Activity-Sensitive Flip-Flop and Latch Selection for Reduced Energy

Seongmoo Heo, Ronny Krashinsky, Krste Asanović
MIT - Laboratory for Computer Science
http://www.cag.lcs.mit.edu/scale

ARVLSI
March 15, 2001

Flip-Flop and Latch
 (collectively timing elements)

- Critical Timing Elements (TEs) in modern synchronous VLSI systems
\checkmark Significant impact on cycle time
\checkmark Big portion of energy consumption

Energy breakdown of a MIPS 5 stage pipeline datapath for SPECint 95 programs

\square EqualCheck
\square Buffer
\square Shifter
\square Adder
\square ALU
\square RegFile
\square Mux
\square Latch
\square Flipflop

[Heo, MS Thesis, '00]

Motivation

- Previous work tried to find the most energy-efficient and fastest TEs
\checkmark assuming a single TE design used uniformly throughout a circuit. \checkmark using a very limited set of data patterns and un-gated clock signal.
- Two important observations
\checkmark There is a wide variation in clock and data activity across different TEs.
\checkmark Many TEs are not in the critical path, and thus have ample time slack.

Basic Idea

- Selection from a heterogeneous library of designs, each tuned to different operating regimes
- Operating regimes :
- Different input and clock signal activities
- Different speed requirements

Related Work

- The use of timing slack for reduced energy
- Examples :
- Traditional transistor sizing
- Cluster voltage scaling [Usami and Horowitz '95]
- Multiple threshold voltage or series transistor for reducing leakage current [McPherson et al. '00, Yamashita et al. '00, Johnson et al. '99]

Our Contribution

- Detailed energy characterization of wide range of TEs as a function of signal activities.
- Detailed measurement of TE signal activities for a microprocessor running complete programs
- Exploit signal activity to reduce TE energy by using different TE structures.

Overview

- Flip-Flop and Latch Designs
- Test Bench and Simulation Setup
- Delay and Energy Characterization
- Energy Analysis with Test Waveforms
- Evaluation with Processor
- Conclusion

Latch Designs

(a) PPCLA

(b) PTLA

(c) SSALA

(d) SSA2LA

(e) CPNLA

Transistor sizes optimized for two extremes:
Highest speed vs. Lowest power

Flip-Flop Designs

Test Bench

- Used fixed, realistic input driver
- Determined appropriate output load
- As large as 200fF output load was used by previous work.
- We used 7.2 fF (4 min -inv cap) because 60% of output loads in the VP microprocessor datapath are smaller than 14.4 fF .
- Further work on load-sensitive analysis at upcoming WVLSI
- Sized clock buffer to give equal rise/fall time

Simulation Setup

- Custom layout in $0.25 \mu \mathrm{~m}$ TSMC CMOS process with Magic layout program
- Layout extraction with SPACE 2D extractor
- Circuit simulation with Hspice under nominal condition of $\mathrm{Vdd}=2.5 \mathrm{~V}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$
- Hspice .Measure command to measure delay and energy

Delay Characterization

- Flip-flop : Minimum D-Q delay [Stojanovic et al. '99]
- Latch : D-Q delay

Energy Characterization

- Total energy = input energy + internal energy + clock energy - output energy
- Accurate energy characterization

- State-transition technique based on [Zyuban and Kogge '99]

(a) Flip-flop

(b) Latch

Q

Energy Tables

(a) Flip-flops
(b) Latches

	$\begin{gathered} 000 \\ \downarrow \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 001 \\ \downarrow \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 010 \\ \downarrow \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} 011 \\ \downarrow \\ 111 \end{gathered}$	$\begin{gathered} 100 \\ \downarrow \\ 000 \end{gathered}$	$\begin{gathered} 110 \\ \downarrow \\ 010 \end{gathered}$	$\begin{gathered} 101 \\ \downarrow \\ 001 \end{gathered}$	$\begin{gathered} 111 \\ \downarrow \\ 011 \\ \hline \end{gathered}$	$\begin{gathered} 000 \\ \downarrow \\ 010 \\ \hline \end{gathered}$	$\begin{gathered} \hline 100 \\ \downarrow \\ 110 \\ \hline \end{gathered}$	$\begin{gathered} \hline 101 \\ \downarrow \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} 001 \\ \downarrow \\ \downarrow 1 \end{gathered}$	$\begin{gathered} 010 \\ \downarrow \\ 000 \\ \hline \end{gathered}$	$\begin{gathered} 110 \\ \downarrow \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 111 \\ \downarrow \\ 101 \\ \hline \end{gathered}$	$\begin{gathered} 011 \\ \downarrow \\ 001 \\ \hline \end{gathered}$
Low-Power Flip-Fiop																
PPCFF	48.4	95.5 95.4	89.2 89.0	47.6	$\begin{aligned} & 46.3 \\ & 46.0 \end{aligned}$	100.9	91.5	$\begin{aligned} & 49.1 \\ & 46.8 \end{aligned}$	68.1	$\begin{aligned} & 19.4 \\ & 19.2 \end{aligned}$	19.4	$\begin{aligned} & \hline 68.1 \\ & 68.0 \end{aligned}$	$\begin{aligned} & 49.7 \\ & 49.7 \end{aligned}$	6.9	$\begin{aligned} & \hline 6.9 \\ & 6.9 \end{aligned}$	51.2
SSAFF	21.1	92.2	10.38	21.2	21.9	101.8	101.0	21.9	115.9	56.1	43.2	114.2	103.1	33.4	37.4	103.7
SAFF	65.8	112.9	118.0	68.1	53.9	54.2	59.8	61.9	26.4	28.3	28.2	26.5	15.6	17.0	17.8	15.6
MSAFF	96.2	156.2	149.8	98.7	$\begin{aligned} & 93.0 \\ & 95.7 \end{aligned}$	$\begin{aligned} & 98.5 \\ & 91.7 \end{aligned}$	$\begin{aligned} & 87.3 \\ & 90.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 94.0 \\ & 88.3 \\ & \hline \end{aligned}$	26.5	$\begin{aligned} & 28.3 \\ & 28.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.2 \\ & 28.2 \end{aligned}$	26.6	15.9	$\begin{aligned} & 16.9 \\ & 17.0 \end{aligned}$	17.8 16.9	15.7
HLFF	$\begin{aligned} & 106.4 \\ & 129.3 \end{aligned}$	$\begin{aligned} & 188.8 \\ & 183.3 \end{aligned}$	330.3	237.2	$\begin{aligned} & 91.4 \\ & 92.4 \end{aligned}$	10.2 .3	113.1	1235	$\begin{aligned} & 24.5 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 15.4 \end{aligned}$	15.6	$\begin{aligned} & 24.7 \\ & 22.6 \end{aligned}$	6.0	10.2	10.5	6.0
HLSFF	$\begin{aligned} & 49.7 \\ & 71.8 \end{aligned}$	$\begin{array}{r} 138.6 \\ 132.3 \\ \hline \end{array}$	273.6	207.1	$\begin{aligned} & 66.1 \\ & 66.0 \end{aligned}$	76.5	84.7	95.5	$\begin{aligned} & 27.9 \\ & 35.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.1 \\ & 16.1 \end{aligned}$	16.5	$\begin{array}{r} 27.6 \\ 23.4 \\ \hline \end{array}$	9.3	10.1	10.3	9.3
SSAPL	98.4	187.2	181.9	99.3	64.8	74.6	72.9	65.8	72.7	82.2	70.1	53.1	39.7	53.6	52.0	47.6
SSASPL	68.8	140.7	151.9	68.8	195	19.5	195	19.5	49.8	49.8	37.0	37.0	27.4	27.4	30.3	30.3
CCPPCFF	21.4	$\begin{aligned} & 416.9 \\ & 416.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 366.9 \\ & 366.8 \end{aligned}$	21.5	$\begin{aligned} & 27.6 \\ & 43.6 \end{aligned}$	268.4	276.8	$\begin{aligned} & 43.4 \\ & 27.5 \end{aligned}$	278.4	$\begin{aligned} & 71.3 \\ & 84.9 \end{aligned}$	61.6	$\begin{aligned} & 138.3 \\ & 149.0 \end{aligned}$	$\begin{array}{r} 96.8 \\ 102.6 \end{array}$	39.8	$\begin{aligned} & 63.7 \\ & 54.3 \\ & \hline \end{aligned}$	248.6
High-Speed Flip-Flop																
PPCFF	57.9	$\begin{aligned} & 115.3 \\ & 115.1 \end{aligned}$	$\begin{aligned} & 97.8 \\ & 98.0 \end{aligned}$	49.3	$\begin{aligned} & 47.1 \\ & 47.0 \end{aligned}$	119.5	106.6	$\begin{aligned} & \hline 57.7 \\ & 54.9 \\ & \hline \end{aligned}$	87.7	$\begin{aligned} & 19.6 \\ & 195 \end{aligned}$	19.9	$\begin{aligned} & \hline 88.4 \\ & 88.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 61.5 \\ & 61.9 \\ & \hline \end{aligned}$	9.3	$\begin{aligned} & 9.2 \\ & 9.1 \end{aligned}$	62.1
SSAFF	66.5	273.8	185.4	66.9	41.4	199.8	196.2	41.0	216.5	92.5	71.5	205.9	180.1	55.4	60.3	191.5
SAFF	164.8	246.9	257.2	164.7	105.1	97.7	110.4	125.4	39.8	48.6	48.6	41.9	29.6	35.6	36.2	26.9
MSAFF	211.4	288.5	26.3 .8	172.9	$\begin{aligned} & 169.1 \\ & 173.0 \end{aligned}$	$\begin{aligned} & 172.8 \\ & 168.1 \end{aligned}$	$\begin{aligned} & 125.7 \\ & 129.5 \end{aligned}$	$\begin{aligned} & 134.5 \\ & 130.4 \end{aligned}$	35.6	$\begin{aligned} & 43.2 \\ & 43.1 \end{aligned}$	$\begin{aligned} & 42.5 \\ & 42.5 \end{aligned}$	36.4	26.8	$\begin{aligned} & 28.1 \\ & 28.2 \end{aligned}$	$\begin{aligned} & \hline 29.1 \\ & 28.9 \end{aligned}$	24.0
HLFF	$\begin{aligned} & 174.7 \\ & 209.3 \end{aligned}$	$\begin{aligned} & 272.3 \\ & 260.3 \\ & \hline \end{aligned}$	443.6	382.4	$\begin{aligned} & 175.5 \\ & 1798 \end{aligned}$	212.7	2178	251.9	51.5 51.2	$\begin{aligned} & 29.7 \\ & 24.3 \end{aligned}$	24.7	$\begin{aligned} & 50.8 \\ & 45.9 \end{aligned}$	5.6	16.0	15.1	5.5
HLSFF	$\begin{array}{r} 89.3 \\ 125.9 \end{array}$	$\begin{aligned} & 210.4 \\ & 196.3 \end{aligned}$	397.6	325.6	$\begin{aligned} & 167.0 \\ & 166.2 \end{aligned}$	194.0	206.4	233.2	$\begin{aligned} & 51.8 \\ & \$ 9.2 \end{aligned}$	$\begin{aligned} & 29.3 \\ & 27.2 \end{aligned}$	26.8	$\begin{aligned} & 51.7 \\ & 46.1 \end{aligned}$	5.8	16.8	155	5.8
SSAPL	135.3	254.9	223.6	136.1	94.3	110.8	1105	96.8	100.7	130.8	108.9	80.4	43.4	73.1	77.1	65.7
SSASPL	108.6	234.7	209.4	108.5	19.5	19.5	19.5	19.5	101.2	101.2	68.7	68.7	39.7	39.7	60.3	60.3
CCPPCFF	44.7	$\begin{aligned} & 414.1 \\ & 414.1 \end{aligned}$	$\begin{aligned} & 383.6 \\ & 383.1 \end{aligned}$	45.4	$\begin{aligned} & 36.9 \\ & 59.0 \end{aligned}$	342.3	335.1	$\begin{aligned} & 59.2 \\ & 36.6 \end{aligned}$	3×0.0	$\begin{aligned} & 64.9 \\ & 97.5 \end{aligned}$	68.5	$\begin{array}{r} 170.1 \\ 173.6 \\ \hline \end{array}$	$\begin{aligned} & 116.3 \\ & 121.6 \end{aligned}$	48.1	$\begin{aligned} & 77.4 \\ & 44.9 \end{aligned}$	296.7

	$\begin{gathered} 000 \\ \downarrow \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 001 \\ \downarrow \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 010 \\ \downarrow \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} 011 \\ \downarrow \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ \downarrow \\ 000 \\ \hline \end{gathered}$	$\begin{gathered} 111 \\ \downarrow \\ 011 \\ \hline \end{gathered}$	$\begin{gathered} \hline 000 \\ \downarrow \\ 010 \\ \hline \end{gathered}$	$\begin{gathered} 001 \\ \downarrow \\ 011 \\ \hline \end{gathered}$	$\begin{gathered} 010 \\ \downarrow \\ 000 \\ \hline \end{gathered}$	$\begin{gathered} 011 \\ \downarrow \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ \downarrow \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} 111 \\ \downarrow \\ 100 \\ \hline \end{gathered}$
Low-Power Latch												
PPCLA	22.8	56.5	79.8	21.2	$\begin{aligned} & 23.4 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 24.9 \\ & 24.7 \end{aligned}$	19.2	18.0	6.1	6.8	$\begin{aligned} & 77.1 \\ & 73.5 \end{aligned}$	$\begin{aligned} & 48.2 \\ & 47.0 \end{aligned}$
PTLA	18.3	226.5	95.0	29.3	0	,	32.3	32.4	32.0	30.1	90.8	266.8
SSALA	21.9	93.8	105.0	21.9	0	0	49.8	37.0	27.4	30.3	110.4	91.2
SSA2LA	$\begin{aligned} & 23.9 \\ & 27.0 \end{aligned}$	98.9	107.3	$\begin{aligned} & 26.1 \\ & 23.9 \end{aligned}$	0	0	$\begin{aligned} & 33.5 \\ & 32.9 \end{aligned}$	32.9	23.7	$\begin{aligned} & 24.4 \\ & 23.7 \end{aligned}$	119.2	99.7
CPNLA	45.0	74.4	1051.8	897.9	$\begin{aligned} & 45.2 \\ & 46.7 \end{aligned}$	$\begin{aligned} & 71.1 \\ & 71.1 \end{aligned}$	16.9	16.9	15	1.6	$\begin{aligned} & 1100.5 \\ & 1047.6 \end{aligned}$	$\begin{aligned} & 128.4 \\ & 128.3 \end{aligned}$
High-Speed Latch												
PPCLA	22.7	54.5	71.8	24.6	$\begin{aligned} & 25.9 \\ & 27.1 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 24.6 \end{aligned}$	19.7	18.0	8.2	9.1	$\begin{aligned} & 68.0 \\ & 68.4 \end{aligned}$	45.1 44.8
PTLA	24.7	152.4	141.7	54.4	0	0	54.4	55.3	67.1	59.9	156.8	188.1
SSALA	47.4	173.5	148.2	47.3	0	0	101.2	68.7	39.7	60.3	135.8	145.8
SSA2LA	$\begin{aligned} & 3000 \\ & 35.8 \end{aligned}$	188.1	120.8	$\begin{aligned} & 47.3 \\ & 42.1 \end{aligned}$	0	0	$\begin{aligned} & 55.4 \\ & 51.6 \end{aligned}$	51.8	27.3	$\begin{aligned} & 30.4 \\ & 28.4 \end{aligned}$	153.1	171.0
CPNLA	78.2	115.2	1873.9	16200	$\begin{aligned} & 65.0 \\ & 66.6 \end{aligned}$	$\begin{aligned} & 114.0 \\ & 113.9 \end{aligned}$	34.9	34.9	0	0	$\begin{aligned} & 1965.5 \\ & 1868.1 \end{aligned}$	$\begin{aligned} & 219.6 \\ & 222.0 \end{aligned}$

Energy Tables

Test Waveforms

(5)

(3)

(7)

(4)

(8)

- Test 1 and 2 : high clock activity, no data and output activity
- Test 3 and 4 : high data activity, no clock and output activity
- Test 5, 6, and 7 : high clock, data, and output activity (Traditional)
- Test 8 : high clock and data activity, no output activity

Energy Analysis

Processor Design and Simulation

- Evaluation on a microprocessor datapath
- Vanilla Pekoe Processor
o A classic 32-bit MIPS RISC 5 stage pipeline with caches and system coprocessor registers (R3000-compatible)
o Aggressive clock gating to save energy
- 22 multi-bit flip-flops and latches, totaling 675 individual bits
- Simulation with 5 programs of SPECint95 benchmarks
o A fast cycle-accurate simulator [Krashinsky, Heo, Zhang, and Asanovic '00] with the ability of counting TE state transitions
o 1.71 billion instructions and 2.69 billion cycles
- Some constraints
- Cannot track the exact timing of signals
o Cannot model glitches

Flip-Flops and Latches in Processor

Flip-Flops and Latches in Processor

Flip-Flops and Latches in Processor

Energy Breakdown

Flip-flops			
	HLFF-hs	Lowest-Energy	
f_recovpc	25.1	SSAFF-Ip	3.57
d_inst	31.2	SSAFF-Ip	6.52
d_epc	20.5	SSAFF-Ip	2.74
x_epc	20.3	SSAFF-Ip	2.62
m_epc	20.2	SSAFF-Ip	2.55
x_sd	2.6	SAFF-Ip	1.06
x_addr	8.0	SAFF-Ip	2.57
m_exe	24.6	SSAFF-Ip	4.76
cp0_count	42.6	SSAFF-Ip	4.80
cp0_comp	0.1	HLFF-Ip	0.03
cp0_baddr	0.3	HLFF-Ip	0.18
cp0_epc	0.1	HLFF-Ip	0.05

Latches			
	PPCLA-hs	Lowest-Energy	
p_pc	$\mathbf{3 . 2 2}$	SSALA-lp	2.25
f_pc	2.95	SSALA-lp	$\mathbf{1 . 7 2}$
d_rsalu	$\mathbf{3 . 2 7}$	SSALA-lp	3.16
d_rtalu	$\mathbf{2 . 8 1}$	SSALA-lp	2.28
d_rsshmd	0.75	PPCLA-lp	$\mathbf{0 . 7 0}$
d_rtshmd	0.65	PPCLA-lp	$\mathbf{0 . 6 3}$
d_aluctrl	1.26	SSALA-lp	$\mathbf{0 . 9 7}$
m_exe	3.88	SSALA-lp	$\mathbf{3 . 6 5}$
x_sdalign	$\mathbf{0 . 3 0}$	SSA2LA-lp	0.27
w_result	$\mathbf{2 . 7 4}$	SSALA-lp	2.42

(unit: mJ)

- 32-bit MIPS 5 stage pipeline datapath
- SPECint95 benchmarks: perl(test, primes), ijpeg(test), m88ksim(test), go(20,9), and lzw(medtest)

Processor Energy Results - Flip-Flop

HS: Highest-Speed
LP: Lowest-Power

- Unifo rm
(A single design used uniformly throughout a circuit)
-Ref : Total datapath energy - Total TE energy $=$ around 0.21J

Processor Energy Results - Flip-Flop

- Unifo rm
- HLFF-S izing

Flip- flop De lay (ps)
-34\% energy saving with conventional transistor sizing

Processor Energy Results - Flip-Flop

Flip-flop Delay (ps)

HSLE: Activity-Sensitive selection

- Unifo rm
- HLFF-S izing区 HLFF-HS LE
- 52% energy saving over just transistor sizing with the best performance (HLFF-hs)

Processor Energy Results - Latch

-6.1\% energy saving over just transistor sizing (1)
$\bullet 8.3 \%$ energy saving compared to homogeneous design with PPCLA-hs (2) -PPCLA is the fastest and also very energy-efficient.

Summary of Energy Results

- 63% TE energy saving compared to a homogeneous design with HLFF-hs and PPCLA-hs
- 46% TE energy saving compared to a design with conventional transistor sizing while keeping the best performance

Conclusion

\checkmark We showed that activation patterns for various TEs in a circuit differ considerably.
\checkmark We found that there is wide variation in the optimal TE designs for different regimes.
\checkmark We provided complete energy and delay characterization.
\checkmark We applied our technique to a real processor which we simulated 2.7 billion cycles of programs and showed over 63% TE energy reduction without losing any performance.

Difficulty of using a heterogeneous mix of TEs?

- Already designers have been doing verification for each local clock and added complexity is minimal.
- Timing verification for non-critical TEs is simple.

