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Abstract

Decoupled architectures have not traditionally been used
in the context of general purpose computing because of their
inability to tolerate control-intensive code that exists across
a wide range of applications. This work investigates the pos-
sibility of using multithreading to overcome the loss of de-
coupling dependencies that represent the cause of this main
limitation in decoupled architectures. A proposal for a mul-
tithreaded decoupled control/access/execute architecture is
presented as a platform for achieving high performance on
general purpose workloads. It is argued that such a decou-
pled architecture is more complexity-effective and scalable
than comparable superscalar processors, which incorporate
enormous amounts of complexity for modest performance
gains.

1 Introduction

Complexity-effective design is taking on new importance
in modern general purpose architectures. A limitation in
these architectures is the cost of accessing large centralized
resources as global communication delays continue to in-
crease relative to computation delays [1]. This impacts the
scalability of superscalar designs, as they depend on large
multi-ported and highly-associative structures. Additionally,
with energy consumption playing a major role in the cost and
performance of designs, it is no longer feasible to greatly in-
crease complexity to obtain diminishing performance gains.

Decoupled architectures have been explored as a more
efficient means of achieving some of the same benefits as
out-of-order superscalar execution. In these architectures,
decoupling can provide memory and control latency hiding,
parallel instruction execution, dynamic scheduling, and ef-
ficient resource utilization with a minimal amount of com-
plexity. Additionally, the decentralized nature of decoupled
designs makes them inherently scalable.

Due to the increased demands of scaling, superscalar ar-
chitectures are beginning to use more complexity-effective
designs [2]. Some superscalar processors use a clustered or-
ganization to simplify issue logic, [3] whereby instructions
are directed to separate clusters with independent register

files and functional units. Additionally some designs are in-
corporating deep queues to decouple instruction fetch from
execution [4]. These designs are being forced to take on
some of the attributes of decoupled architectures as complex-
ity becomes unmanageable.

Historically, decoupled architectures have not gained
wide appeal due to the difficulties associated with being
able to decouple programs effectively. In this paper, we
investigate the potential of augmenting traditional decou-
pled architectures with multithreading for general purpose
computing. We first present a survey of various decou-
pled architectures, and follow up with a design proposal
for a multithreaded control-decoupled architecture as a more
complexity-effective alternative to superscalars.

2 Background of Decoupled Architectures

2.1 Decoupled Access/Execute

The first major investigation of decoupled architectures
was done by Smith [5], which eventually led to the Astro-
nautics ZS-1 Processor [6]. In his preliminary study, Smith
introduces the concept of a decoupled access/execute (DAE)
machine. An access processor (AP) and an execute processor
(EP) work on separate instruction streams, communicating
data values via queues. In this design, not only is instruc-
tion level parallelism exploited by processing two instruc-
tion streams at the same time, but these decoupled process-
ing units canslip with respect to each other. This allows the
access processor to run further ahead in the program to fetch
values from memory, effectively providing a large amount of
memory latency hiding. Smith argues that this design pro-
vides a more complexity-effective way of obtaining the ben-
efits of dynamic scheduling than the methods used in designs
with more complex issuing methods (namely, those used by
out-of-order superscalars).

The preliminary study also describes a single interleaved
instruction stream which is then split into separate streams
for the AP and EP. This is the approach adopted in the As-
tronautics ZS-1 [7]. In this case, decoupling is accomplished
through the use of instruction queues which feed the AP and
EP; the queue for the EP is significantly longer since it usu-



ally runs behind the AP. All control flow instructions are exe-
cuted by an instruction splitter in the front-end that precedes
the AP/EP cores.

Descendants of the ZS-1 DAE architecture include the
PIPE project [8] which was followed in turn by MISC (Mul-
tiple Instruction Stream Computer) [9]. The proposed MISC
design consists of four generic processing elements (PEs)
which collaborate to complete a common task. Dedicated
communication channels connect each PE to every other PE,
and each PE has four input queues to receive data from the
other PEs as well as two input queues from memory. In a
typical configuration, two PEs could operate as access pro-
cessors, fetching data which is then sent to the two other PEs
which perform computation on the data in a pipelined man-
ner. The MISC architecture can be considered a less scalable
predecessor to tiled architectures such as RAW [10].

The WM architecture [11] is another variation of an ac-
cess/execute decoupled architecture. In this design, a single
instruction stream controls a collection of decoupled compo-
nents which communicate via architecturally visible queues.
Parallelism and memory latency hiding are achieved through
the use of decoupled data units which can process vector load
and store instructions. The instruction fetch unit is also de-
coupled from the functional units and control unit.

2.2 Simultaneous Multithreading and Decoupling

In their analyses of DAE architectures [12, 13], Parcerisa
and Gonzalez make the observation that although decoupled
machines effectively hide memory latency, they suffer from
functional unit latencies when there are true (RAW) data de-
pendencies. They propose a synergy between simultaneous
multithreading and access/execute decoupling in order to un-
cover more ILP and better utilize the functional units; this is
the same motivation that prompted the development of SMT
for superscalar processors. Parcerisa and Gonzalez find that
SMT designs can effectively hide functional unit latencies,
but do a poor job at hiding long memory latencies. The ac-
cess/execute decoupling provides an effective means of hid-
ing these memory latencies.

2.3 Decoupled Control/Access/Execute

An extension to the basic DAE architecture is to augment
it with decoupled control flow (DCAE). This decoupling rep-
resents a further separation of basic program functionalities;
control, memory access, and computation are partitioned
into three instruction streams. The ACRI project [14] pro-
posed an implementation of such an architecture. The differ-
ent control, access, and execute instruction streams are each
handled by separate processors (the CP, AP, and EP respec-
tively). Decoupling the control flow into a separate instruc-
tion stream allows it to be processed ahead of the access and
execute streams and potentially eliminates control overhead
from these streams.

The control processor (CP) executes the control flow
graph of the program, sending directives to the AP and EP
to execute instruction fetch blocks (IFBs). These directives
specify basic blocks and include the starting address and
length of a block. The actual code for these basic blocks are
in separate instruction streams, and instruction fetch engines
(IFEs) in the AP and EP process the IFBs and fill the corre-
sponding queues with ready-to-execute instructions. The de-
signers of the ACRI also include a separate parameter queue
as an additional input queue to the AP and DP in order to ef-
ficiently pass parameters (such as function arguments) with-
out the need of going through memory. In order to avoid
memory inconsistencies, the addresses of the CP memory
accesses are compared with those in a pending store address
queue (SAQ). The compiler is responsible for ensuring that
the CP doesn’t slip ahead and access memory before the AP
puts potentially conflicting addresses in this queue.

The address and execute processors operate on the
streams of non-speculative instructions generated by the
IFEs (these instruction streams are free of control instruc-
tions such as conditional branches). Since they process
streams of valid instructions and data without using specula-
tion, they can be consideredstream units[15]. In the ACRI
description, the AP and EP engines are provided with limited
control capabilities; an IFB can include a loop count speci-
fying the number of iterations of the basic block to perform,
and the processors can be augmented with support for pred-
icated instruction execution to enable larger basic blocks.

The instruction set architecture for the individual proces-
sors in the DCAE architecture can be optimized for their par-
ticular task and capabilities. For example, the ISA for the AP
can include specialized instructions such as auto-increment
loads and stores. Additional parallelism can be achieved
with little overhead by providing the AP and EP with VLIW
instructions to match their mix of functional units. The CP
is actually a fully functional processor with the capability of
performing memory operations. One reason for this is if the
CP requires a value from memory to determine control flow,
the AP can be of little help since it usually trails the CP in
program execution. Additionally, this allows the CP to im-
plement procedure calls by directly manipulating the stack
frame which is shared between the processing units [16, 17].

The DCAE architecture performs best when there is full
decoupling between the control, access, and execute instruc-
tion streams. Any dependencies between these streams that
disrupt the decoupling and cause the instruction streams to
re-synchronize will adversely affect performance. For ex-
ample, the control stream might be dependent on a value cal-
culated by the EP. In this case, there is a performance penalty
as the CP must stall until the EP catches up and provides the
necessary value, followed by a period for the CP to decouple
again. There have been several studies that investigate these
loss of decoupling events, termed LODs [15, 16, 17, 18].
These performance-limiting LOD events are summarized in
Table 1.
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LOD Description Example cause
1 AP must wait for memory indirect memory reference
2 AP must wait for EP computed memory address
3 CP must wait for AP read-after-write hazard
4 CP must wait for EP computed branch condition
5 AP must wait for EP conditional basic-block nullification
6 EP must wait for EP conditional basic-block nullification

Table 1: Description of LOD events for a DCAE machine

3 Decoupled vs. Superscalar Machines

Superscalar and decoupled architectures employ different
mechanisms to obtain some of the same performance advan-
tages. Studies comparing these architectures include the de-
coupled references mentioned previously, as well as [19, 20].
Comparisons can be made in how these architectures handle:

� Memory Latency

Superscalar machines hide memory latency by main-
taining large issue/reorder windows to keep track of
outstanding loads and the instructions which depend
on them while other instructions are executed. Data
prefetching and value speculation can also be imple-
mented to help tolerate memory latency.

For decoupled architectures, memory latency is hidden
by executing the access instruction stream in advance of
the execution stream through the use of simple queues,
which is effectively a form of prefetching [20].

� Control Latency

Because control instructions are resolved many cycles
after instruction fetch, superscalar processors must em-
ploy accurate branch prediction combined with specu-
lation to maintain performance.

Decoupled architectures can effectively hide this la-
tency by determining control dependencies outside of
the execution processor. This decoupling essentially al-
lows dynamic loop unrolling when loop conditions can
be determined ahead of time.

� Resource Allocation

Superscalar architectures allocate explicit resources for
every outstanding instruction through the use of com-
plex register renaming structures.

In a decoupled architecture, the queues provide a cheap
form of register renaming, where the queue elements
themselves provide the resources for outstanding in-
structions, and the architecturally visible queue heads
take the place of complicated naming schemes.

� Dynamic Scheduling and ILP

A superscalar architecture uses dynamic scheduling to
extract ILP by implementing dependency analysis in
hardware.

Decoupled machines achieve dynamic scheduling when
the separate instruction streams slip with respect to each

other. In addition, the separate instruction streams of
a decoupled machine provide an immediate source of
ILP.

To achieve sufficient performance, superscalar architec-
tures must expend a great proportion of area and complexity
on issue and decode logic, in the form of the instruction win-
dow, reorder buffer, register renaming logic, branch predic-
tion, data prefetching, etc. It is widely accepted that the issue
logic of superscalar architectures is rapidly becoming diffi-
cult and expensive to implement in terms of area, delay, and
power consumption [2, 21]. Large structures such as issue
windows that require associative dependency-checking are
the limiting factors in scaling the issue rate of superscalar
machines [1]. Additionally, superscalar architectures rely
on speculation and prediction which incurs a large amount
of overhead (both in terms of hardware and misprediction
penalties).

Decoupled architectures provide mechanisms for forms
of dynamic out-of-order execution, loop unrolling, and reg-
ister renaming without the associated complexity as imple-
mented in superscalar processors. Thus, in addition to the
inherent memory latency toleration that decoupled architec-
tures provide, they can also exploit ILP with much simpler
issue logic than superscalar processors. All these benefits are
achieved using very simple queues, which are both easily im-
plemented and cheap in terms of area, speed, and power.

Since a decoupled machine alleviates the need for cen-
tralized resources, it is inherently more scalable than corre-
sponding superscalar processors. Additionally, the queue-
based designs of decoupled architectures are amenable to
being incorporated in scalable tiled architectures with on-
chip networks [10]. This is a logical extension to the stan-
dard decoupled architecture whereby independent decoupled
streams can be run on separate tiles of such a machine.

Given the potential performance advantages of decoupled
architectures, a relevant question to ask is why they have not
come into the mainstream for general purpose computing.
One main reason is that decoupling may not always be pos-
sible in general, especially given control-intensive code. As
described earlier, the Achilles’ heel of decoupled architec-
tures come from LOD events, so programs with complicated
control flow can suffer severe performance degradation on
decoupled architectures.

Another limiting feature of decoupled machines is the
complexity involved in effectively compiling programs into
separate instruction streams. Although there have been a few
compilers that have been developed for decoupled architec-
tures [17, 22], it is often difficult for the compiler to create a
decoupled program that avoids LOD events.

4 Multithreading DCAE Architectures

It seems evident that aside from the performance degrada-
tion resulting from LOD events, decoupled architectures can
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be a viable general purpose architectural platform that is both
complexity-effective and scalable. Since LODs represent the
primary performance limitation for decoupled architectures,
it is crucial to remove the effects of these dependencies in
order to enable general purpose computing. LODs trigger
synchronization events between program streams in a single
thread of control. Potentially, these synchronization laten-
cies can be hidden if multiple threads are available to execute
concurrently on a decoupled machine. Such a multithreaded
decoupled architecture would hide runtime LOD events by
simply switching threads whenever a LOD event occurs.

Traditionally, multithreading is used to hide long latency
events such as memory accesses, as well as increase ILP
by avoiding instruction dependencies. As discussed earlier,
Parcerisa and Gonzalez proposed that multithreading be used
in conjunction with a DAE architecture in order to hide func-
tional unit latencies within the execute processor [13].

We propose to extend this idea and provide multithread-
ing on a DCAE architecture (MT-DCAE). The motivation
however, is not so much to hide functional unit latencies
as it is to provide LOD event toleration within a partic-
ular instruction stream. The MT-DCAE architecture real-
izes the benefits of full control/access/execute decoupling
while hiding the effects of LOD events that must necessar-
ily occur in programs and is especially troublesome for a
control-decoupled machine. Also, it is possible to allow the
compiler more opportunity to decouple a given program by
utilizing multithreading compiler techniques. For the MT-
DCAE architecture, we leverage much of the design from
the ACRI architecture [14] and the multithreaded DAE de-
sign by Parcerisa, et. al. [13]. A block diagram is shown in
Figure 1.

All three processors (CP/AP/EP) of the MT-DCAE design
are multithreaded. Multithreading is implemented by repli-
cating all the queues of the original ACRI design, including
the instruction fetch block (IFB) and parameter queues, once
for each thread. The address and execute processors have
state for multiple contexts (i.e., instruction queues and regis-
ter files) to allow for fast context switches between threads.
Thus, multithreading on the MT-DCAE architecture can im-
prove performance on two levels by handling both LOD
dependencies and instruction dependencies within a single
thread. However, since the primary function of the multi-
threading is not to hide memory latency (provided by the
decoupling itself) but to hide LOD events, we anticipate that
a few threads will be adequate to achieve large performance
gains.

4.1 Enabling Multithreading

To enable multithreading, the AP and EP must be supplied
with instruction streams from multiple threads. One imple-
mentation of this is to provide the CP with context switching
capabilities, and have it switch control threads whenever it
encounters a long latency event such as a LOD. The control
processor can switch to processing another thread while the

address and data processors continue to process instructions
from the first one. Later when the LOD event from the orig-
inal thread is resolved, it again becomes a ready thread for
the CP. In this way, contexts can be pipelined through the CP,
AP, and EP to efficiently utilize the processors’ resources.

An important design issue is how the control processor
should schedule threads to fully take advantage of the MT-
DCAE architecture and hide LOD latencies. The main func-
tion of the CP is to prefetch instructions to keep the access
and execute processors busy. Since each IFB can represent a
large amount of work and the control processor ideally runs
significantly ahead of the access and execute processors, the
CP can possibly afford not to have extremely efficient thread
context switching. Thus, it may not be necessary to add addi-
tional context state on a per thread basis to the CP. This is in
contrast to the multithreading on the AP and EP, which must
be able to switch between threads quickly in order to main-
tain performance. Another design issue is keeping multiple
threads’ fetch blocks available in the input queues for the AP
and EP, so that there is always at least one thread available
to run. Accomplishing this might require thread execution
balancing on the CP to make sure that the AP and EP are
provided with ample thread parallelism. [23] discusses var-
ious context switching techniques for multithreaded decou-
pled architectures.

4.2 Speculative Multithreading

Another technique that may improve performance on MT-
DCAE is speculative multithreading [24]. This allows the
multithreading hardware to be beneficial even when only a
single thread of control is available. This can be imple-
mented as an extension to the specialconditionalor specu-
lativeexecution modes for dispatch blocks discussed in [15].
Using this technique, blocks conditionally dispatched to the
AP wait for a condition from the EP to determine whether
or not they should be discarded. Blocks can also execute in
the AP speculatively and if it is later determined that they
are invalid, the updates to the queues from that block are dis-

Figure 1: MT-DCAE multithreaded decoupled control/acc-
ess/execute architecture.
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carded.
With multithreading, the control processor can spawn a

speculative thread at predictable branches such as procedure
calls. In this case the speculative thread would keep execut-
ing code beyond the procedure call with the hope that there
will be no dependencies. This sort of speculation is a natu-
ral fit for the decoupled architectures because all the mem-
ory addresses are put in queues. Therefore, misspeculation
detection can be accomplished by dynamically comparing
the addresses accessed by the two threads, and a specula-
tive thread can be nullified by flushing its addresses from the
queues and destroying its context. Speculative multithread-
ing can also be used to hide the latency of predictable LOD
events.

4.3 Scaling MT-DCAE architectures

A major consideration for an architecture’s viability is its
ability to scale in performance with a manageable amount
of design complexity. The base MT-DCAE architecture de-
scribed in the previous section can be readily extended in
a variety of ways to allow for higher performance. For ex-
ample, we can simply scale the input queue lengths to al-
low greater decoupling potential. As discussed earlier, these
queues are much more readily scaled than the data structures
of superscalar machines. We can also replace the control,
access, and execute processing units with wider-issue pro-
cessors to scale performance as well.

The MT-DCAE architecture can also be scaled by adding
more discrete processing nodes (either control, access, or ex-
ecute). In the most generalized form, decoupling begins to
look very similar to a multiprocessor tile architecture, with
each processor accessing input and output queues for com-
munication with other nodes. This begins to blur the lines of
what a decoupled architecture is, as one can view the nodes
of a generalized multiprocessor array as being decoupled ele-
ments capable of exacting specific control, access, or execute
functions.

4.4 Using DCAE as a Coprocessor

Superscalar processors will perhaps always be better than
decoupled architectures at processing code which is ex-
tremely control-intensive. To exploit the advantages out of
both superscalar and decoupled architectures, we can con-
sider implementing the control processor in a DCAE de-
sign as a more capable high-performance microprocessor.
This would allow the CP to make progress faster as it can
access memory without going through the AP. Also, the
compiler can choose to avoid decoupling and only use the
CP when running control-intensive code that would result
in an overabundance of LOD events. When decoupling is
possible, the decoupled access/execute hardware provides a
high-performance and complexity-effective computation en-
gine. For example, a decoupled architecture is a better fit for
streaming code such as multimedia; however, such code is

often mixed with control-intensive portions of computation,
so in this situation a hybrid architecture may be a good de-
sign point. This type of coprocessing computational model
is similar to that used for vector or SIMD array coproces-
sors as well as more modern microprocessors with hardware
multimedia support. Decoupled access/execute engines are
more flexible than these alternatives, and a comparison of
performance and complexity would be interesting.

4.5 More Related Work

It is noteworthy that Dorojevets, et. al. [25] implemented
a decoupled machine that shares features of a MT-DCAE ar-
chitecture and a general tiled machine, called the MARS-
M (Modular, Asynchronous, Extensible Systems) computer.
This architecture supports simultaneous execution of up to
four address, four data, and one control thread, with com-
munication provided by various queues. Both the address
and execution processors and the communication queues are
dynamically assigned. The individual processors are im-
plemented as VLIW processors which support simultaneous
multithreading. In a follow up study [26], Dorojevets et. al.
also make the observation that control dependencies hinder
parallel execution, and proposes speculative multithreading.

5 Summary

It seems that in recent years, interest in decoupled ma-
chines has waned. Still, there exist some attractive features
of decoupled machines that for the most part have not been
exploited or utilized. Since their inception, decoupled archi-
tectures have been touted as a complexity-effective and scal-
able way to provide provide memory and control latency hid-
ing, parallel instruction exection, dynamic scheduling, and
efficient resource utilization.

In the paper, we have attempted to present a comprehen-
sive survey of the major research and industrial work on de-
coupled architectures. From our survey, we can conclude
that the limitations of using decoupled architectures in gen-
eral purpose processing are derived primarily from the in-
ability for these machines to tolerate LOD latencies. To en-
able decoupled architectures to effectively perform general
purpose computation, we propose to augment decoupling
with multithreading to hide the latency of LODs assuming
that sufficient thread level parallelism exists. Although pre-
vious work proposed the use of multithreading in conjunc-
tion with decoupling, they do so only in the context of hiding
functional unit latencies and not as a general solution to the
problem of LOD latencies on decoupled machines.

Of course, much more research is needed to determine
whether such a scheme is viable for general-purpose com-
puting. It may not be trivial to efficiently decouple programs
or find enough thread-level parallelism to be able to cover
LOD events. Also, there is a large design space of possi-
ble multithreading implementations that can fit into a MT-
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DCAE framework. We simply provide the high-level con-
cept of using multithreading as a potential solution to the
LODs that can hinder decoupled architectures. Thus, it re-
mains an open-ended question as to what is the best com-
bination of techniques to fully unlock the synergy between
decoupling and multithreading for general purpose computer
architectures.
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