Organic Computing
DISCLAIMER

The views, opinions, and/or findings contained in this article are those of the author(s) and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

Approved for Public Release, Distribution Unlimited



Organic Computing

Anant Agarwal and Bill Harrod
MIT CSAIL and Darpa IPTO

August 2006

Imagine a revolutionary computing chip that can observe its own execution and optimize its behavior
around a user’s or application’s needs. Imagine a programming capability by which users can specify their
desired goals rather than how to perform a task, along with constraints in terms of an energy budget, a
time constraint, or simply a preference for an approximate answer over an exact answer. Imagine further a
computing chip that performs better according to a user’s preferred goal the longer it runs an application.
Such an architecture will enable, for example, a handheld radio or a cell phone that can run cooler the longer
the connection time. Or, a chip that can perform reliably and continuously in a range of environments by
tolerating hard and transient failures through self healing.

This paper proposes the vision of organic computation that will create such a self-aware computing
device and an associated software system. An organic computer is given a goal and a budget — it then finds
the best way to accomplish the goal with the means at hand. Much as in a biological organism, an organic
computer has five major properties:

1. It is introspective or SELF-AWARE in that it can observe itself and optimize its behavior to meet its
goals.

2. Itis ADAPTIVE in that it observes the application behavior and adapts itself to optimize appropriate
application metrics such as performance, power, or fault tolerance.

3. It is SELF HEALING in that it constantly monitors its resources for faults and takes corrective action
as needed. Self healing can be viewed as an extremely important instance of self awareness and
adaptivity.

4. It is GOAL ORIENTED in that it attempts to meet a user’s or application’s goals while optimizing
constraints of interest.

5. It is APPROXIMATE in that it uses the least amount of precision to accomplish a given task. An
organic computer can choose automatically between a range of representations to optimize execution
— from analog, to single bits to 32-bit and 64-bit words, to floating point, to multi-level logic.

Organic computation can be distinguished from existing computational models which are largely proce-
dural. Today’s models require a user to specify a procedure of how something is to be done and the computer
blindly follows this procedure irrespective of application or environmental conditions using a fixed set of
prearranged resources. For example, if the user wants to use a computing device for software radio, then

Approved for Public Release, Distribution Unlimited 1



the user programs it with a known bitwidth and prearranged code for algorithms such as Viterbi decode and
FFT and to accept a given bitrate. The hardware is similarly fixed for all time. For example, the cache in the
processing engine might be sized at 128Kbytes and two-way associative.

An organic computer, on the other hand, is given a goal and it attempts to achieve the goal with the
minimal amount of resources and energy. Of course, it is also provided with many possible procedures to
accomplish subtasks, each of which might use different types of architectural components. In our software
radio example, the organic computer is given the goal of maintaining a connection to a receiver with a desired
bit rate, using the least amount of energy. The software system and architecture collaborate on achieving this
goal. An organic computer has cognitive hardware mechanisms in its trusted core to both OBSERVE and to
AFFECT the execution. Since it is impossible to pre-configure all possible scenarios, the organic computer
also implements learning and decision making engines in a judicious combination of hardware and software
to determine the appropriate actions based on given observations. Thus, in our software radio example, the
system will use the right precision for the FFT computations and the required amount of parallel hardware
resources to achieve the goal. If the channel has very little noise, then the it might use a simpler coding
scheme. The hardware will observe the execution of the code, and depending on the estimated working set
size of the code, the system will shut off portions of the cache or make it direct mapped to save energy. At
the same time, the system ensures that the goal is being met.

An organic computer can achieve 10x to 100x improvement in key metrics such as power efficiency
and cost performance over extant computers. For instance, if for some streaming computation the system
observes that 64 bits of precision is unnecessary (for example, if no changes are detected in the top 62 bits
for a while) and can use 2 bits of precision, while at the same time turning off the data cache and using
direct streaming of data over the network, the system can benefit from energy savings of 40x to 50x. As
another example, the organic system might slow the clock to a sub module (and also the supply voltage) if
its overall goal can be achieved with a much lower frequency. As a further example, in a tiled architecture
running two streams of H.264 video encode, the system might observe the achieved output bandwidth for
each stream, and move tiles between streams dynamically if the two video streams differ in complexity to
maintain a fixed frame rate and a given per-stream bandwidth requirement.

Probably much more importantly, much like biological organisms, an organic computer can go well
beyond traditional measures of goodness like performance and can adapt to different environments and even
improve itself over time. It can also perform code intrusion detection” by flagging abnormal behavior in
its software by learning and maintaining signatures of its normal behavior. Corrective action might include
shutting itself down or in some cases applying self healing. In doing so, the organic computer can build
upon technologies developed for systems in the previous intrusion tolerant systems (ITS) program out of
IPTO in which a congruence between self healing for faults and for malicious intrusions was demonstrated.

Why now? Although such a machine may seem rather far fetched, we believe that basic semiconductor
technology, computer architecture and software systems have advanced to the point that the time is ripe to
realize such a system. To illustrate, let us examine each of the key aspects of organic computation including
introspection, approximation, goal orientation, adaptation and self healing. We will discuss how they might
be built in a practical way, and identify the fundamental challenges that we will have to overcome.

Introspection or self awareness implies that the system can observe itself while it is executing. The
processor hardware can include mechanisms to observe instantaneous cache miss rates, bit positions in data
words that are changing, cache sets that are hot versus others that are idle, numbers of errors in data transmis-
sions or memory access, branch directions, network and memory latencies and queue lengths, among many

Approved for Public Release, Distribution Unlimited 2



others. These measurements will feed adaptation mechanisms that will adapt the architecture as needed. In-
trospection or self awareness requires foundational changes to computer architecture - self aware computers
need mechanisms to observe themselves. Fortunately, semiconductor technology makes available billions
of transistors on a single chip, so throwing transistors at the problem of building observers and recording
state is eminently feasible today. Our challenge will be to identify what metrics are worth observing, how
to make the measurements without impacting the execution, and what we can do with the results. We have
some existing examples in this area. In recent work, we have shown that we can observe phase changes
in program execution and change the cache access hash function to optimize cache miss rates. We have
demonstrated that cache miss rates can be halved for many applications in this manner. In another body of
work related to tiled architectures, we have used an adjacent helper tile to observe the execution (in particu-
lar, memory reference patterns) of a given master tile and prefetch data into the master tile’s cache before it
is needed.

Approximate computation implies that the computer does not always use the most available precision
to accomplish a task. For instance, modern day processors have reached 64 bits of digital data widths. This
data width is used in all computations whether it is needed or not. There are many classes of computations
for which this precision is overkill. As an extreme example, imagine an image recognition task in which the
final answer to the user is a single bit - yes or no (for example, is there a tank in this image or not). It is quite
possible that a simple edge representation using just one bit per pixel might suffice to perform the pattern
recognition task. Approximation can be applied in many other areas of digital design as well, and in fact,
we question the very basic overkill digital design philosophy, viz, requiring signals to be fully restored after
each logic element. The computer can try to use the minimal precision and probably even multilevel logic or
the analog representation in its computations to produce a result. One research challenge with approximation
is to figure out the minimal precision needed for a given computation. Another challenge will be to discover
the best way to introduce analog representation into what is fundamentally a digital computer. Some recent
work in this area includes compiler supported bit-width analysis. Other work that directly applies here is
that of Rinard et al which has shown the possibility of highly reliable computation even when erroneous
data values are ignored and allowed to propagate during program execution.

Goal orientation implies a revolutionary transition in architecture and algorithm design from a procedu-
ral style of specification to a goal oriented style. Goals indicate precisely what the user wants, not how to
get there. This way, the computer can determine how best to achieve a user’s goals depending on the condi-
tions on the ground. Goal orientation can be applied at all levels of a system — from the specification of the
application all the way down to transmission of bits on a wire. In the latter case, a communications channel
within the chip might choose to perform lossy compression to achieve effectively higher bandwidth transfer
if the goal of the higher level application does not care about an exact representation. An example of an
architectural goal can be to maintain no more than a maximum bandwidth demand on the memory system.
An example of a system goal might be to maintain a given maximum power dissipation. Recent work along
these lines includes the GOALS system that is a software system that attempts to meet user-driven goals,
rather than follow set procedures.

Adaptation is the ability of the computer to change what it is doing or how it is doing a given thing at run
time. A key part of adaptation is the development of a control system as part of the computer architecture
that observes execution, measures thresholds and compares them to goals, and then adapts the architecture
or algorithms as needed. A key challenge is to identify what parts of a computer need to be adapted and
to quantify the degree to which adaptation can afford savings in metrics of interest to us. Examples of
mechanisms that can be adapted include various cache parameters such as associativity and replacement

Approved for Public Release, Distribution Unlimited 3



algorithm, prefetch methods, number of tiles used in a computation, and the presence or absence of coding
or compression when transmitting data. Recent research on reactive synchronization is another example of
adaptation in which the waiting algorithm was tailored at run time to the observed delay in lock acquisition.

Self healing is an extremely important special case of adaptation. We give it independent billing because
in the future era of multiple billions of transistors on a chip and deep submicron technologies, continuous
correct operation in the presence of transient and hard failures will become a basic requirement. Thus a
self healing system can use introspection to observe where errors are occurring and perform appropriate
adaptation to fix the problem. For example, if errors are seen during data transmission on a given link, then
the system can use one of two mechanisms to self heal. (1) It can use introduce coding to correct errors,
or (2) it can cause messages to be rerouted to bypass the faulty region. The same technique can be used in
caches to turn off cache banks that are producing errors.

Much like in the Darpa PCA program, organic computation applies to all levels of a computer sys-
tem, and will involve research in computer architecture, VLSI chip design, runtime software systems and
compilers.

We will also establish measures of success for this program. Some examples of precise measures of
success include:

e Build a chip which demonstrates less than half the initial power dissipation after a period of observa-
tion for a given application.

e Build a chip which demonstrates twice its initial throughput after an initial observation period for a
given application.

e Build a chip that maintains a given throughput goal, for example, for a transactional workload, even
when the external DRAM speeds are changed by a factor of 10.

e Build a system containing a pair of organic computing chips working together on a board with a
wired channel connecting them. The system continues correct operation, perhaps with a graceful
performance degradation, even as some of the wires connecting the two chips are purposefully cut.

The computing industry is at a major crossroads. Semiconductor technology offers tens of billions of
transistors on a chip, and future advancements show no signs of abating. In recent times, unfortunately,
these advancements have not resulted in proportional increases in performance or other measures of interest
to users. Thus, the computing industry is ready and receptive to the next major revolution in computer
architecture. We believe that the proposed vision on organic computation can revolutionize computing from
a procedural model to a goal oriented world in which programmers deal with select goals, not with each
possible case, thereby reaching unprecedented levels of productivity, performance, and resilience.

Approved for Public Release, Distribution Unlimited 4



