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Flip-Flop and Latch
(collectively timing elements)

• Critical Timing Elements (TEs) in modern synchronous VLSI 
systems

áSignificant impact on cycle time

áBig portion of energy consumption
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Motivation

• Previous work tried to find the most energy-efficient and fastest TEs 

áassuming a single TE design used uniformly throughout a circuit.
áusing a very limited set of data patterns and un-gated clock signal.

• Two important observations

áThere is a wide variation in clock and data activity across different TEs.
áMany TEs are not in the critical path, and thus have ample time slack.



Basic Idea

• Selection from a heterogeneous library of designs, each tuned to 
different operating regimes

• Operating regimes :

o Different input and clock signal activities
o Different speed requirements



Related Work

• The use of timing slack for reduced energy 

o Examples : 
- Traditional transistor sizing 
- Cluster voltage scaling  [Usami and Horowitz ’95]
- Multiple threshold voltage or series transistor 
for reducing leakage current  [McPherson et al. ’00,   

Yamashita et al. ’00, Johnsonet al. ’99]



Our Contribution

• Detailed energy characterization of wide range of TEs as a 
function of signal activities.

• Detailed measurement of TE signal activities for a micro-
processor running complete programs

• Exploit signal activity to reduce TE energy by using different TE 
structures.



Overview 

• Flip-Flop and Latch Designs

• Test Bench and Simulation Setup

• Delay and Energy Characterization

• Energy Analysis with Test Waveforms

• Evaluation with Processor

• Conclusion



Latch Designs

Transistor sizes optimized 
for two extremes:
Highest speed vs. Lowest power



Flip-Flop Designs

Transistor sizes optimized 
for two extremes:
Highest speed vs. Lowest power



Test Bench

• Used fixed, realistic input driver

• Determined appropriate output load 
o As large as 200fF output load was used by previous work.
o We used 7.2fF (4 min-inv cap) because 60% of output loads in 

the VP microprocessor datapath are smaller than 14.4fF.
o Further work on load-sensitive analysis at upcoming WVLSI

• Sized clock buffer to give equal rise/fall time

7.2fF



Simulation Setup

• Custom layout in 0.25m TSMC CMOS process with Magic 
layout program

• Layout extraction with SPACE 2D extractor

• Circuit simulation with Hspice under nominal condition of 
Vdd=2.5V and T=25°C

o Hspice .Measure command to measure delay and energy
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Delay Characterization

• Flip-flop : Minimum D-Q delay [Stojanovic et al. ’99]

• Latch      : D-Q delay

(b) Latches(a) Flip-flops



Energy Characterization

• Total energy = input energy + internal energy 
+ clock energy – output energy

• Accurate energy characterization

o State-transition technique based on [Zyuban and Kogge ’99]
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Energy Tables

(a) Flip-flops

(b) Latches



Energy Tables

(a) Flip-flops
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Test Waveforms

• Test 1 and 2 : high clock activity, no data and output activity

• Test 3 and 4 : high data activity, no clock and output activity

• Test 5, 6, and 7 : high clock, data, and output activity(Traditional)

• Test 8 : high clock and data activity, no output activity



Energy Analysis
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Processor Design and Simulation

• Evaluation on a microprocessor datapath 

• Vanilla Pekoe Processor
o A classic 32-bit MIPS RISC 5 stage pipeline with caches and system 

coprocessor registers (R3000-compatible)
o Aggressive clock gating to save energy
o 22 multi-bit flip-flops and latches, totaling 675 individual bits

• Simulation with 5 programs of SPECint95 benchmarks
o A fast cycle-accurate simulator [Krashinsky, Heo, Zhang, and Asanovic 

’00] with the ability of counting TE state transitions
o 1.71 billion instructions and 2.69 billion cycles

• Some constraints
o Cannot track the exact timing of signals
o Cannot model glitches



Flip-Flops and Latches in Processor



Flip-Flops and Latches in Processor



Flip-Flops and Latches in Processor



Energy Breakdown
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• 32-bit MIPS 5 stage pipeline datapath
• SPECint95 benchmarks: perl(test, primes),

ijpeg(test), m88ksim(test), 
go(20,9), and lzw(medtest)



Processor Energy Results - Flip-Flop
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•Ref : Total datapath energy – Total TE energy = around 0.21J
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(A single design used uniformly 
throughout a circuit)



Processor Energy Results - Flip-Flop
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Processor Energy Results - Flip-Flop
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•52% energy saving over just transistor sizing 
with the best performance (HLFF-hs) 

HSLE: Activity-Sensitive selection
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Processor Energy Results - Latch
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•6.1% energy saving over just transistor sizing (1)
•8.3% energy saving compared to homogeneous design with PPCLA-hs (2)
•PPCLA is the fastest and also very energy-efficient.
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Summary of Energy Results

• 63% TE energy savingcompared to a homogeneous design with 
HLFF-hs and PPCLA-hs

• 46% TE energy savingcompared to a design with conventional 
transistor sizing while keeping the best performance



Conclusion

áWe showed that activation patterns for various TEs in a circuit 
differ considerably.

áWe found that there is wide variation in the optimal TE designs 
for different regimes. 

áWe provided complete energy and delay characterization.

áWe applied our technique to a real processor which we simulated 
2.7 billion cycles of programs and showed over 63% TE energy 
reduction without losing any performance.

Difficulty of using a heterogeneous mix of TEs?

- Already designers have been doing verification for each local 
clock and added complexity is minimal.

- Timing verification for non-critical TEs is simple. 


