ISLPED 2004 8/10/2004

Power-Optimal Pipelining in Deep Submicron Technology

Seongmoo Heo and Krste Asanović Computer Architecture Group, MIT CSAIL

Traditional Pipelining

• Goal: Maximum performance

Pipelining as a Low-Power Tool

• Goal: Low-Power, Fixed Throughput

Pipelining as a Low-Power Tool

• Goal: Low-Power, Fixed Throughput

Pipelining as a Low-Power Tool Power * Clock frequency fixed **Flip-flop** Power **Pipelining Overhead** Time slack

Contribution

- Pipelining is an old idea.
- Research focus has been on performance impact of pipelining.
- Idea of using pipelining [Chandrakasan '92] to lower power has not been fully explored in deep submicron technology.

 Analysis and circuit-level simulation of Power-Optimal Pipelining for different regimes of V_{th}, activity factor, clock gating

Bottom-to-Top Approach

- 1. Impact of pipelining on power component
- 2. Impact of pipelining on total power (with/without clock-gating)

Bottom-to-Top Approach

- 1. Impact of pipelining on power component
- 2. Impact of pipelining on total power (with/without clock-gating)

Methodology

- Target digital system: Fixed throughput, Highly parallel computation, Logic-dominant
- Test bench
 - BPTM (Berkeley Predictive Technology Model) 70nm process:
 - LVT(0.17/-0.2), MVT(0.19/-0.22), HVT(0.21/-0.24)
 - Hspice simulation at 100°C, Clock = 2 GHz

Pipelining and Switching Power: Analytical Trend

Number of FO4 per stage, N

Pipelining and Leakage Power: Analytical Trend

Number of FO4 per stage, N

Pipelining and Idle Power: Analytical Trend

- Clock-gating is not always possible
 - Increased control complexity
 - insufficient setup time of clock enable signal
- Leakage Power + Flip-flop Switching Power
 - Between leakage power scaling and flip-flop switching power scaling depending on leakage level

Pipelining and Idle Power: Analytical Trend

Simulation Results: Power Components

Fixed Throughput @ 2 GHz

Power	Switching	Leakage	Idle
Components	Power	Power	Power
Right hand side curve	O(N ²)	Ο(Ν ^α) (1<α< 2)	O(N) or O(N ^α) (1<α< 2)
Saving*	79(HVT)~	70(LVT)~	55(HVT)~
	82(LVT)%	75(HVT)%	70(LVT)%
N*	6	6	8

N = Number ofN* = Optimal NFO4 invertersper stage(Not including flip-flop delay)

Saving* = Optimal power saving by pipelining

Optimal Power Saving

Optimal Power Saving

Optimal Power Saving

Discussion

- LVT can be fast and power-efficient
 - enables lower V_{dd}
- Flip-flop delay more important than flip-flop power for power-optimal pipelining

Limitation of This Work

	Effect on optimal logic depth	Effect on optimal power saving
Super-linear growth of flip-flops	\uparrow	\downarrow
Additional memory	\uparrow	\downarrow
Reduced glitches	\downarrow	\uparrow
Parasitic wire capacitance	\uparrow	\downarrow

Conclusion

- Pipelining is an effective low-power tool when used to support voltage scaling in digital system implementing highly parallel computation.
- Optimal Logic Depth: 6-8 FO4
 - ~ 8-10 FO4 including flip-flop delay
- Optimal Power Saving: 55 80%
 - It depends on V_{th}, AF, Clock-Gating
- Insights:
 - Pipelining is more effective with High AF
 - Pipelining is most effective at saving switching power
 - Pipelining is more effective with lower V_{th}
 - Except for when leakage power is dominant.
 - Pipelining is more effective with clock-gating
 - reduced flip-flop overhead.

Acknowledgments

- Thanks to SCALE group members and anonymous reviewers
- Funded by NSF CAREER award CCR-0093354, NSF ITR award CCR-0219545, and a donation from Intel Corporation.

BACKUP SLIDES