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Abstract

The ability of compilers to optimize programs statically is diminishing.  The advent and
increased use of shared libraries, dynamic class loading, and runtime binding means that the
compiler has, even with difficult to accurately obtain profiling data, less and less knowledge
of the runtime state of the program.  Dynamic optimization systems attempt to fill this gap
by providing the ability to optimize the application at runtime when more of the system's
state is known and very accurate profiling data can be obtained.  This thesis presents two
uses of the DynamoRIO runtime introspection and modification system to optimize
applications at runtime.  The first is a series of optimizations for interpreters running under
DynamoRIO's logical program counter extension.  The optimizations include extensions to
DynamoRIO to allow the interpreter writer add a few annotations to the source code of his
interpreter that enable large amounts of optimization. For interpreters instrumented as such,
improvements in performance of 20 to 60 percent were obtained.  The second use is a
proof of concept for accelerating the performance of IA-32 applications running on the
Itanium processor by dynamically translating hot trace paths into Itanium IA-64 assembly
through DynamoRIO while allowing the less frequently executed potions of the application
to run in Itanium's native IA-32 hardware emulation.   This transformation yields speedups
of almost 50 percent on small loop intensive benchmarks.      
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Chapter 1

Introduction

The ability of compilers to optimize programs statically is diminishing.  The advent and

increased use of shared libraries, dynamic class loading, and runtime binding complicates

the ability of the compiler to analyse and optimize programs.  Even good profiling

information can be insufficient when an application's behavior changes dynamically.  For

good performance many versions of the compiled application may be needed be to take

performance implications of subtle architectural differences between compatible processors

(even processors in the same family) into account.  Vendors are loathe to ship multiple

versions of the same product, or even one highly optimized version for fear of debugging

problems.  Dynamic optimizations systems attempt to fill this gap by providing the ability to

optimize the application at runtime when more of the system's state is known and very

accurate profiling data can be obtained.  This moves the option of optimization to the end

user who can tailor it more to his system, without relying on the vendor.

This thesis presents two uses of the DynamoRIO runtime introspection and

modification system to optimize applications at runtime.  The first is a series of

optimizations for interpreters running under DynamoRIO's logical program counter

extension.  The optimizations include extensions to DynamoRIO to allow the interpreter
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writer add a few annotations to the source code of his interpreter that enable large amounts

of optimization. The second use is a proof of concept for accelerating the performance of

IA-32 applications running on the Itanium processor by dynamically translating hot trace

paths into Itanium IA-64 assembly through DynamoRIO.  Both uses of DynamoRIO show

significant speedups on applications relative to running natively.

Interpreters form a broad class of applications with significant amounts of

information (often including some representation of the program being interpreted)

available to a runtime system that isn't available to a static compiler.  The use of interpreters

is becoming more and more widespread too, with proliferation of domain specific, scripted,

dynamic, and virtual machine targeted languages.  Many such languages lack a good native

compiler and the barriers to writing one are high. A compiler is an incredibly difficult piece

of software to write, it is specific to a particular architecture and language and requires a

deep understanding of the underlying architecture.  For dynamic languages it is especially

difficult.  Thus, there are many languages without compilers, or, at best, with compilers that

only target a select few architectures.  An simple interpreter for a language, however, is

often easy and straightforward to write.  This makes custom dynamic languages incredibly

useful as an abstraction tool.  Like a custom library a domain specific language can hide

many of the unnecessary complexities of a given task, and indeed the design of a new

language is a lot like the design of a new library.  Unfortunately, there is a large overhead

involved when interpreting a language and this greatly affects performance.  This lack of

performance is often a major barrier to the wider acceptance and use of custom languages.

The overhead is often finally resolved with the development of a compiler for the language,

a just in time compiler (JIT) that compiles the application on the fly for highly dynamic or

portable languages, or the migration to a new language.  

The work that is involved for writing a compiler or JIT is enormous, easily and

order of magnitude more difficult than an interpreter, and must be repeated for each

architecture on which it is desired to run.  As a partial alternative to writing a compiler or

JIT for a language, one can remove some of the interpretation overhead through the use of

a runtime optimization system such as DynamoRIO.  The DynamoRIO runtime
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introspection and modification system has a logical program counter extension that allows

an interpreter writer to, with minimal annotation of his interpreter, achieve a large speedup

running his interpreter under DynamoRIO relative to running it natively.  A 20 to 60

percent reduction in the runtime of interpreted programs is shown (chp. 6) on two sample

interpreters.  The first contribution of this thesis are the optimizations that go into achieving

this boost in performance and the interpreter annotations interface necessary to enable

them.  The end goal of such research is to make dynamic interpreted languages feasible for

a wider variety of problems by reducing the overhead of the interpreting system without

sacrificing the ease of development of the interpreter.

The second contribution is extending the DynamoRIO runtime introspection

and modification system to dynamically accelerate IA-32 applications running on Itanium

processors by translating hot traces of the application into Itanium's native IA-64.  The IA-

32 program is initially executed in the Itanium's native IA-32 hardware emulation mode

under DynamoRIO, as it runs frequently executed traces are translated into Itanium's native

IA-64 and linked together while the remainder of the program continues to run in IA-32

mode.  As a proof of concept, performance gains of almost 50 percent are shown for some

simple example cases.  

The Intel Itanium family of processors are a relatively new offering from Intel

geared towards the server market.  They operate natively on the Intel IA-64 instruction set,

but also have hardware emulation support for the IA-32 instruction set (also referred to as

x86) for backwards binary compatibility with previous Intel offerings.  Unfortunately the

adoption of Itanium processor has been slow, partly because of the difficulty in migrating

IA-32 applications to Itanium environments.  While the Itanium processor can execute

unmodified IA-32 compiled applications, it does at a tiny fraction of the speed of modern

IA-32 processors such as AMD's Athlon and Intel's own Pentium IV.  Given the huge

differences between the IA-32 and IA-64 ISAs this is not too surprising (even taking into

account the hardware resources Itanium processors devote to emulating/translating IA-32

instructions).  The ability of the Itanium chip to execute all IA-32 instructions means that

only the most frequently executed code needs to be translated and that any hard to translate
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oddities in the IA-32 instruction set need not be translated making efficient translation more

feasible at runtime.  Since most processor intensive IA-32 applications are, in practice,

unusable on Itanium processors, many potential users of Itanium with IA-32 applications

have avoided buying Itanium processors.  Thus, IA-32 performance on Itanium processors

remains a major barrier to the wider adoption of Itanium processors and one that is feasible

to address with a runtime optimization system.

This thesis breaks down into three main sections: background and explanation

of the core DynamoRIO system, using DynamoRIO to improve the performance of

interpreters, and using DynamoRIO as a dynamic translator for Itanium processors.

Chapters one, two, and, three give an introduction and overview of the thesis, present

related work and explain the core DynamoRIO system.  Chapters four, five, and six then

cover the optimization of interpreters.  Chapter seven covers DynamoRIO on Itanium.

And, finally, chapter eight concludes.
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Chapter 2

Related Work

The problem of running one language on top of another has long been an active area of

research.  Interpreters, JITs, emulators are all part of the broad spectrum of ways people

have approached this problem.  A lot of work has been done on dynamic translation as a

method for speeding up the emulation of a non-native instruction set [5] [9] [12] [13] [19]

[21].  Since the Itanium processor family was developed jointly by Intel and Hewlett-

Packard, there was concern that Itanium be able to run binaries compiled to Hewlett-

Packard's PA-RISC ISA to enable a smooth migration path.  This concern was addressed

through software dynamic translation of PA-RISC binaries into Itaniums native IA-64 ISA

via the Aries system.  Because PA-RISC maps rather cleanly over to IA-64, very little

overhead is involved in the actual translation and applications running this way on an

Itanium processor achieve nearly the performance they would get on a similarly clocked

PA-RISC chip.  

Transmeta's [15] code morphing technology is a similar product  that runs IA-

32 applications on Transmeta's natively VLIW Crusoe processor by dynamically translating

and optimizing the applications binary.  Code morphing technology has the advantage of

having having hardware specially designed to ease the dynamic translation of IA-32

programs.  IBM's Daisy [12] is another effort to target VLIW from existing instruction

19



sets, including IA-32.  Like code morphing it also requires a degree of assistance from the

underlying VLIW hardware.  A major way these efforts differ from the Itanium work in this

thesis is in their choice of architecture and their ability to give up on  a particularly difficult

translation, since the Itanium hardware can (albeit inefficiently) execute the original IA-32

code if necessary.   Thus, completeness of translation in the system proposed here is not as

much of an issue.  This allows us to focus on only translating the code that executes most

frequently and justifies the spending of extra cycles optimizing that translation.  

JIT technology also dynamically translates languages and ISA's, but once

again the translation is forced to be complete.  Offline, optimizing, binary to binary

translators do exist [8][18], but they don't have access to the runtime profiling information

that a dynamic translator had.  Some high languages seem to require a degree of dynamic

compilation for an efficient implementation [10][1][14] making runtime compilation or

interpretation the only feasible implementation route.  Low overhead profiling is the key to

dynamic optimizations [2][11], since without profiling information about a program it can't

be optimized fully and if the profiling is too expensive (in cycles) then more execution time

is spend performing the optimization than is saved by having it.  DynamoRIO [7] has very

low profiling overhead which is one of the reasons it is ideally suited for these purposes.
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Chapter 3

DynamoRIO

3.1 What is DynamoRIO?
DynamoRIO [7] is, from a users standpoint, an IA32 instruction set interpreter

implemented on an IA32 platform.  Its purpose is to allow for the dynamic introspection,

modification, and optimization of native executables at an individual instruction granularity.

DynamoRIO is based on an IA32 port [6] of the original Dynamo project [4] and runs on

unmodified native binaries with no special hardware or operating system support.  It runs

on both Windows and Linux and is reliable and scalable enough to run large desktop

applications.

3.2 DynamoRIO Operation
Since one of DynamoRIO's stated purposes is dynamic optimization, it is important that the

system have a very low overhead.  Simple interpretation would allow DynamoRIO to

achieve its functional requirement of full control over the running native executable, but the

overhead of such a system, especially given the complexities of the IA32 instruction set, is

enormous.  To amortize the cost of interpreting the original program, DynamoRIO

interprets by copying basic blocks of IA32 instructions from the original program into a
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fragment cache and executing them there.  Each block in the cache has its ending control

flow instruction modified to save the machines state and return control to DynamoRIO

which finds the next basic block to execute.  Only code in the fragment cache is allowed to

execute, never code in the original image of the binary.    As the number of fragments

increases, performance is improved by modifying fragment ending direct branches to jump

directly to their targets in the fragment cache instead of back to DynamoRIO.  

At this stage, indirect jumps are the major performance bottleneck.  Indirect

branches must go through a lookup function to translate the applications address into an

address in the cache, a major source of overhead.  Each translation of a program address to

its cached basic block requires a transfer of control back to DynamoRIO and thus a save of

the processors state.  To overcome the high cost of these control switches, DynamoRIO

adds a fast hash table lookup routine in the cache that translates the address target of the

indirect jump into its corresponding cached fragment, returning control to DynamoRIO

only if there is no cached block associated with that address.  Further since even a fast hash

table lookup is slow compared to a native indirect branch, DynamoRIO inlines a common

target into a check before going to the hash table lookup, to avoid the lookup cost when

the jump targets that location.

As a final optimization, certain interesting fragments, such as the targets of

backwards taken branches (likely loop heads), are tagged with a counter that counts the

22
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number of times execution reaches that fragment.  In DynamoRIO parlance these are

referred to as trace heads.  When the trace heads counter exceeds a certain threshold a

trace is created starting at the trace head and continuing through successive basic blocks

until a  backward jump is executed or another trace or trace head is reached.  The targets of

all exits from the trace then become trace heads themselves.  This approach, called next

executing tail (NEXT) tracing by the original Dynamo authors, minimizes profiling

overhead and is statistically likely to pick good traces[3][4][6][11].  Experimentation by the

original Dynamo authors [4][11] suggests that any more complicated profiling scheme to

pick hot traces dynamically will have a very difficult time recovering its overhead from

improved traces.  Traces improve performance by improving code layout for caching

effects and by picking good indirect branch inlining targets.  On overview schematic of the

system can be found in figure 3.1.  Table 3.1 summarizes some rough numbers on how the

various core parts of the system effect performance. 

DynamoRIO traces are single entrance multiple exit traces.  That is, control will

only enter from the top, but may exit at many places.  Since there is virtually no control

flow internal to the trace, certain types of optimizations are easier to write.  DynamoRIO

also exports an interface to allow an outside library to modify traces and basic blocks

before they are emitted into its cache allowing optimization and instrumentation of the

program and an interface for an application to run itself under DynamoRIO.

System Type 

Normalized

Execution Time
VPR   Crafty

Emulation    ~300    ~300
+ Basic block cache 26 26.1
+ Link direct branches 3 5.1
+ Ling indirect branches 1.2 2
+ Traces 1.1 1.7

Table 3.1: Performance of base DynamoRIO as features are added.
Measured with two SPEC2000 benchmarks: crafty and vpr.  These
were gathered from an old version of DynamoRIO, recent versions
suffer less overhead at all levels.
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Chapter 4

DynamoRIO for Interpreters

4.1 DynamoRIO and Interpreters
The use of interpreters is pervasive and becoming more common.  For domain specific,

scripting, dynamic, and virtual machine targeted languages the most straight forward

runtime environment is an interpreter.  For many such languages a compiler or JIT would

be very difficult to write.  Unfortunately, the performance difference between an interpreted

and compiled or JITed program is often huge (easily and order of magnitude in many

cases).  This because interpretation implies the existence of a substantial amount of

overhead.  It would be nice if DynamoRIO could speed up interpreters by eliminating some

of the interpretation overhead.  

Most interpreters follow a common idiom of design.  Typically some front end

will parse the interpreted program into some simpler (byte code) format which is then

interpreted through some sort of dispatch loop.   While there are many tricks on can take to

speed up such an implementation, as long as the interpreter is dealing with a representation

of the original program and not instructions native to the architecture there is overhead.

The typical read-switch-jump dispatch loop confounds DynamoRIO since DynamoRIO's

tracing algorithm will only end up building one trace through the switch statement.  Such a

trace will exit early almost all the time (see table 4.3) because it will only be valid for a
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particular byte code and since most interpreters do very little work for each byte code,

there is a high number of indirect jumps (from the switch statement) relative to the

execution time.  Indirect jumps are a major performance drainer for DynamoRIO since they

become hash table lookups in its runtime system.  Threaded interpreters do little better.  A

threaded interpreter uses pointers to the native instructions that will evaluate the  byte code

within the byte code itself (read-jump instead of read-switch-loop).  Such implementations

are faster than their read-switch-loop counterparts, but still confound DynamoRIO since,

once again, they often have a huge number of indirect jumps (at every byte code) relative to

their execution time.

DynamoRIO often does a poor job of predicting these indirect jumps since

they depend on the position of the interpreter in the high level program and not the location

of the indirect jump instructions in the interpreter's binary.  Thus DynamoRIO has trouble

generating good traces for interpreters to offer as targets of optimization.  The logical pc

extension to DynamoRIO seeks to address the generation of poor traces by allowing the

interpreter writer to pass some information about the high level position in the interpreted

program to DynamoRIO at runtime.  This allows DynamoRIO to build traces that reflect

the high level program being interpreted.  Such traces are much better targets for

optimization.

4.2 The Logical Program Counter Extension to DynamoRIO
The goal of the logical program counter [20] extension to DynamoRIO is to allow

DynamoRIO to build long frequently executed traces that usually run almost all the way

through and allow for good prediction of indirect jumps.  To do this DynamoRIO asks the

interpreter writer to associate some sort logical program counter with the interpreter's

location in the interpreted program, typically an index or pointer (or combination of

pointers) into the byte code of the interpreted program.  DynamoRIO also exports methods

(see figure 4-1)  to allow the program to keep DynamoRIO informed as to the value of the

program counter at runtime.

The annotation necessary to the interpreter to keep DynamoRIO informed
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about the logical program counter is minimal and straightforward, typically requiring

changes in just a few places.  An excerpt of the TinyVM interpreter that shows the

annotations applied in in Appendix 1.  Often the change is largely search and replace on

adjustments to a variable that indexes into the interpreters representation of the interpreted

program, so the burden is even less than what a simple count of the number of lines of code

changed or added would suggest (table 4.1).

Lines changed or added
Ocaml TinyVM

For logical traces 28 12
For optimizations (ch. 5) 3 20
Total Added/Changed 31 32
Total LOC in program 5200 1266

Table 4.1: Lines of code necessary to annotate an interpreter for
DynamoRIO logical pc.  This table counts the number of lines added to
or changed in the source code of the interpreter to work with
DynamoRIO and to enable the optimizations described in chapter 5.

4.3 Benefits of the Logical Program Counter Extension
With information about the location of the interpreter in the interpreted program

DynamoRIO can build traces that reflect the behavior of the interpreted program instead of

the interpreter.  Such traces are much longer and have dramatically fewer early exits than

the usual traces DynamoRIO would build.  DynamoRIO does this by associating a logical

program counter value, in addition to its usual application address value, with each trace.

This allows DynamoRIO to have multiple traces representing the same application address,

26

void dynamorio_set_logical_pc(int logical_pc);
void dynamorio_logical_direct_jump();
void dynamorio_logical_indirect_jump();

Figure 4-1: The exported DynamoRIO logical program counter
 interface.



but different locations in the interpreted program.  This leads to dramatically better traces

(table 4.2, 4.3) and faster execution (see chapter 6).  The logical pc extension to

DynamoRIO also provides methods to signal to DynamoRIO that there is a branch of

control flow (either direct or indirect, see figure 4-1, Appendix 1) in the interpreted

program.  DynamoRIO ends traces at such branches and marks their targets trace heads.

Trace Size
(in bytes
and exits)

Time Exit number
and percent of
trace executed 

Percent of
time exiting

there

1 18326 B
242 exits

0 #34         14%
#242     100%

1.5%
98.5%

2 26155 B
347 exits

26.70%  #347     100% 100%

3 52574 B
700 exits

0 #161       23%
#492       70%
#700     100%

92.2%
3.7%
4.2%

Table 4.2: Trace sizes and trace exit distribution for top three, as
measured by execution time, traces of the TinyVM program
fib_iter under DynamoRIO logical program counter.  The exit
number is a rough guide to how long execution stays on the trace
since each exit corresponds to a branch.  The higher the number
the longer execution has stayed on the trace.

Trace Size
(in bytes
and exits)

Time Exit number
and percent of
trace executed

Percent of
time exiting

there

1 956 B
10 exits

0 #1           10%
#10       100%

5.7%
94.3%

2 745 B
8 exits

0 #5           63%
#8         100%

20%
80%

3 1219 B
16 exits

6.7% #7           44%
#16       100%

1.6%
98.4%

Table 4.3: Trace sizes and trace exit distribution for the the top
three traces, as measured by execution time, of the TinyVM
program fib_iter under plain DynamoRIO. The exit number is a
rough guide to how long execution stays on the trace since each exit
corresponds to a branch.  The higher the number the longer
execution has stayed on the trace.
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Chapter 5

Optimizing Interpreters with DynamoRIO

5.1 Overview of Optimizations
When an interpreter is running under DynamoRIO with logical program counter extensions

long highly optimizable traces are created that dominate the execution time. This chapter

describes four optimizations implemented to improve the performance of interpreters

running under DynamoRIO with the logical program counter extension: constant

propagation, dead code removal, call return matching, and stack cleanup.  These

optimizations are applied to traces generated by DynamoRIO in the following order, call

return matching first, then constant propagation, then dead code removal, and finally stack

cleanup.  This ordering maximizes the synergy between the optimizations as the earlier

optimizations often open up opportunities or remove barriers from the later optimizations.

Chapter 6 gives performance results for applying these optimizations to several interpreters.

   Implementation of these optimizations was complicated by the complex

machine model of the IA-32 instruction set.  IA-32 is a complex instruction set (CISC) with

hundreds of instructions, many of which are have to use particular registers or sets of

registers and have side effects on the machine state.  Instructions have from zero to eight

sources and from zero to eight destinations.  The architecture supplies only eight visible

general purpose integer registers.  Depending on the circumstances an instructions might
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read or write the whole register or just the lower two bytes or just one of the lower two

bytes (but only for four of the eight registers in the last case).  Branching is handled by

instructions that check the status of certain conditional flags.  Almost every single

arithmetic instructions (and some non-arithmetic) writes to some or all of the conditional

flags (some read as well).  Such conditional codes can be valid past multiple jumps or even

used, in the case of some compliers, after a function return. This greatly complicates

keeping track of dependencies between instructions.  The optimizations described here take

these issues into account.

5.2 Constant Propagation Optimization
5.2.1 The Constant Propagation Annotation Interface 
Constant propagation is a classic compiler optimization that partially evaluates instructions

based on variables that are known to have a constant value.  It is motivated especially with

interpreters in this case because they tend to have large amounts data that are runtime

constant.  In many interpreters the byte code is constant, once generated at runtime it is

never modified.  In addition it is not uncommon for there to be jump and lookup tables that

are constant at runtime whose location can be determined from the meta information in the

applications binary.  If it were possible for the interpreter writer to communicate this

information to DynamoRIO, DynamoRIO would able to simplify traces by replacing native

loads from this immutable constant value memory with the value they would return and

simplifying the trace.  To enable this, a method is exported to allow the interpreter author

to mark regions of memory immutable (figure 5-1).  An excerpt showing of how these

annotation are used in the TinyVM interpreter is provided in Appendix 1.
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void dynamorio_set_region_immutable(void* start, void* end);
void dynamorio_add_trace_constant_address(void* addr);
void dynamorio_set_trace_constant_stack_address(void* addr, int val);
void dynamorio_unaliased_address(void *addr);
void dynamorio_unaliased_stack_address(void *addr);
void dynamorio_set_call_no_inline(void *func_ptr);

Figure 5-1: The exported interface for optimization annotations.



Since execution time under DynamoRIO is dominated by traces, traces are the

best place to concentrate optimization.  All traces under DynamoRIO are tagged with a

logical pc.  Since DynamoRIO guarantees that at the start of the trace the logical pc is the

same as the logical pc the trace is tagged with, this often implies that some of the

interpreters variables will also always be the same at the start of the trace.  These are

typically the variables used to generate the logical pc, such as an index or pointer into the

byte code.  While it isn't clear at compile time what value those variables might have,

several methods are exported by DynamoRIO (figure 5-1) so that the interpreter writer can

inform DynamoRIO that certain variables will always have the same value at the start of the

trace.  DynamoRIO can then take a snapshot of those values when it builds the trace and

use the constant values to simplify the trace (figure 5-2).

The interpreter writer uses set_trace_constant_address to inform DynamoRIO

of global addresses that at the start of a given trace is always the same, while he uses

set_trace_constant_stack_address to inform DynamoRIO of stack addresses that are always

the same at the start of any particular trace.  Since DynamoRIO keeps track of the values in

these addresses as it constant propagates through out the trace, the interpreter writer is also

guaranteeing to DynamoRIO that he won't modify these addresses through a pointer alias

or another thread.  This guarantee greatly simplifies the optimization and pass since it is

difficult, if not impossible to disambiguate memory writes in assembly in the potential

presence of aliasing.  In fact, this information is so useful that several more methods are

supplied to the interpreter writer to allow him to specify global and stack addresses that

aren't aliased (figure 5-1).

5.2.2 Issues Considered
The system is limited to global, and stack addresses because they are the most common and

because the runtime system has no notion of variable locations only addresses.  These

addresses then are easier for the runtime system to track since, given the non-aliasing

guarantee, the addresses will be accessed consistently, the globals as constant addresses and

the stack addresses as offsets of the ebp or esp stack registers.
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Of the two forms of specifying address as unaliased or trace start constant, the

one for globals is preferred.  The actual method to mark the global address unaliased or

trace start constant need only be run once during startup or initialization.  For stack

addresses though the picture is more complicated since the address of the trace start

constant value might not itself be constant.  For stack addresses the call to the

dynamorio_set_trace_constant_stack_address must appear in the trace and the

optimizations using its value will only be performed in the section of the trace that follows

the call.  This is because the optimizations needs to destruct the arguments of the call to

figure out the offset off the stack or base pointer of the address (figure 5-2).  This means

that the stack address method calls should appear shortly after each logical direct or logical

indirect jump so that they will be close to the top of the trace.  The interpreter writer should

also avoid declaring to many stack addresses unaliased unless he is reasonably sure this will

enable optimization as the calls for stack addresses appear very frequently and thus can add

to the overhead of the system.

5.2.3  Operation
The constant propagation optimization is single forward pass through the trace that keeps

track of constant values in the eight architectural registers and their sub register

components as well as memory locations declared to be unaliased by the interpreter writer

and the state of the eflags register.  At each instruction constant values are propagated into

the sources (including the eflags register for branches and addresses descriptions in the

destinations) and the instruction is simplified as much as possible.   If any sources simplify

to a constant address, the optimization checks to see if the address is in one that was

declared immutable by the interpreter or the binaries meta-data.  If so it replaces the

address load with the value it gets by dereferencing the address.   The simplification is often

able to reduce instructions to just load immediates or, in the case of simplified branches,

nops.  Once simplification of the instruction is finished destinations written to by the

instruction with a non constant value are marked as not constant and those written with a

constant value have their now constant value stored for future use.   
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Trace section before constant propagation
optimization

Trace section after constant
propagation optimization

#the call to set trace constant stack
#address
add    ESP, -8 
mov    EAX, 0xfc(EBP)
push   EAX 
lea    EAX, 0xfc(EBP) 
push   EAX 
call   set_trace_constant_stack_address
add    ESP, 16 

# part of the trace
mov    EAX, 0xfc(EBP) 
cmp    EAX, 0x8122c80 
jnl    exit_stub
mov    EAX, 0xfc(EBP)
lea    EDX, (,EAX,8) 
mov    EAX, 0x8122c84 
movzx  EDX, (EAX,EDX,1)

#destructed remnants of call to
#set trace constant stack #address
add    ESP, 8 
lea    ESP, 0xfc(ESP) 
lea    ESP, 0xfc(ESP) 
nop    
add    ESP, 16 

#simplified portion of trace
mov    EAX, 4
cmp    EAX, 0x8122c80 
jnl    exit_stub
nop    
mov    EDX, 32 
mov    EAX, 0x8122c84
movzx  EDX, 0x20(EAX) 

Trace section after all optimization
passes

mov    EAX, 4
cmp    EAX, 0x8122c80 
jnl    exit_stub  
mov    EAX, 0x8122c84  
movzx  EDX, 0x20(EAX) 

Figure 5-2: Trace selection demonstrating constant propagation optimization and the
trace constant interface.  Here the address 0xfc(EBP) is the stack constant address and its
value at the start of the trace is always 4.  The optimization will deduce the offset of EBP
by looking for the lea the set the argument or something equivalent.  It will then eliminate
the call and propagate as normal.

The optimization also keeps track of the depth of the current call frame since recognized

offsets for the unaliased stack addresses are only valid in the same scope as the method call

that informed DynamoRIO of them.  As an extra bit of optimization, if a mov immediate

instruction (perhaps as the result of simplification) is setting a watched location (register,

unaliased memory locations) to the  same constant value its known to have then the mov

immediate instruction is eliminated.

Some dynamic languages allow the byte code to be modified as they run and,

since DynamoRIO optimizes assuming this memory is constant (assuming the interpreter

writer marked it as such), an additional method to allow the interpreter writer to declare a
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region no longer immutable is planned, though not yet implemented.  When this method is

called DynamoRIO will delete all the traces from its cache that relied on the now mutable

data, thus preserving correctness.  If the region is frequently executed it will end up being

traced again into a new trace.

Original Application DynamoRIO DynamoRIO w/call return
matching

     mov EAX, EAX
     call foo
bar:
     lea 0x0(ESI), ESI
     jne done

foo:
     ...
     xchg EDI, EDI
     ret

Trace 0
  mov EAX, EAX
#          -- call
  push $bar

  ...
  xchg EDI, EDI
#           -- ret
  mov ECX, spill_slot
  pop ECX
  lea -$bar(ECX), ECX
  jecxz hit_path
fail_path:
  lea $bar(ECX), ECX
  jmp indirect_lookup
hit_path:
  mov spill_slot, ECX

  lea 0x0(ESI), ESI
  jne exit_stub1 <done>

Trace 0
  mov EAX, EAX
#          -- call
  push $bar

  ...
  xchg EDI, EDI

#          -- ret
  lea 0x4(ESP), ESP

  lea 0x0(ESI), ESI
  jne exit_stub1<done>

Figure 5-3: A sample trace, with the original application code, before and after the call return
matching optimization.  In italics is the code DynamoRIO used to replace the call and ret
instructions.  Lea instructions are used to preserve the eflags state.

5.3 Dead Code Removal Optimization
Dead code removal is another classic compiler optimization.  Dead code removal eliminates

instructions that don't produce useful values.  It runs a single backwards pass keeping

liveness information on the registers, sub registers, eflags register, and unaliased stack and

memory addresses passed in by the interpreter writer (like in constant prop above).  While

complicated by the need to deal with partial registers operations, sub register state, and the

eflags register, the algorithm is essentially the same as found in most compiler textbooks.
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5.4 Call Return Matching Optimization
The call return matching optimization is a general optimization that requires no annotations

from the interpreter writer.  It looks for methods that have been completely inlined into a

trace such that both the call instruction and the return instruction from the method are in

the trace.  It then partially inlines the method by eliminating the  check around the return.

Under DynamoRIO calls are replaced with push immediates of the applications return

address and returns are replaced with a hash table lookup for address translation with a

check for the target used to continue the trace inlined (figure 5-3).  The main benefit of this

optimization is to remove the cost of doing the check to see that continuing on the trace is

indeed the right thing to do.

5.5 Stack Adjust Optimization
The stack adjust optimization is a general optimization that requires no annotations from

the interpreter writer.  Its effectiveness comes from noticing that often many extraneous

adjustments of the stack pointer are left after the other optimizations have run.  These can

be folded together if one is careful about the intervening instructions.  Also building traces

exposes other situations where stack pointer manipulations can be eliminated or combined.

Original trace Trace after stack adjustment
optimization

    sub ESP, $8
    sub ESP, $8
    mov EAX, EAX
    add ESP, $4
    push ESP
    sub ESP, $12
    mov EAX, EAX
    add ESP, $4
    mov EAX, 0x4(EDX)
    add ESP, $8
    ...

     sub ESP, $12
     mov EAX, EAX
     push ESP
     sub ESP, $8
     mov EAX, 0x4(EDX)
     add ESP, $8
     ...

Figure 5-4: A trace before and after the stack adjust optimization.  Note that at any
point in the trace the stack pointer will be at least as low in memory (high in the stack)
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as it was in the original program to protect potential aliased stack writes.

The stack cleanup optimization does a single forward pass through the trace

looking for adjustments to the stack pointer and folding them together into a single

adjustment.  If it sees a memory write or read not that's not to a constant address or relative

to the stack pointer, such as the write to 0x4(EDX) in figure 5-4, it makes sure that the

stack pointer is at least as low (IA-32 stack grows down in memory) in the optimized

version as it was in the original version at that instruction.  This is in case the memory write

is really an aliased stack write.  Since the operating system can come along at any time and

interrupt the application and use its stack (and some operating systems do) it is important

that the stack pointer is low enough at the memory write to protect its value in case the

operating system interrupts.
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Chapter 6

Performance of DynamoRIO Optimized

Interpreters

6.1 Introduction to the Interpreters
In this section the performance improvements of the optimizations described in chapter 5

are demonstrated on two interpreters that have been annotated to run under DynamoRIO's

logical pc extension and to enable the optimizations described in Chapter 5.  TinyVM is a

very simple virtual machine written C that interprets TinyVM byte code.  TinyVM has a

simple stack based machine model.  Its byte code is generated from a higher level language

by a TinyVm compiler.  Its virtual machine uses a simple read-switch-loop structure to

interpret each byte code and update the state of the virtual machine.  Ocaml is a high

performance, highly optimized, popular implementation of the caml language that includes a

threaded interpreter, a non-threaded interpreter, and a native compiler.  Caml is a strongly

typed functional programming language related to ML.  It is frequently used by some of the

top teams at the annual IFCP programming contest including the winning team from 2002,

third place team from 2001, and second and third place team in 2000.  Both Ocaml and

TinyVM show large speed improvement when run under DynamoRIO and the

optimizations described in chapter 5.
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6.2 TinyVM Interpreter
A number of small computationally intensive benchmarks were chosen to test the

optimizations on the TinyVM compiler.  These are for the most part implementations of

simple algorithms, fib iter iteratively generates Fibonacci numbers while fib rec does the

same recursively.  The sieve programs find prime numbers through a Sieve of Eratosthenes

algorithm.  Finally the matrix programs do some repeated matrix multiplication.  These

programs have tunable input parameters to control the length of the execution time.

Suitable values were chosen to give a relatively lengthy run in most cases, though some are

shorter.  This gives a better idea of the steady state improvement the optimizations

produce.  Table 6-1 gives the running time in seconds of each of the optimizations.  For the

TinyVM benchmarks here the optimizations are capable of reducing the runtime of the

interpreted program by 20 to 50 percent.  A breakdown of the contribution of the various
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Figure 6-1: Performance of the TinyVM interpreter on various benchmarks.  Each benchmark was run three
times for each configuration, the best result is shown.  Test machine was a 2.2 ghz Pentium IV processor running
Linux.  The interpreter and DynamoRIO were both compiled under GCC.  Results are normalized to the native
execution time.



optimizations towards the systems performance is provided in figure 6-2.  This graph

demonstrates that optimizations are largely complimentary.  They tend to open up

opportunities for each other and as such the best result comes from combining them

together.  
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TinyVM
Benchmarks

Native
Running

Time in sec.

Optimized
Running

Time in sec.
Fib iter 26.73 14

Fib rec 35.52 21.49

Bubble Sort 23.36 15.82

Matrix lg. 28.00 19.59

Matrix sm. 3.78 2.9

Sieve 26.84 16

Sieve sm. 4.44 3.18

Table 6.1: Execution time in seconds of the TinyVM
benchmarks, both natively and under DynamoRIO
with optimizations.

Figure 6-2: Breakdown of the contribution of the various optimizations for select programs on TinyVM.
Note that there is a large synergistic effect from combining multiple optimizations.  This is becuse of their
complimentary nature, some enable greater possibilities in the others.

Ocaml
Benchmarks

Native
Running

Time in sec.

Optimized
Running

Time in sec.
Ackermann 27.2 20.3

Fib 12.45 9.9

Hash2 5.17 3.03

Heapsort 11.09 9.09

Matrix 10.62 8.41

Nested Loop 15.1 6.18

Sieve 6.07 4.68

Tak 7.38 4.97

Table 6.2: Execution time in seconds of the Ocaml
benchmarks, both natively and fully optimized.
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6.3 Ocaml Interpreter
While TinyVM is largely a toy system, Ocaml is a widely used high performance language.

It supports numerous architectures including IA-32, which it supports with both an

interpreter and a native compiler.  The performance of natively compiled Ocaml code often

rivals that of C.  The numbers above reflect the performance of the threaded version of the

Ocaml interpreter (which is faster than the switch dispatch non-threaded version).  The

benchmarks are a selection of computationally intensive programs adapted from Doug

Bagely's Great Computer Language Shootout2 with inputs chosen to give running times in

4 to 40 second range for the native interpreter 6-2.  We again see large improvements over

the natively running interpreter with gains of 20 to 60 percent.  While still quite short of the

performance of compiled Ocaml, the optimizations do go a log way towards limiting the

interpreting overhead.

2 http://www.bagley.org/~doug/shootout/
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Figure 6-3: Performance of optimizations relative to native execution and compilation on Ocaml.  Each test
was run three times and the best results are shown here.  Tests were run on a 2.2ghz Intel xeon processor
running Linux.  Time was measured with the time command.  All results are normalized to native interpreter
execution time.



Chapter 7

DynamoRIO as an IA32 Accelerator for the

Itanium Processor

7.1 Motivation for an IA-32 Accelerator for Itanium
The IA-64 ISA is based on the EPIC (Explicitly Parallel Instruction Computing) technology

jointly developed by Intel and Hewlett-Packard to address current roadblocks towards fast

microprocessor performance.  Current state of the art processors achieve high performance

not just by executing instructions very fast (using deeply pipelined architectures), but by

also finding groups of instructions to execute in parallel over multiple functional units

(super scaler processors).  Performance is thus limited by the ability of the compiler to

expose instruction level parallelism and the processor's ability to recognize it.  Performance

is also limited by load and delays and branch mis prediction penalties.  To address these

issues EPIC technology offers a number of techniques not found in the IA-32 architecture

including explicit compiler mediated expressions of instruction parallelism to increase

instruction level parallelism visible to the processor, a vastly larger register set to avoid

false dependencies, general predication of instructions to eliminate branches, and explicit

memory load speculation to better hide memory latency[17].  
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Because the IA-32 architectural register set is very limited in size and lacks a

means of general predication, it is difficult for super scaler IA-32 processors to find enough

instruction level parallelism to fill their functional units, even with extensive compiler help.

Thus, IA-32 processors have embraced fast clock speeds and deep pipelines as ways of

improving performance.  This poses a problem for Itanium processor as the current state of

the art Itanium 2 processor runs at about a third the clock speed of the current state of the

art IA-32 Pentium IV processor.  This means that for comparable performance the Itanium

processor must execute the equivalent of three times as many IA-32 instructions every

clock cycle as a Pentium IV.

Instructions in the IA-64 ISA are grouped together into bundles.  Each bundle

contains three 41 bit instruction slots and a 5 bit template slot.  The template informs the

chip to which type of functional unit (there are four, integer, memory, branch, and floating

point) to dispatch each of the instruction slots to.  This is necessary because opcodes are

reused between the different functional units.  The template also encodes the location of

any stops.  Stops are how the compiler signals to the processor which instructions can be

executed in parallel.  Instructions not separated by a stop can be executed in parallel.  Up to

two full bundles comprising six instructions can be executed by the Itanium every clock

cycle, each stop, however represents a break that requires all the following instructions to

wait for the next clock cycle.

 Though the Itanium has the functional unit resources to execute IA-32 code very

fast, it is difficult for it do so.  The hardware needed to execute IA-32 code efficiently is not

a subset of the hardware needed for IA-64 execution.  Efficient IA-32 execution requires

large amounts of register renaming and out of order speculation hardware both of which

are, by design, not used in IA-64 processors.  The inclusion of this extra hardware into

Itanium processors increases the die size and complicates on chip routing, both of which

increase the cost of the final chip.  Because of the huge differences in basic design between

IA-32 and IA-64 instructions sets it's very difficult to achieve high performance in both

with a single chip hardware based solution.  Thus Itanium's hardware IA-32 solution is

likely never to give performance competitive with pure IA-32 processors.
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IA-64 processors need to execute many instructions at a time to achieve high

speed.  This is difficult with an IA-32 binary since IA-32 code tends to be heavily serialized

due to the very limited number of registers which leads to heavy register reuse and frequent

spilling to stack memory.  This is where dynamic optimization and translation can help.

Runtime profiling can ensure that only frequently executed sections of the code are

translated and allow the translations to be specific to the most common control flow paths.

Unfortunately, efficient software emulation of the IA-32 ISA is notoriously difficult due to

the large number of complex instructions and complex machine state model.  Here matters

are helped by the Itanium's hardware support of IA-32 and support for mixed mode

execution.  With this, a dynamic optimizer such as DynamoRIO, which naturally gathers a

degree of profiling data as part of the tracing algorithm used amortize its own overhead,

can focus its efforts on translating only the most frequently executed instructions, leaving

complex, hard to translate, and infrequently executed instructions to the hardware.  Since

only unusual, hard to handle and presumably rare instructions and situations are left for the

hardware to handle, it's acceptable if its IA-32 support is slow and relatively inefficient.

This should allow for a solution that takes up much less die space, reduces complexity, and

gives better performance.  Since the hardware translation is restricted in terms of available

time, resources, and visibility, software translation of the most frequently executed regions

has the potential to greatly increase execution speed by taking advantage of features found

in the IA-64 ISA but not the IA-32 ISA such as predication, large register sets, and

speculative loads.  While binary translation could be done statically, the profile information

will not be available, or given profiling runs will be of much lesser quality.  Since accurate

profiling information is necessary to make full use of the predication and static scheduling

found in the IA-64 ISA , this argues for doing the translations dynamically at runtime.

7.2 Implementation of the IA-32 Accelerator
The Itanium processor has direct support for transitioning between IA-32 execution and

IA-64 execution modes through the jmpe extension to the IA-32 ISA and the br.ia

instruction in the IA-64 ISA.  When an application transitions from IA-32 mode into IA-64
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mode, the IA-32 machine state remains visible and modifiable in a subset of the IA-64 state.

For example, IA-32 register eax becomes IA-64 register 8.  Experimentally, the cost of

switching modes is on the order of about 240 cycles for a round trip on an Itanium 1

processor.  The operating system (if running in IA-64 mode) can choose whether or not to

allow an application to switch between IA-32 and IA-64 through a flag in the processor

status register.  Attempting to transition between the two instruction sets when the flag is

set cause an execution.  Support for both instruction sets is needed in a dynamic partial

translation system such as described in this thesis.

Since DynamoRIO already supported all of the IA-32 ISA only the jmpe

extensions needed to be added for Itanium support.  The jmpe instruction comes in two

forms : register indirect and absolute.  Both forms put a return address in the first general

purpose register and switch into IA-64 execution mode starting at the instruction bundle

targeted by the jmpe.  The indirect form was a fairly straightforward extension to 's system,

but the jmpe absolute form was slightly more difficult since it uses a unique addressing.

Unlike most call, jmp, and branch instructions it uses and absolute address instead of

program counter relative offset, yet at the same time it doesn't use a segment register as its

base unlike far pointer calls and jmps.  No other IA-32 instructions have the same

addressing mode.  For the IA-64 side and emitting library, sans an instruction

representation, was obtained from Intel for use in generating IA-64 instructions and

modified for use from within DynamoRIO.

The IA-32 accelerator for Itanium processors described below translates all

traces into Itanium native IA-64 instructions.  Thus it prevents DynamoRIO from tracing

through a location it will be unable to translate or from starting a trace on a block that will

be difficult to translate because of incoming eflags dependencies.  When given a trace to

translate, the IA-32 accelerator generates two traces: one in IA-64 and one in IA-32.  The

IA-64 trace does all the computation in the trace and is emitted to a separate buffer.  The

IA-32 trace is really a stripped down stub consisting of a jmpe instruction to the IA-64

trace and a series of jump instructions (one for each exit of the trace) that are target exits in

the IA-64 trace that aren't linked (figure 7-1).  This allows the leveraging of DynamoRIO's

43



linking and cache management routines.

Original Trace Translated Traces
IA-32
foo:
    add EAX, 4
    mov EBX, (EAX)
    cmp EBX, 0
    je exit_stub1  <target bar1>
    add EDX, EAX
    mov ECX, (EBX)
    cmp ECX, 1
    jne exit_stub2  <target bar2>
    jmp exit_stub3 <target foo>
    
    

IA-32 section
   jmpe ia64_start
trace:
   jmp exit_stub1 <target bar1>
   jmp exit_stub2 <target bar2>
   jmp exit_stub3 <target foo>

IA-64 section
(unbundled, unoptimized, with last
branch linked)
ia64_exit:
      br.ia b1
ia64_prefix:
      movl r1 = &trace
ia64_start:
      adds r8 = 4, r8
      ;;
      ld4 r11 = [r8]
      ;;
      cmp4.eq p2,p3 = 0, r11
      ;;
(p3)  adds r1 = 5, r1
(p2)  mov b1 = r1
(p2)  br ia64_exit
      ;;
      add r10 = r10, r8
      ld4 r9 = [r11]
      ;;
      cmp4.eq p2,p3 = 1, r9
      ;;
(p3)  adds r1 = 5, r1
(p2)  mov b1 = r1
(p2)  br ia64_exit
      ;;
      adds r1 = -10, r1
      br ia64_start  

Figure 7-1: Sample trace translated into IA-64.  Note that EAX = r8, EBX = r11, ECX = r9, and EDX =
r10. Also note that the jmp instructions in the IA-32 section of the translated trace are 5 bytes long, hence
the 5 byte increments of r1 to advance to the next exit.

When an IA-64 trace is reached through the jmpe instruction in its

corresponding IA-32 trace it gets, as a sideffect of the jmpe instruction, a pointer the

instruction immediately following the jmpe placed in register 1.  This register is used by all
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of the IA-64 traces to signal where to go when they exit a trace.  At every exit point in the

trace there is a move of register 1 into a branch register and a potential br.ia of that register

back into the IA-32 trace.  Register 1 is kept updated by incrementing it by 5 at each trace

exit point, keeping a one to one correspondence between exits of the IA-64 trace and the

series of jmps exiting the IA-32 trace.  Thus at every exit point from the IA-64 trace it is

incremented by 5 so as to keep correspondence with the corresponding trace exits in the

IA-32 trace.  This allows existing DynamoRIO infrastructure to take care of all of the

linking, unlinking and cache management issues.  If a branch is linked to another trace then

the corresponding br.ia branch of the itanium is overwritten with a jmp to the entry point of

the other Itanium trace, and similarly for unlinking.  Each Itanium trace has a prefix for

being linked to by other Itanium traces.  This prefix just sets register 1 to the correct value

for the corresponding IA-32  trace.  A direct link can, however, just adjust register

appropriately if taking the exit, though this not supported currently except in the case of

exits that target their owning trace.  

Since switching into and out of IA-64 mode is expensive, it is desirable to do

so as little as possible.  Linking direct exits of IA-64 traces to other IA-64 traces helps a lot

but still leaves the problem of indirect jumps which under the system described so far

always mean a br.ia back to IA-32 code for the lookup of the target and then a jmpe back

into IA-64 mode assuming the target is found and is a trace.  To avoid this mode switching

overhead a small IA-64 routine was written to walk the indirect branch hash table and jump

directly to the Itanium target trace if it exists.

The IA-32 eflags register requires special attention during translation.  The

eflags register contains the status flags used to resolve conditional jumps, and

unfortunately, most IA-32 instructions affect the eflags register in some way.  While the

eflags from the IA-32 execution are accessible in IA-64 mode on the Itanium through an

application register, actually propagating each instruction's effects on it would incur an

enormous overhead.  Fortunately, programs almost always only care about flags set by

compare or test instructions, and even then only with regards to the very next conditional

jump instruction.  In order to simplify eflags analysis, traces are only allowed to use the
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eflags this way.  This is enforced by looking up the targets of direct trace exits and making

sure they all write the eflags register before reading it.  This is done at trace generation so

that a trace can be stopped before an offending exit is added.  With indirect jumps (such as

returns), however, no such guarantee about eflags usage can be made; there are compilers

that pass information in the eflags register through indirect jumps (even returns).  GCC on

Linux, however, doesn't display this kind of behavior allowing the issue to be avoided for

now.  Future plans for the IA32-Accelerator include the ability to replay the instruction that

set the eflags register when back in IA-32 mode to update the eflags state.  This can be

accomplished by using some of the many extra registers in IA-64 to hold copies of the

value of the source operands of the instruction that last wrote the eflags.  Then before an

exit they are stored in memory, after the switch to IA-mode several registers are spilled and

the stored values are loaded.  At this point the a version of the eflags setting instruction that

uses the stored sources and avoids any memory side effects is replayed.  Now that the

eflags register holds the correct value, the spilled registers are restored and things can
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Figure 7-2: Performance of the IA-32 acellerator on simple
computationally limited sample programs.  The programs were compiled
for IA-32 and run on a 733mhz Itanium processor running 64 bit linux.
Timing was measure with the time command.  Execution time is
normalized to the execution time of the native IA-32 binary on Itanium.
Source code can be found in appendix 2.



continue normally.

7.3 Performance of IA-32 Accelerator
As a proof of concept the IA-32 accelerator was run on some small computationally limited

sample programs (figure 7-2) with a simple translator.  In these situations it showed

substantial improvements over the base system with just a proof of concept implementation.

The proof of concept implemenation uses just a simple straightforward in order translation

with no scheduling or scratch register reuse.  Early work on translating more complicated

programs, and performing a more optimal translations is very promising.  Since the Itanium

executes instructions in order it is highly dependent on the compiler to generate a good

schedule, one would expect, therefore, that the addition of a good scheduler and

optimizations to make use of the hardware resources the Itanium provides more effectively

could give even larger performance improvements.  Given that even a simple translation has

the potential to improve performance, it is not surprising that Intel has just recently

announced in a press release that, starting late fall 2003, they will release some sort of

software runtime translation system for IA-32 applications running on Itanium II processors

that will be dramatically faster than the current hardware based solution though details

haven't yet been forthcoming.

7.4 Future Considerations
While the results above demonstrate the possibilities of this approach, more work is needed

to broaden the class of translatable instructions and for optimizing the translated

instructions.  IA-64 is a notoriously hard architecture to target efficiently and performance

improvement on more realistic programs will require a more effective scheduler (schooling

instructions on the Itanium is a very difficult task) and the addition of some Itanium

optimizations.  One such optimization will be to inline small conditional blocks into traces

through the use of predicated instructions.  Since predicated instructions still take up issue

slots we can use profile information collected by dynamo to only inline the small conditional

blocks that are executed often enough to make it worthwhile.  Since IA-32 is a register

47



starved architecture we can also make use of the extra registers in IA-64 to hold stack

values, memory values, and DynamoRIO state that would otherwise be shuffled in and out

of memory.  This sort of memory promotion can be achieved by co-opting the speculative

load hardware (ALAT) to detect write aliasing to these memory locations at almost no

extra cost [16] though any improvement is likely to be small since the ALAT doesn't check

for read aliasing which limits the applicability of this approach.  Also the most simple

addition that would enhance the performance of this system is a good scheduler.
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Chapter 8

Conclusion
In conclusion, we have presented some evidence to support that it is both possible and

practical to improve the performance of the execution of non-native languages through

the use of a runtime optimization system.   We have shown that, with the help of some

optimization, interpreters can, with minimal source level annotations, be dramatically sped

up under the DynamoRIO runtime system.  Since the DynamoRIO infrastructure and

optimization passes can be reused from one language to another, this work demonstrates

that with very little work additional performance can be squeezed out of interpreters by a

common runtime optimizations system.  Thus avoiding the huge amount of minimally

reusable effort that goes into writing a compiler or JIT for a particular language.  We have

also shown that speed improvements are possible when running IA-32 binaries on the

Itanium family of processors under a dynamic optimization and translation system.   A

proof of concept demonstration hints that dynamic translation and optimization of

frequently executed traces under DynamoRIO holds great promise for increasing IA-32

binary performance on the Itanium family of processors.  Thus, dynamic translation and

optimization hold hope for improving the current poor performance of Itanium processors

on IA-32 binaries which is one of the key features limiting their wider adoption.  
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Appendix 1
Annotation of a simple interpreters – excerpt from TinyVM interpreter
DynamoRIO annotations are in italics, ... signals removed code.

int main (int argc, char *argv[]) {
...
    dynamorio_app_init();
    printf ("starting dynamo\n");
    dynamorio_app_start(); /*gives control of the program to DynamoRIO*/
...
    /* Optimization Annotations */
    dynamorio_set_region_immutable(instrs,((int)instrs+num_instrs*sizeof
(ByteCode)-1));
...
eval()
...
    printf("ending dynamo\n");
    dynamorio_app_stop();
    dynamorio_app_exit();
}

value eval () {
  int pc = 0, op; /* instruction num and opcode */
...
loop: 
    op = instrs[pc].op;
    switch (op) {
    case CALLOP: /* call bytecode */

...
pc = arg; /* go to start of function body */
dynamorio_set_logical_pc(pc);
dynamorio_logical_direct_jump();

          /* Optimization Annotations */
dynamorio_set_trace_constant_stack_address(&pc, pc);
dynamorio_unaliased_stack_address(&op);
goto loop;

    case RETOP:   /* return bytecode */
...

pc = pop_raw(); /* pop the return PC */
dynamorio_set_logical_pc(pc);
dynamorio_logical_indirect_jump();

           /* Optimization Annotations */ 
dynamorio_set_trace_constant_stack_address(&pc, pc);
dynamorio_unaliased_stack_address(&op);
goto loop;

    case DUPEOP:    /* interpreted program non-control flow statement */
...

pc++;
goto loop;

}
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Appendix 2
Source Code of IA-32 Accelerator Tests 
While these sample programs are simple and could be highly optimized, it should be noted

that for the purposes of demonstrating the potential of the IA-32 accerlator, they were

compiled without optimizations and no optimizations were performed during the translation

into IA-64.  The translated traces do 100% of the work the untranslated traces did even if

the work from a program semantics point of view is unnecessary.  No simplification was

performed to combine, reorder, or otherwise improve trace preformance , other than the

translation into IA-64.  Each IA-32 instruction maps directly to one or more IA-64 bundles

that perform the same function.

Simple Loop Test – tests basic looping
#include <stdio.h>
int
main(int argc, char *argv[]) {
  int foo;
  int bar 500000000;
  for (foo = 0; foo < bar; foo++) foo += 5;
  for (foo = 0; foo < bar; foo++) foo += 5;
  for (foo = 0; foo < bar; foo++) foo += 2;
  for (foo = 0; foo < bar; foo++) foo += 2;
  printf("foo : %d\n", foo);
  return 0;
}

Big Loop Test – more involved loop test

#include <stdio.h>

int
main(int argc, char *argv[]) {
  int arr[10];
  int foo;
  int bar = 500000000;
  int car = -1;
  for (foo = 0; foo < bar; foo++) {
    car += car;
    foo += car;
    car ++;
    foo += 5;
    arr[car+4] = foo;

51



  }
  for (foo = 0; foo < bar; foo++) {
    car += car;
    arr[car+4] = foo;
    foo += 5;
    foo += car;
    car ++;
  }
  for (foo = 0; foo < bar; foo++) {
    foo += 2;
    car += car;
    car++;
    arr[car+4] = foo;
    foo += car;
  }
  for (foo = 0; foo < bar; foo++) {
    arr[car+4] = foo;
    car += car;
    foo += 2;
    car++;
    foo += car;
  }
  printf("foo : %d  car %d\n", foo, car);
  return 0;
}

52



Bibliography

[1] Adl-Tabatabai, A. R., Cierniak, M. Lueh, G. Y., Parikh V. M., and Stichnoth, J. M.

Fast, effective code generation in a just-in-time Java compiler. In Proceedings of the

SIGPLAN'98 conference on Programming Language Design and Implementation PLDI

June 1998.

[2] Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S., Henzinger, M., Leung, S. A.,

Sites, R. L., Vandevoorde, M. T., Waldspurger, C. A., Weihl, W. E. 1997. Continous

profiling: Where have all the cycles gone? In 16th Symposium on Operating System

Principles (SOSP '97). October 1997.

[3] Bala, V., Duesterwald, E., Banerjia, S.  Transparent dynamic optimization: The design

and implementation of Dynamo. Hewlett Packard Laboratories Technical Report HPL-

1999-78. June 1999.

[4] Bala, V., Duesterwald, E., and Banerjia, S.  Dynamo: A trasparent dynamic

optimization system.  In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementatino (PLDI 2000),  June 2000.

[5] Bedichek, R. Talisman: fast and accurate multicomputer simulation. In Proceedings of

the 1995 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems. 1995

[6] Bruening, D., Duesterwald, E.,  Amarasinghe, S. 2001 Design and Implementation of a

Dynamic Optimization Framework for Windows. 4th ACM Workshop on the Feedback-

Directed and Dynamic Optimization (FDDO-4). Dec. 2001.

53



[7] Bruening, D., Garnett, T., Amarasinghe, S.  An infrastructure for adaptive dynamic

optimization.  In 1st International Symposium on Code Generation and Optimization (CGO-

2003), March 2003.

[8] Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin, N., Tye, T., Yadavalli, B.,

and Yates, J. 1998. FX!32: a profile-directed binary translator. IEEE Micro, Vol 18, No. 2,

March/April 1998.

[9] Cmelik, R.F., and Keppel, D. 1993. Shade: a fast instruction set simulator for execution

profiling. Technical Report UWCSE-93-06-06, Dept. Computer Science and

Engineering,University of Washington. June 1993.

[10] Deutsh, L. P. and Schiffman, A. M. Efficient implementation of the Smalltalk-80

system.  In ACM Symposium on Principles of Prgramming Languages (POPL '84) Jan.

1984

[11] Duesterwald, E., Bala, V. Software profiling for hot path prediction: Less is more. In

Proceedings fo the 12th International Conference on Architectual support for Programming

Languages and Operating Systems (ASPLOS '00). Oct. 2000

[12] Ebcioglu K., and Altman, E.R. 1997. DAISY: Dynamic compilation for 100%

architectural compatibility. In Proceedings of the 24 th Annual International Symposium on

Computer Architecture. 26-37. 1997.

[13] Herold, S.A. 1998. Using complete machine simulation to understand computer

system behavior. Ph.D. thesis, Dept. Computer Science, Stanford University. 1998.

[14] Holzle, U., Adaptive Optimization of Self: Reconciling High Performance with

54



Exploratory Programming.  PhD thesis, Stanford University, 1994

[15] Klaiber, A., The technology behind the Crusoe processors. Transmeta Corporation,

http://www.transmeta.com/about/press/white_papers.html  Jan. 2000.

[16] Lin, J., Chen, T., Hsu, W., Yew, P.  Speculative Register Promotion Using Advanced

Load Address Table (ALAT). University of Minnesota CGO 2003.

[17] Schlansker, M. S., Rau. B. R.,  EPIC: Explicitly Parallel Instruction Computing.

Computer 33, 2 (2000), 37-45, 2000.

[18] Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., and Robinson, S.G. Binary

Translation. Digital Technical Journal, Vol 4, No. 4, Special Issue, 1992.

[19] Stears, P. 1994. Emulating the x86 and DOS/Windows in RISC environments. In

Proceedings of the Microprocessor Forum, San Jose, CA. 1994

[20] Sullivan, G., Bruening, D., Baron, I., Garnett, T. and Amarasinghe, S. 2003. Dynamic

Native Optimizations of Interpreters.  Pending publication in ACM SIGPLAN 2003

Workshop on Interpreters, Virtual Machines and Emulators (IVME). 2003.

[21] Witchel, E. and Rosenblum R. 1996. Embra: fast and flexible machine simulation. In

Proceedings of the SIGMETRICS ’96 Conference on Measurement and Modeling of

Computer Systems. 1996.

55






