
J. Lee
April 5, 2006

MIT CSAIL 1/23

METERG: Measurement-Based
End-to-End Performance Estimation

Technique
in QoS-Capable Multiprocessors

Jae W. Lee and Krste Asanovic
{leejw, krste}@mit.edu

MIT Computer Science and Artificial Intelligence Lab
April 5, 2006

J. Lee
April 5, 2006

MIT CSAIL 2/23Multiprocessors Are Ubiquitous
Embedded CMP
(e.g. ARM MPCore)

P1

MEM I/O

Pn

Shared bus

Servers

Desktops

Handheld/
Embedded

• Our focus: Running soft real-time apps (e.g. media codecs,
web services) on general-purpose MPs

– Assuming multiprogrammed workloads: real-time + best-effort apps

• Problem: Contention for shared resources causes wider
variation of a task’s execution time.

J. Lee
April 5, 2006

MIT CSAIL 3/23Execution Time Variation in MPs

• For fixed input to fixed task, execution time varies
depending on the activities of other processors because
of shared memory system.

Processor
1

Shared Bus

Shared
Memory

Processor
n

Shared
Resource Instance #

of TaskX

Execution
time

i i+4i+2

Severe
Contention

No
Contention

i+1 i+3

J. Lee
April 5, 2006

MIT CSAIL 4/23Impact of Resource Contention

• Execution time increases by 85 % when number of
background processes increases from 0 to 7.

• How can we limit the impact of resource contention?
→ QoS Support

0

0.5

1

1.5

2

0 1 3 7

1.021.00

1.85

1.05

Normalized Execution Time
of memread on P1 (a fixed input)

Measure
Execution

Time

Processor
1

Shared Bus

Shared
Memory

Processor
8

Shared
Resource

Processor
2

Variable Number of
Background Processes

Number of Background Processes

J. Lee
April 5, 2006

MIT CSAIL 5/23Memory QoS Reduces MP
Execution Time Variation

• Memory QoS guarantees per-processor memory
bandwidth and latency.

– It guarantees minimum performance and distributes unclaimed
bandwidth to sharers in order to maximize throughput.

• Challenge: How can we find the minimal QoS parameters
that meet a RT task’s given performance goal?

– Minimal reservation improves total system throughput.

Instance #
of TaskXi i+2i+1

Range of
Execution Time

i+3 i+4

Without QoS

With QoS

J. Lee
April 5, 2006

MIT CSAIL 6/23Translating Performance Goal in
User Metric into QoS Parameters

• User’s performance goal (user metric) should be translated
into QoS parameters (system metric).

– User metric: Execution time, Transactions per Second (TPS),
Frames per Second (FPS)

– System metric: Memory bandwidth, Latency

• Example: MP server virtualization
– Question: What guarantees can you make to users?
– Users prefer user metric (e.g. TPS) to system metric (e.g.

Memory bandwidth).

Partition

1

Partition

2

Partition

n

Multiprocessor System Substrate

→ Minimal QoS parameters are important

to maximize system throughput.

J. Lee
April 5, 2006

MIT CSAIL 7/23Finding Minimal Resource
Reservation (1): Analysis

• Static timing analyses: Tools for WCET analyses
– Consist of Hardware modeling + program analysis
– [+] Can find minimal resource reservation for all possible inputs
– [-] Analysis cost is prohibitive.

» Becoming harder for increasing hardware/software complexity
in MPs

» Possibly overkill for soft RT apps:
Our primary concern is performance degradation from resource
contention (not from input data).
We can tolerate a small number of deadline violations to
maximize overall system throughput.

J. Lee
April 5, 2006

MIT CSAIL 8/23Finding Minimal Resource
Reservation (2): Measurement

• Measurement-based Approach
– Measures task’s execution time for a certain input set
– Motto: “The best model for a system is the system itself.”

[Colin-RTSS ’03]

– Goal: To find execution time under worst-case contention (=TMAX(x,
i)) for given QoS parameter (x) and instruction sequence (i)

Execution Time
for fixed inst seq i

Probability
distribution

Range of variation

TMAX(x, i)

Degree of
Contention

(x: QoS parameter)

Low ← → High

J. Lee
April 5, 2006

MIT CSAIL 9/23Finding Minimal Resource
Reservation (2): Measurement

• Measurement-based Approach (Cont)
– [+] Easy
– [-] Not absolutely safe

→ Can be practically useful for soft real-time apps
→ Can be useful if we are given “near-worst” input set

– [-] Measured time varies by degree of contention in runtime
→ We will address this problem in the rest of this talk!

Probability
distribution

Range of variation

TMAX(x, i)

Degree of
Contention

(x: QoS parameter)

Low ← → High

Execution Time
for fixed inst seq i

J. Lee
April 5, 2006

MIT CSAIL 10/23Our Approach: METERG

• METERG QoS System: Improving measurement-based
approach

– Estimates TMAX(x, i) easily by measurement
– Provides hardware support for safe and tight estimation for TMAX(x, i)
– Introduces two QoS modes

» Deployment mode (operation mode)
» Enforcement mode (measurement mode for estimation)

TMAX(x, i)

Probability
distribution

Range of variation
(Deployment)

Execution Time
for fixed inst seq i

Range of variation
(Enforcement) 2. Very narrow and

close to TMAX(x, i)
(Tight)

1. Always greater
than TMAX(x, i)
(Safe)

J. Lee
April 5, 2006

MIT CSAIL 11/23Modifying Shared Blocks to
Support Two QoS Modes

• Now each QoS block supports two operation modes:
1) Deployment mode: Conventional QoS mode (Operation)

– QoS parameters are treated as a lower bound of received resources
in runtime.

2) Enforcement mode: New QoS Mode (Estimation)
– QoS parameters are treated as an upper bound of received

resources in runtime.

QoS
Parameter

5 0 5 0
1) Deployment Mode 2) Enforcement Mode

J. Lee
April 5, 2006

MIT CSAIL 12/23Assumptions

• Single-threaded apps; no shared objects.
• No contentions within a node.

(e.g. multithreaded processors)
• No preemption of a scheduled task.
• Negligible impact of initial states on execution time.

J. Lee
April 5, 2006

MIT CSAIL 13/23Baseline MP System

Processor
1

Shared Bus

Shared
Memory

Processor
n

QoS-capable
Shared block

x1 xn

• Simple fixed frame-based
scheduling for memory
access
– Example (x1=0.2, xn=0.3)

– xi determines
» Minimum bandwidth
» Worst-case latency

1 n n 1 n

Taken
By P1

Not taken:
Given to a requester
by round-robin fashion

Frame (size = 10 Timeslots)

xi: Fraction of time slots reserved for
Processor i

J. Lee
April 5, 2006

MIT CSAIL 14/23Runtime Usage Example in
METERG System

• Example (x1=0.2)

Reservation:

1 1

Frame (size = 10 Time Slots)

Runtime usage (Enforcement):
X X X X X X X X

Reserved &
used

Reserved
but unused

Runtime usage (Deployment):

Reserved &
used

Not allowed
to use

Not reserved
but used

0.2

0.2

Processor
1

Shared Bus

Shared
Memory

Processor
n

QoS-capable
Shared block

x1 xn

J. Lee
April 5, 2006

MIT CSAIL 15/23Obtain Minimal Resource
Reservation Using METERG

How to find minimal resource reservation with METERG:

In measurement phase:
• Step 1: Measure performance in enforcement mode for a

QoS parameter.
• Step 2: Iterate Step 1 to find a minimal QoS parameter

(yet meeting the performance goal).
• Step 3: Store the minimal QoS parameter.

In operation phase:
• Step 4: Execute the program in deployment mode with

the stored QoS parameter for guaranteed performance.

J. Lee
April 5, 2006

MIT CSAIL 16/23Bandwidth Guarantees Are Not
Enough: An Example

• Shared bus example again (x1=0.2)

• Bandwidth inequality is guaranteed but not latency.
BandwidthDEP (xi) ≥ BandwidthENF (xi) (O)
MAX [LatencyDEP (xi)] ≤ MIN [LatencyENF (xi)] (X)
→ May cause end-to-end performance inversion.

Enforcement Mode

X X X X X X X X

Deployment Mode

Not allowed
to use

Memory Request

2 Timeslots4 Timeslots

Memory Request

Used by other
processors

J. Lee
April 5, 2006

MIT CSAIL 17/23Two Enforcement Modes:
Safety-Tightness Tradeoff

• Relaxed enforcement (R-ENF) mode: Bandwidth-only
guarantees

BandwidthDEP (xi) ≥ BandwidthR-ENF (xi)
– There is a (small) chance for observed execution time in enforcement

mode to be smaller than TMAX(x, i). (Not Safe)

• Strict enforcement (S-ENF) mode: Bandwidth and latency
guarantees

BandwidthDEP (xi) ≥ BandwidthS-ENF (xi) &&
MAX[LatencyDEP (xi)] ≤ MIN[LatencyS-ENF (xi)]

– Observed execution time is always greater than TMAX(x, i) in
enforcement mode as long as there is no timing anomaly in
processor. (Safe)

– Estimation of TMAX(x, i) is looser.

J. Lee
April 5, 2006

MIT CSAIL 18/23Memory System with Strict
Enforcement Mode: An Implementation

Processor
1

Processor
n

METERG
QoS

Memory
block

Mem_Reply
Mem_Req

Delay Queue
(bypassed in DEP mode)

1 data1 TMAX(DEP)(x1)-Tactual1
1 data2
0

V Data Timer

TMAX(DEP)(x1)-Tactual2

OpMode1

• Delay queue
– In Deployment mode: Bypassed
– In Enforcement mode: Deferring delivery to processor for “lucky”

messages

TMAX(DEP)(x1):
Worst-Case latency
in Deployment Mode
for given param x1

Tactual1:
Actual time taken to
service request 1

J. Lee
April 5, 2006

MIT CSAIL 19/23Evaluation: Simulation Setup

Processor
1

Shared Bus

E D

RequestReply

Network
Interface

(NI)

E D

ReplyRequest

Shared
Memory

OpMode1 OpMode8

Processor
8

METERG
QoS block

• Simulation Setup
– 8-way SMP running Linux
– In-order core running with 5x

faster clock than the system bus
– Detailed memory contention

model with a simple fixed-frame
TDM bus

– 32 KB unified blocking L1 cache
/ No L2 cache

• Synthetic benchmark:
Memread
– Infinite loop accessing a large

chunk of memory sequentially
– Performance bottlenecked by

memory system performance

J. Lee
April 5, 2006

MIT CSAIL 20/23Evaluation:
Varying Number of Processes

0.8
1

1.2
1.4
1.6
1.8

2

0 1 3 7

1.85 (BE)

1.45 (ENF)

1.10 (DEP)

• Execution time degradation as number of background
processes increases from 0 to 7
without QoS (Best-Effort): 85 %
with QoS (Deployment): 10 %

• Estimated execution time upper bound for given QoS
parameter (x1=0.25): 45 %

0 1 3 7
of Background Processes

Normalized Execution Time

(x1 =0.25)

Processor
1

Shared Bus

Shared
Memory

Processor
8

Shared
Resource

Processor
2

Variable # of BE Processes
Measure P1
(x1 = 0.25)

J. Lee
April 5, 2006

MIT CSAIL 21/23Evaluation: Varying QoS
Parameters

0.9
1.2
1.5
1.8
2.1
2.4
2.7

0.1 0.25 0.5 0.75

2.35 (ENF)

1.51 (DEP)

Normalized Execution Time

• Performance estimation becomes tighter as QoS
parameter (x1) increases.
– Because the worst-case latency in accessing memory decreases

accordingly

QoS Parameter (x1)

1.01
1.09

Processor
1

Shared Bus

Shared
Memory

Processor
8

Shared
Resource

Processor
2

7 BE Background Processes

Measure P1
(Variable x1)

J. Lee
April 5, 2006

MIT CSAIL 22/23Evaluation:
Varying Number of QoS Processes

0

0.2

0.4

0.6

0.8

1

1 QoS + 7 BE 2 QoS + 6 BE 3 QoS + 5 BE 4 QoS + 4 BE

P1
P2
P3
P4
P5
P6
P7
P8

(0.25, 0, 0, 0,
0, 0, 0, 0)

(0.25, 0.25, 0.25, 0.20,
0, 0, 0, 0)

(0.25, 0.25, 0, 0,
0, 0, 0, 0)

(0.25, 0.25, 0.25, 0,
0, 0, 0, 0)

0.91

(0.54)

(0.69)

0.45

0.91 0.90

0.37

0.89

0.27

Estimated
lower
bound
for xi=0.25

8-BE
Case

0.91 0.90

0.14

Normalized IPC*

• Performance impact on a QoS process by other QoS
processes is negligible (<2%) as long as system is not
oversubscribed.

1 QoS + 7 BE 2 QoS + 6 BE 3 QoS + 5 BE 4 QoS + 4 BE

0.81

QoS
Parameters:

(* Higher Number = Better Performance)

J. Lee
April 5, 2006

MIT CSAIL 23/23Conclusion

• In general-purpose MPs, shared resource contention
causes large variation of execution time of a task.
(~2x increase observed in 8-processor case)

• METERG QoS System provides an easy way (by
measurement) to estimate execution time under worst-case
resource contention for a given QoS parameter.

– Introducing a new QoS mode (Enforcement Mode) for performance
estimation

• Using METERG QoS System, minimal QoS parameter can
be easily found for given instruction sequence and
performance goal.

	METERG: Measurement-Based �End-to-End Performance Estimation Technique�in QoS-Capable Multiprocessors
	Multiprocessors Are Ubiquitous
	Execution Time Variation in MPs
	Impact of Resource Contention
	Memory QoS Reduces MP Execution Time Variation
	Translating Performance Goal in User Metric into QoS Parameters
	Finding Minimal Resource Reservation (1): Analysis
	Finding Minimal Resource Reservation (2): Measurement
	Finding Minimal Resource Reservation (2): Measurement
	Our Approach: METERG
	Modifying Shared Blocks to Support Two QoS Modes
	Assumptions
	Baseline MP System
	Runtime Usage Example in METERG System
	Obtain Minimal Resource Reservation Using METERG
	Bandwidth Guarantees Are Not Enough: An Example
	Two Enforcement Modes: �Safety-Tightness Tradeoff
	Memory System with Strict �Enforcement Mode: An Implementation
	Evaluation: Simulation Setup
	Evaluation: �Varying Number of Processes
	Evaluation: Varying QoS Parameters
	Evaluation: �Varying Number of QoS Processes
	Conclusion

