Mondrian Memory Protection

Emmett Witchel
Josh Cates

Krste Asanovic

MIT Lab for Computer
Science

Software Has Needs

. Single Address Space
* Plug-ins have won as [

the extensible
system model.

o Fast & data sharing is
convenient.

- Software is written
for a model not

directly supported I Ry
by current hardware RO
and OSes. ; EX

NO

o No protection. Kernel vfato

Currently, Protection Is Not Provided

Plug—ins need access Single Address Space

to different, small i

data structures.

o Word level protection
at word boundaries. —
* Placing every possibly
shared data on its T
own page 1S very H e
difficult. [Jro
o Some data structures C ;Eé

imposed by hardware. ool viaro

Mondrian Memory Protection

. Single address space Single Address Space

split into multiple i

protection domains.

- A domain owns a —
region of the
address space and
can export privileges -
to another domain M. Rw
e RO
o Similar fo npr ot ect . B X
C
CNo

Kernel (PD-ID=0) vfat.o (PD-ID=1)

Word Level Protection Is Not New

+ Segmentation is a traditional solution.
o + Provides word-level protection.

o - Explicit segment registers [B5000,x86]
o - Non-linear addressing

» Capability based machines.
o + Fine-grained sharing.

o - Revocation difficult [System/38, M-
machine].

o - Different protection for different
domains via shared capability is hard.

MMP is a New Solution

- Segmentation semantics without the
problems.

o MMP provides fine-grained protection
and data sharing.

o MMP uses linear addressing.

o MMP is compatible with existing ISAs
o MMP has no segment registers.

o MMP has easy perm. revocation.

o MMP does not have tagged pointers.

* MMP is all the fun of segmentation
without the headaches.

There's No Free Lunch

* MMP requires extra memory to store
permissions tables.

o Good engineering keeps tables small.

* MMP requires CPU & memory system
resources to access tables.
o Good engineering provides an effective

cache for permissions information so
table access is infrequent.

Segmentation Timeline

Regs

Linear
Addr.

PA

Protection
Fault

*+ VA - constructed by processor.

* LA - post segmentation.
* PA - post TLB translation.

MMP Timeline

VA » Linear TLB PA
Protection
Fault

- MMP checks virtual addresses.

o Protection check only needs to happen
before instruction graduation (nhot in
critical path).

MMP Implementation —Tables

CPU

Protection
Lookaside
Perm. Table Base | | Buffer

Domain ID (pD-ID)

- Lets look
at the Permissions

table in Table
memory.

Refill

Permission Table Requirements

* Entries should be compact.

o 2 bits of permissions data per word (none,
read-only, read-write, execute-read).

» Should represent different sized
regions efficiently.
o Any number of words at a word boundary.

* Organized like a hierarchical page
table (trie).

Representing Large Regions Efficiently

» Upper level entries are typed, enabling
large entries. 31 level — 4B sub-blk

2nd level
1st level 256B sub-blocks

256KB sub-blocks

Ol [90|T|0

2 bits per sub-block

Representing Large Regions Efficiently

» Upper level entries are typed, enabling
large entries. 31 level — 4B sub-blk

2nd level
1st level 256B sub-blocks

256KB sub-blocks

Ol|0|0| T

Ol [90|T|0

JEL

Iolololo

2 bits per sub-block

O

Representing Large Regions Efficiently

» Upper level entries are typed, enabling
large entries. 31 level — 4B sub-blk

2nd level
1st level 256B sub-blocks
256KB sub-blocks | [5
B__X/‘ :
0/ _
- -—.\—'-'-'-'-'-'-'-'-

0-256KB no perm.

2 bits per sub-block |5

Compressing The Entry Format

* Most words have Naive Memory Compressed

same perm. as Entries ~ Words Entries
neighbor.

o Compressed
entries
represent longer,
overlapping
regions.

o Compressed
entries are the
same size, but
represent more
information.

MMP Implementation — PLB

CPU

Protection

L ookaside
Perm. Table Base | | Buffer

Domain ID (pD-ID)

+ Lets look |
at the PLB. Permissions Reil
Table

PLB Requirements

* The PLB caches protection table entries
tagged by Domain-ID.

o Like a TLB but without translation.

o Like a TLB but variable ranges, not just
page sizes.

PLB Permissions Check Flow

Instructi

on

OP

RS

IMM

Addr
Reaqs

A

PLB

Tag | Perm Tab. Ent.| PD-ID

AcCcCess
Perm.
Table In

Read/Write

Memory

« PC checked for execute
permissions.

PLB Requirements

» PLB task—index permissions data from
different sized memory chunks.

o Loads from different addresses can get

permissions information from different
levels in the table.

5 I Vs D N

1st level or 2" |evel

Protection Look aside Buffer (PLB)

* PLB index implemented by ternary CAM.

o Like superpages in a TLB, but protection
superpages are easy for OS—they don't
require lots of contiguous physical memory.

o PLB index limited to power-of-two size.
PLB (Xs are don't-care hits)

Tag (26 bits) | Perm. Table Ent.| PD-ID

1stlevel ent. |0x07 XX XX|

ond leyel| ent. |Ox09 87 XX| D [TT N

oO|Oo0|0O

3d level ent. [0X09 20 53 (NN NN

o The compressed format has infermediate
number of don't-care bits, and non power-
of-two sized regions.

MMP Implementation — Sidecars

CPU refill<| Sidecars

Protection

Lookaside
Perm. Table Base | | Buffer

Domain ID (pp-1D) [

- Lets look
at the the Permissions
sidecars. Table

Refill

Register Sidecars

- Sidecars allow permissions checks
without accessing the PLB (register
level cache).

o Base, bounds and permissions information
in sidecar.

o Lower access energy for sidecar than PLB.

* Increased hit rate with compressed
entry format because non power-of-
two sized regions are not fully indexed
by PLB.

o Fewer table accesses than PLB alone.

Sidecar Permissions Check Flow

Instruction PC h
OP RS | IMM _ . as
Sidecar Regs ITS owh

Adﬂf-ReqS — Base|Bound|Perm sidecar.
® g
~J ; v v
(Base > Addr. > Bound)
\ﬁesv - NO— — Access
Read/Write PLB

Coarse-Grained Evaluation

» Coarse-grained protection equivalent
to current UNIX semantics (text, ro-
data, data, bss, stack).

o One protection domain.

» Application mix from SPEC2000,
SPEC95, Java, Media bench, and Olden.
o Compiled with gcc —O3 (egcs-1. 0. 3)
o Address traces fed to MMP simulator.

Coarse-Grained Protection Results

60 Entry PLB

60 Entry TLB

Ref. to MMP tables
Application refs

0. 00- 0. 56%

0. 00- 2. 59%

Table size / App. data

0. 04-0. 62%

0. 02-0. 22%

Sidecar miss rate

1- 40% 12%

» Comparison with TLB is just for scale,
a TLB is still useful with MMP.

o MMP is 2 bits of protection, not 4
bytes of translation + protection.

Fine-Grained Evaluation

* Fine-grained protection: Every malloc-
ed region goes in its own protection
region with inaccessible header words

between regions.
o malloc library is protected m
subsystem.

* Very demanding evaluation, almost

worst case.

o Protected subsystems will likely not have
to export every region malloc-ed.

o Functionality similar to purify.

Fine-Grained Protection Results

60 Entry PLB

Ref. to MMP tables
Application refs

0.0- 7.5% (0. 1-19%

Table size / App. data |0. 4- 8. 3%

Tgbl_e referencgs 0 6-11. 0%
eliminated by sidecars

» Time and space overheads very small.
o Results include table updates.
o Minimal cache disturbance (study in paper).
o Sidecar helps eliminate table references.
o Paper compares different entry formats.

MMP Timeline With Translation

VA Linear TLB PA

Addr. (opt.)
Protection
g Fault

* MMP can add an offset to the VA,
providing translation.

o Protection check happens on pre-
translated address.

o Address generation is 3-to-1 add on
critical path.

- Translation lets

Why Translation?

Single Address Space

* Implement zero-
copy networking.

memory
discontiguous in one
domain appear
contiguous in
another.

* No cache aliasing

problem, translation
before cache access.

Head O

Kernel a user

Implementing Translation

* MMP entry format is flexible, allowing
additional pointer types.

o Pointer to permissions and byte-level

translation offset.
3rd |evel table Variable sized
pool of translation
records

+0x9583F

- Translation information held in sidecar.

New ptr. type

MMP Networking Results

+ Simulated a zero-copy networking
implementation that uses unmodified
r ead system call.

o Web client receiving 500KB.

+ Eliminates 527% of memory references
relative to a copying implementation.

o Win includes references to update and
read the permissions tables.

o 46% of reference time saved.

Related Work

» Capabilities [Dennis65, IBM AS400].

» Domain Pages [Koldinger ASPLOS92].
* Guarded pointers [Carter ASPLOS94].
* Guarded page tables [Liedke 94].

» IP longest prefix match [Waldvogel
TOCS 01].

Possible Applications

- Safe kernel modules.

o Safe plug-ins for apache and web browsers.

+ Eliminate memory copying from kernel calls.
o Provide specialized kernel entry points.

» Support millions of threads, each with a tiny
stack.

* Implement C++ const.

- Use meta-data for cache coherence.

* Make each function its own protection domain.
o Buffer overrun much more difficult.

q q

1T Conclusion il
nE_p O T

* Fine-grained protection is the solution
for safe, extensible systems.

* Fine-grained protection can be provided
efficiently.

* Mondrian Memory Protection will enable
more robust software.

o It matches the way we think about code.

o It can be adopted incrementally (e.g., 15t
just change malloc library).

