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MIT CSAIL 2/23Multiprocessors Are Ubiquitous
Embedded CMP
(e.g. ARM MPCore)

P1

MEM I/O

Pn

Shared bus

Servers

Desktops

Handheld/
Embedded

• Our focus: Running soft real-time apps (e.g. media codecs, 
web services) on general-purpose MPs

– Assuming multiprogrammed workloads: real-time + best-effort apps

• Problem: Contention for shared resources causes wider 
variation of a task’s execution time.
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MIT CSAIL 3/23Execution Time Variation in MPs

• For fixed input to fixed task, execution time varies 
depending on the activities of other processors because 
of shared memory system.
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MIT CSAIL 4/23Impact of Resource Contention

• Execution time increases by 85 % when number of 
background processes increases from 0 to 7.

• How can we limit the impact of resource contention?
→ QoS Support
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MIT CSAIL 5/23Memory QoS Reduces MP 
Execution Time Variation

• Memory QoS guarantees per-processor memory 
bandwidth and latency.

– It guarantees minimum performance and distributes unclaimed 
bandwidth to sharers in order to maximize throughput.

• Challenge: How can we find the minimal QoS parameters
that meet a RT task’s given performance goal?

– Minimal reservation improves total system throughput.
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MIT CSAIL 6/23Translating Performance Goal in 
User Metric into QoS Parameters

• User’s performance goal (user metric) should be translated 
into QoS parameters (system metric).

– User metric: Execution time, Transactions per Second (TPS), 
Frames per Second (FPS)

– System metric: Memory bandwidth, Latency

• Example: MP server virtualization
– Question: What guarantees can you make to users?
– Users prefer user metric (e.g. TPS) to system metric (e.g. 

Memory bandwidth).
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→ Minimal QoS parameters are important 

to maximize system throughput. 
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MIT CSAIL 7/23Finding Minimal Resource 
Reservation (1): Analysis

• Static timing analyses: Tools for WCET analyses
– Consist of Hardware modeling + program analysis 
– [+] Can find minimal resource reservation for all possible inputs
– [-] Analysis cost is prohibitive.

» Becoming harder for increasing hardware/software complexity 
in MPs

» Possibly overkill for soft RT apps: 
Our primary concern is performance degradation from resource 
contention (not from input data).
We can tolerate a small number of deadline violations to 
maximize overall system throughput.
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MIT CSAIL 8/23Finding Minimal Resource 
Reservation (2): Measurement

• Measurement-based Approach
– Measures task’s execution time for a certain input set
– Motto: “The best model for a system is the system itself.”

[Colin-RTSS ’03]

– Goal: To find execution time under worst-case contention (=TMAX(x, 
i)) for given QoS parameter (x) and instruction sequence (i) 
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MIT CSAIL 9/23Finding Minimal Resource 
Reservation (2): Measurement

• Measurement-based Approach (Cont)
– [+] Easy 
– [-] Not absolutely safe

→ Can be practically useful for soft real-time apps
→ Can be useful if we are given “near-worst” input set

– [-] Measured time varies by degree of contention in runtime
→ We will address this problem in the rest of this talk!
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MIT CSAIL 10/23Our Approach: METERG

• METERG QoS System: Improving measurement-based 
approach

– Estimates TMAX(x, i) easily by measurement
– Provides hardware support for safe and tight estimation for TMAX(x, i)
– Introduces two QoS modes 

» Deployment mode (operation mode)
» Enforcement mode (measurement mode for estimation)
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MIT CSAIL 11/23Modifying Shared Blocks to 
Support Two QoS Modes

• Now each QoS block supports two operation modes:
1) Deployment mode: Conventional QoS mode (Operation)

– QoS parameters are treated as a lower bound of received resources 
in runtime.

2) Enforcement mode: New QoS Mode (Estimation)
– QoS parameters are treated as an upper bound of received 

resources in runtime.
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MIT CSAIL 12/23Assumptions

• Single-threaded apps; no shared objects.
• No contentions within a node. 

(e.g. multithreaded processors)
• No preemption of a scheduled task. 
• Negligible impact of initial states on execution time.
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MIT CSAIL 13/23Baseline MP System
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• Simple fixed frame-based 
scheduling for memory 
access
– Example (x1=0.2, xn=0.3)

– xi determines 
» Minimum bandwidth
» Worst-case latency
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MIT CSAIL 14/23Runtime Usage Example in 
METERG System

• Example (x1=0.2)
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MIT CSAIL 15/23Obtain Minimal Resource 
Reservation Using METERG

How to find minimal resource reservation with METERG: 

In measurement phase:
• Step 1: Measure performance in enforcement mode for a 

QoS parameter.
• Step 2: Iterate Step 1 to find a minimal QoS parameter 

(yet meeting the performance goal). 
• Step 3: Store the minimal QoS parameter.

In operation phase:
• Step 4: Execute the program in deployment mode with 

the stored QoS parameter for guaranteed performance.
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MIT CSAIL 16/23Bandwidth Guarantees Are Not 
Enough: An Example

• Shared bus example again (x1=0.2)

• Bandwidth inequality is guaranteed but not latency.
BandwidthDEP (xi) ≥ BandwidthENF (xi)  (O)
MAX [LatencyDEP (xi)] ≤ MIN [LatencyENF (xi)] (X)
→ May cause end-to-end performance inversion.
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MIT CSAIL 17/23Two Enforcement Modes: 
Safety-Tightness Tradeoff

• Relaxed enforcement (R-ENF) mode: Bandwidth-only 
guarantees

BandwidthDEP (xi) ≥ BandwidthR-ENF (xi) 
– There is a (small) chance for observed execution time in enforcement 

mode to be smaller than TMAX(x, i).  (Not Safe)

• Strict enforcement (S-ENF) mode: Bandwidth and latency 
guarantees

BandwidthDEP (xi) ≥ BandwidthS-ENF (xi)  &&
MAX[LatencyDEP (xi)] ≤ MIN[LatencyS-ENF (xi)]

– Observed execution time is always greater than TMAX(x, i) in 
enforcement mode as long as there is no timing anomaly in 
processor. (Safe)

– Estimation of TMAX(x, i) is looser.  
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MIT CSAIL 18/23Memory System with Strict 
Enforcement Mode: An Implementation
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• Delay queue
– In Deployment mode: Bypassed
– In Enforcement mode: Deferring delivery to processor for “lucky”

messages

TMAX(DEP)(x1): 
Worst-Case latency
in Deployment Mode
for given param x1
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Actual time taken to
service request 1
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MIT CSAIL 19/23Evaluation: Simulation Setup
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• Simulation Setup
– 8-way SMP running Linux
– In-order core running with 5x 

faster clock than the system bus
– Detailed memory contention 

model with a simple fixed-frame 
TDM bus

– 32 KB unified blocking L1 cache 
/ No L2 cache

• Synthetic benchmark: 
Memread
– Infinite loop accessing a large 

chunk of memory sequentially
– Performance bottlenecked by 

memory system performance
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MIT CSAIL 20/23Evaluation: 
Varying Number of Processes
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• Execution time degradation as number of background 
processes increases from 0 to 7
without QoS (Best-Effort): 85 %
with QoS (Deployment): 10 %

• Estimated execution time upper bound for given QoS 
parameter (x1=0.25): 45 % 
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MIT CSAIL 21/23Evaluation: Varying QoS 
Parameters
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• Performance estimation becomes tighter as QoS 
parameter (x1) increases.
– Because the worst-case latency in accessing memory decreases 

accordingly
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MIT CSAIL 22/23Evaluation: 
Varying Number of QoS Processes
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• Performance impact on a QoS process by other QoS 
processes is negligible (<2%) as long as system is not 
oversubscribed.
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• In general-purpose MPs, shared resource contention 
causes large variation of execution time of a task.
(~2x increase observed in 8-processor case) 

• METERG QoS System provides an easy way (by 
measurement) to estimate execution time under worst-case 
resource contention for a given QoS parameter.

– Introducing a new QoS mode (Enforcement Mode) for performance 
estimation

• Using METERG QoS System, minimal QoS parameter can 
be easily found for given instruction sequence and 
performance goal.
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