
Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding, 
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004 

1

Cache Refill/Access Decoupling 
for Vector Machines

Christopher Batten, Ronny Krashinsky, 
Steve Gerding, Krste Asanović

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

December 8, 2004



Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding, 
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004 

2

Cache Refill/Access Decoupling 
for Vector Machines

• Intuition
– Motivation and Background
– Cache Refill/Access Decoupling
– Vector Segment Memory Accesses

• Evaluation
– The SCALE Vector-Thread Processor
– Selected Results

My talk will have two primary parts. First, I will give some motivation and 
background before discussing the two key techniques that we are proposing in 
this work. Namely, cache refill/access decoupling and vector segment memory 
accesses. In the second part of the talk, I will briefly evaluate a specific 
implementation of these ideas within the context of the SCALE vector-thread 
processor.
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Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Processor Architecture

Modern High Bandwidth 
Memory Systems

I would like to begin with two key observations. 
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Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Processor Architecture

Modern High Bandwidth 
Memory Systems

Target application domain
– Streaming
– Embedded
– Media
– Graphics
– Scientific

The first is that many applications have ample memory access parallelism and 
by this I simply mean that they have many independent memory accesses. This 
is especially true in many streaming, embedded, media, graphics, and scientific 
applications. 
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Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Processor Architecture

Modern High Bandwidth 
Memory Systems

Techniques for high 
bandwidth memory systems
– DDR interfaces
– Interleaved banks
– Extensive pipelining

Target application domain
– Streaming
– Embedded
– Media
– Graphics
– Scientific

The second observation is that modern memory systems have relatively large 
bandwidths due to several reasons including high speed DDR interfaces, 
numerous interleaved banks, and extensive pipelining. 
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Processor Architecture

Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Modern High Bandwidth 
Memory Systems

Many architectures 
have difficulty 
turning memory 
access parallelism 
into performance
since they are 
unable to fully 
saturate their 
memory systems

Ideally, an architecture should be able to turn this memory access parallelism 
into performance by issuing many overlapping memory requests which saturate 
the memory system. Unfortunately, there are two significant challenges which 
make it difficult for modern architectures to achieve this goal.
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Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Processor Architecture

Modern High Bandwidth 
Memory Systems

Memory access 
parallelism is poorly 
encoded in a scalar ISA

Supporting many 
in-flight accesses is 
very expensive

The first is at the application/processor interface – scalar ISAs poorly encode 
memory access parallelism making it difficult for architectures to exploit this 
parallelism. The second challenge is at the processor/memory system interface 
since supporting many accesses in-flight in the memory system is very 
expensive.
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Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Vector Architecture

Modern High Bandwidth 
Memory Systems

Supporting many 
in-flight accesses is 
very expensive

Our group is specifically interested in vector architectures. Vector architectures 
are nice since vector memory instructions better encode memory access 
parallelism, but even vector architectures require a great deal of hardware to 
track many in-flight accesses
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Applications with Ample 
Memory Access Parallelism

Turning access parallelism 
into performance is challenging

Vector Architecture

Non-Blocking Data Cache

Modern High Bandwidth 
Main Memory

A data cache helps 
reduce off-chip 
bandwidth costs at the 
expense of additional 
on-chip hardware

Furthermore, modern vector machines often include non-blocking data caches 
to exploit reuse and reduce expensive off-chip bandwidth requirements. 
Unfortunately, these non-blocking caches have several resources which scale 
with the number of in-flight accesses and this increases the cost for applications 
which do not fit in cache or have a significant number of compulsory misses. To 
get a better feel for these hardware costs we first examine how many in-flight 
accesses are required to saturate modern memory systems.
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Each in-flight access 
has an associated hardware cost

Processor Cache Memory

100 Cycle 
Memory 
Latency

Cache Refill

Primary Miss

This is a timeline of requests and responses between the processor and the 
cache and between the cache and main memory. Each tick represents one 
cycle, and we assume that the processor to cache bandwidth is two elements 
per cycle while the cache to main memory bandwidth is one element per cycle. 
The blue arrow indicates a processor load request for a single element. For this 
example, we assume the processor is accessing consecutive elements in 
memory and that these elements are not allocated in the cache. 

Thus the load request misses in the cache and causes a cache refill request to 
be issued to main memory. Some time later, main memory returns the load 
data as well as the rest of the cache line. We assume that the cache line is four 
elements. The cache then writes the returned element into the appropriate 
processor register.
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Each in-flight access 
has an associated hardware cost

Processor Cache Memory

100 Cycle 
Memory 
Latency

Cache Refill

Primary Miss

Reserved Element 
Data Buffering

Access
Management State

Each in-flight access requires two pieces of hardware. The first is some
reserved element data buffering in the processor. This is some storage that the 
processor sets aside so that the memory system has a place to write data when 
it returns. We need this because we are assuming that the memory system 
cannot be stalled, which is a reasonable assumption with today’s heavily 
pipelined memory systems. The second component of the hardware cost is its 
access management state – this is information stored by the cache about each 
in-flight element. For example, it includes the target register specifier so that 
the cache knows into which register to writeback. It is important to note that 
the lifetime of these resources is approximately equal to the memory latency.

Obviously, the processor cannot wait 100 cycles to issue the next load request 
if we hope to saturate the memory system …
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1 element

cycle
100 cycles

100 in-flight elements

Main Memory
Bandwidth-Delay Product

Saturating modern memory systems 
requires many in-flight accesses

Processor Cache Memory

100 Cycle 
Memory 
Latency

Cache Refill

Secondary Miss

Primary Miss

Thus on the cycle after the first request, the processor should make another 
request for the second element in the array. This request will also miss in the 
cache, but it is to the same cache line as the first request – and that cache line 
is already in flight. Thus we do not need to send a new refill request to main 
memory. The first miss to a given cacheline is known as a primary miss (show 
here in blue), while additional misses to a cache line which is already in-flight 
are known as secondary misses (shown here in red). The processor will 
continue to issue secondary misses until it gets to the next cache line and thus 
the next primary miss. 

So to saturate the main memory bandwidth of one element per cycle we must 
support one hundred in-flight elements … this means the processor must have 
100 elements worth of reserved element buffering and the cache must have 
100 elements worth of access management state. In other words, the hardware 
costs are proportional to the bandwidth-delay product of main memory.
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2 elements

cycle
100 cycles

200 in-flight elements

Effective
Bandwidth-Delay Product

Caches increase the 
effective bandwidth-delay product

Processor Cache Memory

100 Cycle 
Memory 
Latency

Cache Refill

Secondary Miss

Primary Miss

Now lets see what happens if we include reuse. Assume that the processor is 
loading each element in the array twice and is issuing two requests per cycle to 
match the cache bandwidth. You would think that this is a good thing since we 
should be able to exploit the reuse to amplify our memory system bandwidth. 
While this is true, since these requests are misses, it means that the processor 
and cache must track twice as many secondary misses before the processor can 
get to the next primary miss. Thus the processor must have twice as much 
reserved element data buffering and the cache must have twice as much access 
management state. In other words, with reuse the hardware cost can be 
proportional to the effective bandwidth delay product: the cache bandwidth 
times the access latency in cycles. Modern vector memory systems have large 
and growing effective bandwidth delay products and thus require expensive 
non-blocking caches. This brings us to the goal for this work …
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Goal For This Work

Reduce the hardware cost 
of non-blocking caches in vector 

machines while still turning 
access parallelism into performance

by saturating the memory system

The goal is to reduce the hardware cost of non-blocking caches in vector 
machines while still turning access parallelism into performance by saturating 
the memory system.
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In a basic vector machine a single vector 
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

FU FU FU

Vector Processor

I am going to begin with a very brief refresher of how a basic vector machine 
works. A vector machine includes a parallel array of functional units, a vector 
memory unit, and a vector register file. The control processor is in charge of 
these units and issues commands instructing them what to do.



Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding, 
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004 

16

In a basic vector machine a single vector 
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

Vector Processor

FU FU FU

vlw vr2, r1

Let’s consider a simple example. The control processor issues a vector load 
word command to the vector memory unit, which then loads a vector of data 
into vector register two.
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In a basic vector machine a single vector 
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

FU FU FU

Vector Processorvadd vr0, vr1, vr2

The control processor might then issue a vector add command to the functional 
units which perform the add and write the result into vector register zero.
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In a basic vector machine a single vector 
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

FU FU FU

Vector Processorvsw vr0, r2

Finally, the control processor issues a vector store word command to the 
memory unit which moves the data from vector register zero into the memory 
system. Modern vector machines often include some decoupling between these 
units as an inexpensive way to tolerate various system latencies.
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In a decoupled vector machine the 
vector units are connected by queues

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU-CmdQ

VSU-
CmdQ

VLU-
CmdQ

VLDQ

VSDQ

Memory System

This is a figure of a basic decoupled vector machine and is similar to the 
previous figure, except that the units are connected by decoupling queues. 
Additionally, the parallel functional units have been grouped into a vector 
execution unit, and the memory unit has been divided into a separate vector 
load unit and vector store unit.
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Non-blocking caches require extra 
state to manage outstanding misses

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU-CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

As I mentioned earlier, modern vector machines often include non-blocking 
data caches to act as bandwidth amplifiers. Shown here is a basic non-blocking 
cache. In addition to the standard tag and data arrays, the cache includes extra 
state to track in-flight accesses. This states is located in the miss status 
handling registers and is composed of two structures: a set of miss tags and 
one replay queue per miss tag. The function of these structures will become 
clear as we go through an example.
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Control processor issues a 
vector load command to vector units

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

Our example will follow a vector load command through the system. The control 
processor begins by sending the address portion of the command to the vector 
load unit and the register writeback portion to the vector execution unit.
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Vector load unit reserves storage 
in the vector load data queue

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

The vector load unit then breaks up the long vector accesses into smaller 
memory requests. For each request, the vector load unit first allocates a slot in 
the vector load data queue or VLDQ and then issues this request to the memory 
system.
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If request is a hit,
then data is written into the VLDQ

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

HIT

If the request is a hit, then the cache immediately writes the data into the 
appropriate VLDQ slot.



Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding, 
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004 

24

VEU executes writeback command to 
move data into architectural register

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

HIT

The vector execution unit executes the writeback command and moves the data 
from the VLDQ into an architecturally visible vector register.
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On a primary miss, cache allocates 
a new miss tag and replay queue entry

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS

Replay Queue Entries

• Target register specifier
• Cache line offset
• Other management state

Now lets examine what happens if the VLU request misses in the cache. The 
cache is then going to allocate a new miss tag and replay queue entry. There is 
one miss tag for each cache line which is in-flight, and the miss tag simply 
contains the address of that in-flight cache line. There is one replay queue entry 
for each pending access. The entry contains various management state 
including the target register specifier and the cache line offset for the access.
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On a primary miss, cache allocates 
a new miss tag and replay queue entry

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS
RE-
FILL

Once the cache has allocated a miss tag and replay queue entry, the cache 
issues a refill request to main memory.
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On a secondary miss, cache just 
allocates a new replay queue entry

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

RE-
FILLMISS

While the refill is in-flight the cache can continue to issue more requests some 
of which may be secondary misses. These misses are to a cache line which is 
already in-flight, and therefore they need only be allocated replay queue 
entries.
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Processor is free to continue issuing 
requests which may hit in the cache

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

HIT

MISS

RE-
FILL

The processor can also get hits to a different cache line while the refill is still in-
flight. The VLDQ acts as a small memory reorder buffer since the memory 
system can write the VLDQ out of order, but the vector execution unit pops 
data off the VLDQ in order.
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When the refill returns from memory, 
the cache replays each pending access

Vector
Execution

Unit

Control
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VLU

VSU
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CmdQ
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Array

VLDQ
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Queues

Miss
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Proc Cache Mem

MISS

RE-
FILL

HIT

Eventually main memory returns the data to the cache …
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When the refill returns from memory, 
the cache replays each pending access

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS

RE-
PLAY

RE-
FILL

HIT

… and the cache replays the accesses in the corresponding replay queue, 
sending the data back to the VLDQ.
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Expensive hardware is required to 
support many in-flight accesses

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

The key point is that a decoupled vector machine needs a great deal of 
hardware to saturate modern memory systems. This hardware includes the 
command queues, the VLDQ, the miss tags, and the replay queues. Reuse 
makes the situation even worse, since the system needs to handle even more 
in-flight accesses. To better understand how these resources scale we are going 
to take a look at a decoupling diagram.
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Effective decoupling requires 
command and data queuing

VEUCP
VLU
VSU

Main Memory

DataTags

Program Execution

VSU

VEU

CP

VLU

This diagram shows the decoupling between the four units in the vector 
machine. The horizontal position of each unit indicates which command or 
instruction that unit is working on. At the very beginning all four units start 
together - the control processor then runs ahead queuing up commands for the 
other units.
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Effective decoupling requires 
command and data queuing

VEUCP
VLU
VSU

Main Memory

VLU-
CmdQ

VEU-CmdQ

VSU

VEU

CP

VLU

Program Execution

DataTags

VEU-CmdQ
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VEU

Effective decoupling requires 
command and data queuing

VLU
VSU

Main Memory

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQVSU

VEU
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VLU

Program Execution

DataTags

CP
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VEU

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

CP

Effective decoupling requires 
command and data queuing

VLU
VSU

Main Memory VLDQ 
Entries

VSDQ
Entries

VEU

VSU

VLU

Program Execution

DataTags

CP

The system also includes data queues to enable decoupling between the units. 
The vector load data queue decouples the vector load unit and the vector 
execution unit, while the vector store data queue decouples the vector 
execution unit and the vector store unit.
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VEU

Saturating memory system with many 
misses requires additional queuing
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VSU

Main Memory

Miss Tags 
Replay Queue Entries

VLDQ Entries

VSDQ
Entries

VSU

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

CP

VLU

VEU

Program Execution

DataTags

CP

Now let’s look at what happens when the VLU reaches a string of misses. The 
non-blocking cache will start to allocate miss tags and replay queue entries as 
the VLU and the control processor continue to run ahead.



Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding, 
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004 

37

VEU

Saturating memory system with many 
misses requires additional queuing
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VEU

Saturating memory system with many 
misses requires additional queuing
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The vector execution unit is stalled waiting for the data to return.
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VEU

Saturating memory system with many 
misses requires additional queuing
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VSDQ
Entries

VEU

VSU

VLU
VSU

Main Memory
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DataTags
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The key point to note here is that all of these resources need to scale in order 
to saturate large bandwidth delay product memory systems, and these 
resources can be quite expensive.
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Refill/access decoupling
prefetches lines into cache

Processor Cache Memory
PRIMARY

MISS

SECONDARY
MISSES

REPLAY

Processor Cache Memory

HITS

PREFETCH

We are now going to look at our first technique called refill/access decoupling. 
This simple technique drastically reduces the hardware cost of non-blocking 
data caches in vector machines. It is based on the observation that every cache 
miss has two parts – the refill which moves data from main memory into the 
cache and the access which moves data from the cache into the processor. We 
simply want to decouple these so that the refill happens before the access, and 
thus all the actual accesses should be hits.
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Refill/access decoupling
prefetches lines into cache

Processor Cache Memory

HITS

PREFETCH

• Acts as inexpensive
and non-speculative
hardware prefetch

• Only need one 
prefetch per cacheline

• Prefetch requests are 
cheaper than the 
actual accesses

Essentially this acts as an inexpensive and non-speculative hardware prefetch. 
In addition to the fact that we only generate one prefetch request per cache-
line, we will show over the next few slides that prefetch requests require less 
resources than the actual accesses themselves.
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The vector refill unit brings lines into the 
cache before the VLU accesses them

Vector
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Unit
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CmdQ
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Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

We implement refill/access decoupling by adding a vector refill unit to the 
previously described decoupled vector machine.
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The vector refill unit brings lines into the 
cache before the VLU accesses them
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Tags
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Proc Cache Mem

As before the control processor issues a vector load command, but now it also 
sends the address portion to the vector refill unit.
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The vector refill unit brings lines into the 
cache before the VLU accesses them
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The vector refill unit issues one refill request per cacheline into the memory 
system. It is important to note that these refill requests are cheaper than 
normal requests since they only require miss tags – they do not require replay 
queue entries.
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The vector refill unit brings lines into the 
cache before the VLU accesses them
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After allocating a miss tag, the cache issues the refill request to main memory 
and many cycles later main memory returns the data to the cache.
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The vector refill unit brings lines into the 
cache before the VLU accesses them
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Since the vector load unit is trailing behind the vector refill unit, it should only 
experience hits in the cache.
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The vector refill unit brings lines into the 
cache before the VLU accesses them
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Another important point to make is that refill requests which hit in the miss 
tags, in other words they would normally be secondary misses, do not require 
any additional access management state. They can simply be dropped by the 
cache.
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VRU reduces need for hardware which 
scale with number of in-flight elements
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Now lets revisit the decoupling diagram when the processor experiences a 
string of misses, but let’s include the vector refill unit.
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VRU reduces need for hardware which 
scale with number of in-flight elements
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Bandwidth-Delay

VRU reduces need for hardware which 
scale with number of in-flight elements
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At the top is the decoupled vector machine without the VRU and at the bottom 
is the vector machine with the VRU. Notice that now its the VRU running ahead 
issuing refill requests as opposed the the VLU running ahead. The key point is 
that adding the VRU decreases the amount of resources needed to saturate 
large bandwidth-delay product memory systems. Without the VRU, expensive 
queues such as the VLDQ and the replay queues must scale with the number of 
in-flight elements, but with the VRU the only queues which must scale are the 
miss tags and the command queues. Both of theses resources are relatively 
efficient. There is one miss tag for each in-flight cache line. The command 
queues are very compact, since each command queue entry contains a vector 
instruction and thus can encode over a hundred element accesses.
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VRU reduces need for hardware which 
scale with number of in-flight elements
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Throttling

Effective refill/access decoupling requires throttling between the VRU and the 
VLU to help maintain an appropriate prefetch distance. Although throttling is an 
important topic, I am not going to talk about it anymore in this presentation but 
there is more information in the paper.
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Vector Segment Accesses

Vector segment memory accesses 
explicitly capture two-dimensional access 

patterns and thus make the memory 
system more efficient

Unit Stride

Strided

Array of Structures

Neighboring Columns

1D Access Patterns 2D Access Patterns

Refill/access decoupling is one technique which makes it easier to turn access 
parallelism into performance. We are now going to look at another technique 
which is also going to make it easier to turn memory access parallelism into 
performance, but it will do so by exploiting the structure found in certain types 
of access patterns. Traditional vector machines exploit 1D access patterns such 
as unit-stride and strided, but many applications include 2D access patterns as 
well. For example, on the right we are accessing an array of RGB pixels or the 
first two columns in an four column matrix stored in row-major order. We 
propose vector segment memory accesses which explicitly capture two-
dimensional access patterns and thus make the memory system more efficient.
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Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la    r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1,  r1, 1
vlbst vr1, r1, r2
addu r1,  r1, 1
vlbst vr2, r1, r2

FU

vr0
vr1
vr2

FU FU FU

Let’s look at an example to see how vector segment accesses work. Let’s 
assume that the application wants to load an array of RGB pixels into the vector 
registers, and it wants each functional unit to process a single pixel. A 
traditional vector machine would use three strided accesses to load the data.
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Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la    r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1,  r1, 1
vlbst vr1, r1, r2
addu r1,  r1, 1
vlbst vr2, r1, r2

FU FU FU FU

vr0
vr1
vr2

The first strided access would pull out the red data and write it into vector 
register zero …
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Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la    r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1,  r1, 1
vlbst vr1, r1, r2
addu r1,  r1, 1
vlbst vr2, r1, r2

FU FU FU FU

vr0
vr1
vr2

… while the second strided access would pull out the green data. I have drawn 
this figure with a four read port memory – often memories use banks to enable 
multiple read ports, but a key disadvantage of strided accesses is that it is 
common for these access to have bank conflicts which decrease performance.
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Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la    r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1,  r1, 1
vlbst vr1, r1, r2
addu r1,  r1, 1
vlbst vr2, r1, r2

FU

vr0
vr1
vr2

FU FU FU

Multiple strided 
access do not 
capture the spatial 
locality inherent in 
the 2D access 
pattern

A final strided access pulls the blue data into the vector register file. The 
problem with using multiple strided accesses is that they do not capture the 
spatial locality inherent in the 2D access pattern.
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Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Now let’s see how vector segment accesses better capture this spatial locality.
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Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Conceptually, a segment access works by reading the first segment in memory. 
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Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

And then writing this data into the first element of each vector register. The 
segment instruction includes three fields which specify the number of elements 
in a segment, the base vector register, and the base address. Unfortunately, 
this diagram implies that the number of vector register write ports is equal to 
the segment length. Obviously this is unreasonable, so an efficient 
implementation of segment accesses will include segment buffers.
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Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Segment Buffers 

So now on the first cycle we read a segment out and store it in a segment 
buffer.
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Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Segment Buffers 

On the second cycle we read out the second segment into the second buffer, 
but at the same time we move the red element of the first segment into the 
first vector register.
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Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Segment Buffers 

We continue to overlap reading out segments into the buffers with moving the 
data into the vector registers. Notice that we only need one wide read port into 
the memory - this wide read port is the same one needed to efficiently handle 
unit stride accesses. We also only need one vector register file write port per 
lane.
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Vector segment accesses perform
the 2D access pattern more efficiently

Efficient encoding
– More compact 

command queues
– VRU process 

commands faster

Captures locality
– Reduces bank 

conflicts
– Moves data in unit-

stride bursts

Vector Execution Unit

Memory

la     r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Vector segments have two fundamental advantages over multiple strided 
access. First they offer a more efficient encoding which results in more compact 
command queues and allows the VRU to process commands faster. And 
secondly, vector segment accesses better capture the spatial locality inherent in 
the 2D access pattern which reduces bank conflicts and moves data in and out 
of the cache in unit-stride bursts.
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Cache Refill/Access Decoupling 
for Vector Machines

• Intuition
– Motivation
– Background
– Cache Refill/Access Decoupling
– Vector Segment Memory Accesses

• Evaluation
– The SCALE Vector-Thread Processor
– Selected Results

In the first part of the talk, I have provided some intuition behind our proposed 
techniques. It is important to note that cache refill/access decoupling is a 
microarchitectural technique and thus could be applicable to any vector 
machine, while vector segment memory accesses require an ISA change. In the 
final part of the talk, I will briefly evaluate an implementation of these ideas 
within the SCALE vector-thread processor.



Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding, 
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004 

65

SCALE Vector Processor

Lane 0 Lane 1 Lane 2 Lane 3
Vector Execution Unit

Unit
Stride

VRU

Refill SEG SEG SEG SEG

Throttle
Logic

Control
Proc

Key Features
– 4 lanes, 4 clusters 

– Cluster for 
indexed accesses

– 4 segment 
address 
generators

– 4 VLDQs

– VRU includes 
throttle logic,   
refill address 
generator

On this slide, I just want to highlight some of the key differences between the 
SCALE vector-thread processor and the abstract decoupled vector machine we 
have been talking about so far. First, we do not use any of the advanced 
threading features of the vector-thread processor – in this work we are strictly 
using the SCALE processor as a more traditional decoupled vector machine. 
SCALE has four lanes and four clusters per lane. One cluster is able to do 
indexed accesses and thus has its own load data queue. There are five address 
generators in the vector load unit: one for unit stride and four for segment and 
strided accesses. It is important to note that traditional strided accesses are 
simply treated as segment accesses with a segment length of one both in the 
ISA and in the implementation. There are four VLDQs – one per lane. The VRU 
requires relatively little hardware – it requires its own address generator to 
generate refill requests and some throttling logic. Throttling is an important 
part of this work and it is discussed further in the paper.
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SCALE Cache

Cache Arbiter and Crossbar

Memory Port Arbiter and Crossbar

Seg
Buf

Tags

Data

MSHR

Tags

Data

MSHR

Tags

Data

MSHR

Tags

Data

MSHR

Seg
Buf

Seg
Buf

Seg
Buf

Key Features
– Unified I/D cache
– Two cycle hit latency
– Four 8 KB banks
– 32 way associative
– 32B cache lines
– 16B/cycle per bank
– Four 16B segment 

buffers per bank

SCALE uses a unified 32 KB cache. The tag and data arrays as well as the 
MSHRs are divided into four independent banks with a bank data bandwidth of 
16 bytes per cycle. SCALE includes four 16 byte load segment buffers per bank.
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Methodology and Kernels
• Simulation methodology

– Microarchitectural C++ simulator of SCALE vector processor 
and non-blocking multi-banked cache

– Main memory is modeled with a simple pipelined magic memory
– Benchmarks were compiled for the control processor with gcc

and key kernels were coded by hand in assembly

• 14 kernels with varying access patterns
– vvaddw Add two word element vectors and store result
– hpg 2D high pass filter on image with 8 bit pixels [EEMBC]
– rgbyiq RGB to YIQ color conversion with segments [EEMBC]

To evaluate our ideas we used a micro-architectural C++ simulator of both the 
SCALE processor and the cache. For all of these results, main memory was 
modeled as a simple pipelined magic memory. Benchmarks were compiled for 
the control processor using g++ and then key kernels were hand coded in 
assembly for the vector execution unit. There our 14 kernels with varying 
access patterns in the paper, but in this talk I am only going to look at three 
simple kernels to illustrate some of the basic concepts. VVADDW adds two 
vectors together and stores the result. HPG is an EEMBC benchmark which does 
a 2D high-pass filter on an image of 8 bit pixels. RGBYIQ is also an EEMBC
benchmark which does a color conversion from RGB to YIQ using segments.
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Normalized performance for 
vvaddw with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Vector Load Data Queues

Configuration
– Limit study with very large 

queue sizes except for queue 
under consideration

– 8B/cycle bandwidth and          
100 cycle latency main memory

– Normalized performance with 
and without the vector refill unit

We began with several limit studies – in these experiments all queue and buffer 
sizes are very large except for a specific queue under consideration. For 
example, in this figure we are examining the impact of the VLDQ size on 
performance. All of these experiments use a 8 B/cycle main memory with a 100 
cycle latency. The performance is normalized to that application’s peak 
performance. We examine two configurations: the black line is the baseline 
decoupled vector machine while the red line is the decoupled vector machine 
with the vector refill unit. So let’s first look at the black line - as we increase 
the size of the VLDQ, performance also increases. This is to be expected since a 
larger VLDQ means that the processor can get more accesses in-flight and can 
thus better turn memory access parallelism into performance. Notice that when 
we add the vector refill unit, we are able to achieve peak performance with 
drastically fewer resources. For example, without the VRU we need 256 VLDQ 
entries to achieve peak performance but with the VRU we only need four.
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Normalized performance for 
vvaddw with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

In this plot we see a similar trend with the number of replay queue entries.
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Normalized performance for 
hpg with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

The difference is even more clear with HPG since HPG has a moderate bit of 
reuse – it loads each input element three times. This means that without the 
VRU, the decoupled vector machine must queue up 96 secondary misses before 
it can get to the next primary miss and thus issue the next refill request. So 
even with 512 VLDQ entries, the baseline decoupled vector machine is unable 
to achieve peak performance. With refill/access decoupling we only need 16 
VLDQ entries and 8 replay queue entries. Notice that we cannot completely 
eliminate the VLDQ and replay queues – we need a few entries for a bit of 
pipelining and decoupling between the various units.
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Normalized performance for 
rgbyiq with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

We see a similar trend for RGBYIQ with segments.
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Normalized performance for 
rgbyiq with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

Dashed lines indicate segments are turned into strided accesses

Here we also show the performance without segments. To emulate a traditional 
vector machine we turn segment accesses into multiple strided accesses, and 
you can see adding segments almost always increases the performance.
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Performance with refill/access decoupling 
scales well with longer memory latencies

vvaddw

rgbyiq
hpg

Memory Latency in Cycles

Configuration
– Includes the VRU
– Reasonable queues     

and buffering 
– 8B/cycle mem bandwidth
– VLDQ and replay queues 

are a constant size
– Command queues and 

miss tags are scaled 
linearly with latency

Finally, I would like to look at how the performance of these kernels scale with 
longer memory latencies. For this experiment we use reasonable queue and 
buffering sizes and again the main memory bandwidth is 8 bytes per cycle. The 
VLDQ and replay queues are kept at a constant size. As we discussed earlier in 
the talk, the only resources which must scale when we add the VRU are the 
command queues and the miss tags. Overall this is a pretty boring plot, but 
that actually is a good thing. It means that these kernels are able to achieve 
close to peak performance even with an 800 cycle main memory latency. From 
the previous limit studies, it should be clear that a decoupled vector machine 
without the refill/access decoupling would scale drastically worse if given the 
same amount of resources.
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Paper includes additional 
results and analysis

• 14 kernels with varying access patterns

• Performance versus number of miss tags

• Performance versus memory latency and bandwidth

• Comparison with an approximation of a scalar machine

• Various VRU and VLU throttling schemes

There are many more results and additional analysis in the paper. The paper 
includes fourteen kernels and examines …

… the performance versus the number miss tags

… the performance versus memory latency and bandwidth

… a comparison with an approximation of a heavily decoupled scalar machine

… and various VRU and VLU throttling schemes
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Related Work
• Refill/Access Decoupling

– Software prefetching
– Second-level vector register files [ NEC SX, Imagine ]

– Speculative hardware prefetching [ Jouppi90, Palacharla94 ]

– Run-ahead processing [ Baer91, Dundas97, Mutlu03 ]

• Vector Segment Memory Accesses
– Streaming loads/stores [ Khailany01, Ciricescu03 ]

I want to just very quickly touch on some related work - first with respect to 
refill/access decoupling. Software prefetching requires an intimate knowledge 
of the memory system at compile time and thus is not performance portable 
across different architectures. Refill/access decoupling is a microarchitectural 
technique and is transparent to the application. Many vector machines include 
second-level vector register files and essentially prefetch into this extra 
buffering. Although second-level vector register files avoid the tag overhead of 
caches they are significantly less flexible and waste storage for subword
elements. … 
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Related Work
• Refill/Access Decoupling

– Software prefetching
– Second-level vector register files [ NEC SX, Imagine ]

– Speculative hardware prefetching [ Jouppi90, Palacharla94 ]

– Run-ahead processing [ Baer91, Dundas97, Mutlu03 ]

• Vector Segment Memory Accesses
– Streaming loads/stores [ Khailany01, Ciricescu03 ]

… Speculative hardware prefetching uses stream buffers between the cache 
and main memory and on a miss prefetches extra cache lines into these 
buffers. These techniques usually do poorly on short vectors and can waste 
bandwidth on mispredictions. Run-ahead processing runs ahead after a cache 
miss and attempts to find additional cache misses which it can overlap with the 
first miss. Decoupling is a similar yet more efficient way of achieving the same 
effect. Refill/access decoupling should perform just as well as all of these other 
techniques but it does so in a simple and elegant way by exploiting the specific 
characteristics of vector machines. Vector segment memory accesses are 
similar in spirit to the streaming loads and stores found in Imagine and RSVP 
but are implemented in SCALE in a very different way.
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Conclusions
• Saturating large bandwidth-delay memory 

systems requires many in-flight accesses and 
thus a great deal of access management state 
and reserved element data storage 

• Refill/access decoupling and vector 
segment accesses are simple techniques 
which reduce these costs and improve 
performance

I would like to conclude with two take away points. First, saturating large 
bandwidth delay memory systems requires many in-flight elements and thus a 
great deal of access management state and reserved element buffering. 
Second, refill/access decoupling and vector segment accesses are simple 
techniques which reduce these costs and improve performance.


