-

ory hierarchy to provide additional energy savings in mem-
ory access and bus transfers.

7 Acknowledgments

Thanks to members of the MIT SCALE and RAW
groups and the anonymous reviewers for feedback and
comments on earlier drafts of this paper. This work was
partly funded by DARPA PAC/C award F30602-00-2-0562
and by a Instituto Polit´ecnico Nacional COFAA grant.

References

[1] B. Amrutur and M. Horowitz. Techniques to reduce power
in fast wide memories. InSymposium on Low Power Elec-
tronics, volume 1, pages 92–93, October 1994.

[2] C. Benveniste, P. Franaszek, and J. Robinson. Cache-
memory interfaces in compressed memory systems. InSolv-
ing the Memory Wall Problem Workshop, ISCA-27, Vancou-
ver, Canada, June 2000.

[3] D. Brooks and M. Martonosi. Dynamically exploiting nar-
row width operands to improve processor power and perfor-
mance. InHPCA-5, January 1999.

[4] Standard Performance Evaluation Corporation. Spec95,
1995.http://www.spec.org

[5] S. Santhanamet. al.A low-cost, 300-MHz, RISC CPU with
attached media processor.IEEE Journal of Solid-State Cir-
cuits, 33(11):1829–1838, November 1998.

[6] K. Ghose and M. B. Kamble. Reducing power in su-
perscalar processor caches using subbanking, multiple line
buffers and bit-line segmentation. InSymposium on Low
Power Electronics, pages 70–75, August 1999.

[7] R. Gonzalez and M. Horowitz. Energy dissipation in gen-
eral purpose microprocessors.IEEE Journal of Solid State
Circuits, 31(9):1277–1284, September 1996.

[8] C. Lee, M. Potkanjak, and W. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia
and communication systems. InMicro-30, North Carolina,
December 1997.

[9] M. Panich. Reducing instruction cache energy using gated
wordlines. Master’s thesis, Massachusetts Institute of Tech-
nology, August 1999.

[10] J. Tseng and K. Asanovi´c. Energy-efficient register access.
In Proc. XIII Symposium on Integrated Circuits and Systems
Design, Manaus, Brazil, September 2000.

[11] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim,
and W. Ye. Energy-driven integrated hardware-software
optimization using SimplePower. InISCA-27, Vancouver,
Canada, June 2000.

[12] B.-I. Park Y.-S. Chang and C.-M. Kyung. Conforming in-
verted data store for low power memory. InISLPED, pages
91–93, August 1999.

7

