A Retrospectve on
The MIT Alewife Machine: Ar chitecture and Performance

AnantAgarwal
Laboratoryfor ComputerScience
Massachusettgistituteof Technology

The MIT Alewife project evolved out of exploratory work at
Stanfordon directory schemedor cachecoherencdl] (alsoin-
cludedin this issue). Using datafrom small bus-basednultipro-
cessorsthis earlywork demonstratethatdirectoryschemesvere
asefficient asbus-basednoopingprotocols,andthatby distribut-
ing directoriesalongwith main memory they could provide the
foundationsfor a cache-cohererdhared-memorynultiprocessor
basedon an interconnectiometwork. This paperfurther recog-
nizedthe scalinglimits of bit-vectordirectories- they consumed
memoryproportionalto the squareof the numberof processors-
andspeculatedhat variantssuchaslimited pointerdirectoriesor
limited broadcastlirectories might be attractize scalablealterna-
tives. The paper hawever, stoppedshortof demonstratinghe fea-
sibility of limited directoriesJargely becausef the lack of either
addresgracesor parallelprogramswritten for a scalablecoherent
shared-memorgystem.This lack of datawasnot surprisinggiven
thatsucha machinehadnot beeninventedyet!

Exploration The Alewife project was born out of a desire
to build a shared-memory multiprocessothat was truly scalable
(seethe section“Perspecties and Summary”in the Alewife pa-
perin the Proceedingsf the Workshopon ScalableSharedMem-
ory MultiprocessorsKluwer AcademicPublishers]1991,to geta
senseof our early thinking). Although scalablemessage-passing
multicomputershadbeenaroundfor years they wereknown to be
notoriouslyhardto program.We believedthatsharednemorywas
easierto program,andaccordingly we choseearly on to offer no
compromiseon the sharednemoryprogrammingnodel? Notice
thatourearly Alewife thinking offeredno plansto exposemessage
passingo the softwaresystem.

For scalability we choseto borrov heavily from messaggass-
ing machinesconceved by researchersuchas Seitz and Dally.
Messaggpassingmachinesachieved their scalability by distribut-
ing constantperprocessoresourceover a point-to-pointinter-
connectand exposingthis distribution to the programmer Ac-
cordingly we decidedearly on to distribute memoryand proces-
sorsover a point-to-pointmeshnetwork (asopposedo a uniform-
accessnultistagenetwork) andstrove to keeppernodecostsmore
or lessconstant.We believed that scalingto eventensof proces-
sorsrequiredsupportfor locality managemerftom schedulersind
compilers. As we discoveredyearslater, (for example,seeNuss-

L A limited pointerdirectorymaintaingpointersto afixednumberof cachectopies
of data.A limited broadcastlirectorydividesthe processorinto sets,andmaintains
a pointerto eachsetof processorssendingbroadcastnvalidationsto the entire set
whenneeded.

2During the early Alewife days,the notion of sharedmemorywith wealer mem-
ory semanticshad not yet beenformally defined. Therefore,we took sequentially
consistentsharedmemoryasa given. As discussedater, we choseto use context
switchingasaway of toleratinglateny. Whenthewealer modelsbeganto appeaiin
asequencef path-breakingraperdrom USC,Wisconsin andStanford-all threeare
includedin thisissue- we werefacedwith thechoiceof adoptingawealer model. At
this point, we decidedto supportthe sequentiallyconsisteninemorymodelsinceit
did notrequirecompromisinghesharednemoryprogrammingabstractionandsince
ourinvestigationgevealedthatthe performancef weakconsisteng wascomparable
to otherformsof lateng tolerance.

baums PhDthesis) softwaremanagementf interconnectocality
in a cache-basedystembecamemportantonly for systemshat
exceededmary hundredsof processoré. We also learnedlater
that the real benefitof meshnetworks for few tensof processors
wastheirlow cost,modularity andeaseof packaging.

When the project started,we believed limited directoriesof-
fered the solution to scalablememoryrequirementssince their
perprocessocostsscaledasthe log of the numberof processors.
The discussionbelow tells why our initial optimismwith regard
to limited directoriesvascompletelymisplacedandhow Alewife
avoidstheir deficiencies.

Adhering to our shared-memonprogrammingdiscipline, we
wantedto avoid exposinglocality to the programmeiat all costs.
Alewife doesexposelocality to the software system,andwe be-
lieved we could develop limited-directory-basethardwareandan
accompaning software systemthat could exploit the underlying
locality for scalableperformancewhile providing an uncompro-
mising sharedmemoryabstractiorto the programmer Our chal-
lengewasto build sucha systemandto demonstrat¢hatthe twin
goalsof programmabilityandscalabilitycould be met.

Notice thatin the very early Alewife days(Spring, 1988), the
following featureswere chosen:a point-to-pointmeshintercon-
nectthatexposedlocality to the software, a limited directorydis-
tributedwith memoryamongthe processingiodes,anda shared-
memoryprogrammingmodel. Featuresuchascontet switching,
fine-grainsynchronizationmnessag@assingandin fact,thename
Alewife itself, camelater— eachwith aninterestinghistory of its
own. Our early researchaddressedwo major questionspoth re-
latedto scalability Could sharedmemorysystemsoleratethela-
tenciesof meshinterconnectsZouldlimited directoriesscale?

Although architectstoday do not think twice aboutusing net-
workswith non-uniformcommunicationateng for sharednem-
ory, interestingly we spenta lot of time worrying about their
“programmability’ thatis, whethertheir non-uniformlateny and
bandwidthwere mismatchedwith the demandsof the uniform-
accessharedmemoryabstraction.Anecdotally we were ableto
find someemail from Agarwal to Hennessyn April of 1988that
talksof thetradeofs in usingameshnetwork: “Therearecertainly
alot of problemgwith meshnetworks], andperhapghemainone
is the issueof programmability But if we areto get arnywhere
building large machinesthis issueof locality (proximity) mustbe
madevisible to thecompiler/schedulefor to the programmegnsin
messag@assingnachine®r connectiormachines)n somegrace-
ful way”

Even more interestingly the multithreadingsolution to the la-
teng/ problemadoptedby Alewife wasinspiredby the following
responsdrom Hennessytwo dayslater: “When thinking about
how to scalea sharednemorymachineabove a few hundredpro-
cessorsthe difficulty becomedoleratingthe lateng. | tried to

3 A key reasoris thatevenwith efficiently engineeredhterfaces asignificantcom-
ponentof the remoteaccesdateng is attributableto overheadsat the sourceand
destination.



think how the messaggassingfolks deal with their horrible la-
tenciesandit occurredto me - they context switch. Supposeyou
couldbuild a machinethat could context switch quickly (easyfor
a MIPS-styleRISC machine just usemultiple registersets).Sup-
poseyou knew whena memoryrequestwould take a long time -
simply context switch?”

We choseto usecontext switchingon cachemissesasa mech-
anismto toleratethe latenciesof meshnetworks. We alsobegan
talkingto BertHalsteacatMIT, whosegroupwasexploringthede-
signof amultithreadedprocessocalledMarch. Like HER, March
usedfine-grainmultithreading(context switching on eachcycle)
to toleratememorylateny. March alsoincludedtag supportfor
Multilisp Futuresandfine-grainsynchronization.Alewife’s pro-
cessor Sparcle,(initially namedApril, for it followed March!),
inheritedmary of the featuresof March, and improved upon it
in mary ways? We believed singlethreadperformancewaskey
to the competitvenessof multithreadedprocessors Accordingly
Sparclecontet switchedonly on cachemissesto remotemem-
ory and synchronizatiorfailures (both large lateny events). In-
frequentcontet switchesallowedthe architectureo exploit tradi-

tional pipeline optimizationsfor goodsinglethreadperformance.

It alsoenableda simple implementationof Sparcle,sinceinfre-
guentcontext switchesaretolerantto relatively long context switch
times (about10 cycles). Taking a minimalist approachwe also
simplified the tag supportarchitecturefor fine-grainsynchroniza-
tion.

Realizingthat building a multiprocessosystemwas a massve
effort, we beganto explore potentialcollaborationghat could re-
duceour own effort. Thefirst of suchcollaborationsvaswith LSI
Logic. Werealizedin the Summerof 1989thatthe SunMicrosys-
tems’SPARC architectureouldyield asimplepathto implement-
ing the Sparcleprocesso(Sparclewas actually namedfollowing
ourdecisionto useSPARCs). We metwith GeneHill of LSI Logic,
thenthe headof the SFARC division,andheagreedo helpusim-
plementSparcleby modifying LSI's SFARC implementation.A
fruitful collaborationwith LSI and Sunfollowed this initial dis-
cussion.

We exploreda collaboratiorwith Tom Knight on interconnects.

Knight wasinterestedn developinga high-speedircuit-switched
multistageinterconnectjncluding a packagingtechnologyusing
“fuzz button” pressureonnectorsn aliquid cooledsystem Given
our focus on communicationlocality, Knight offered to provide
short-circuitfeedbackpathsin the multistageinterconnecto sup-
portfastnearneighborcommunicatiorin themultistagenetwork ®
We ultimatelydecidedo stickwith themeshinterconnecfor mary
reasonsWe felt theinterconnectechnologyintroducedtoo mary
additionalfailure modesinto what was alreadyan ambitiousand
risky project. The meshnetwork wasa bettermatchto Alewife’s
pedagogyEarly simulationresultsindicatedthat paclet switching
provided betterperformancehancircuit switchingfor our system
parametersFinally, and perhapsmostimportantly we werealso
ableto obtainworking MeshRouting Chips(MRCs) from Chuck
Seitz at Caltech,therebyeliminating (or so we thought)a major
risk factor

It turnedout that the self-timedprotocol of the MRC wasboth
a blessinganda problem. It helpedusin thatwe did not have to
worry aboutclock synchronizatioracrossthe entire machine. It
alsoallowed usto conductsensitvity experimentson the Alewife
machineby varying the processorclock for the samenetwork
speed. Thesesensitvity experimentswere critical in determin-
ing theratiosof processoto network clock speedunderwhich ei-
ther sharednemoryor messag@assingvasoptimal. Their asyn-

4KranzandNussbaunworked on the March projectandlaterjoined Alewife.

5The name Alewife itself cameup in 1988 during a discussionwith Knight.
Alewife was a recentlyconstructedstationon the red line in Bostons subway sys-
tem. Knight'sinterconnecprojectcontinuedunderthenameTransit.

chronousnatureresultedin somenightmarishtestinganddetug-

ging problems,turning mary Alewife researcherinto transmis-
sionline haclers. Theasynchrop alsorequiredsomecreatve test
methodologies.Overall, we believe we cameout well aheadby

usingthe MRCs, andwe arebeholderto ChuckSeitzfor making

themavailableto us. Onthe otherhand,the Alewife implementors
will beverywary of asynchronoutogic in thefuture.

By theFall of 1989,the Alewife architecturehadevolvedto the
following: Its fastcontext-switching Sparcleprocessorsvould be
basedn SFARCsandits meshnetwork would useCaltechMRCs.
The Sparcleprocessowould supportfine-grainfull/empty bit syn-
chronization.We, however, werebegginningto wealenonthelim-
ited directory andmessag@assinchadnot shavn up yet.

Design Extensie simulationsagainstaddressracesfor large
numbersof processor®btainedby running several parallel pro-
gramsfrom IBM, MIT, andStanfordduring1989and1990began
to lead us to the conclusionthat limited directorieswere simply
not robust. Although all programsexhibited predominatelyfim-
ited datasharing,disquietingly almostevery programincludedat
leasta smallnumberof widely-sharedbut mostlyread-only)vari-
ables. Initially, we hypothesizeccompiler and software system
passeshatwould automaticallydetectsuchwidely sharedobjects
andfix theproblem,andtherebyobtainedrairly positive resultsout
of our simulatorsby subtractingthe effects of theseerrantrefer
encesFor example we believedwe couldeliminatewidely shared
variablesin barriersby usingscalablesoftwarecombiningtrees.

Simulatorhackscanonly take you sofar whenyou have under
takento build a realworking system,sowe beganto developthe
hypothesizedoftwarepasseseededor widely sharedeferences.
Unfortunately eachnew programencountere new type of opti-
mizationthathadto be performed.The growing list of optimiza-
tionsmadethesystemextremelyfragile,andgradually ourresohe
wealenedasevidencemountedonthefallibilities of limited direc-
tories. As aresultof discussionsvith David Jamesand Gurindar
Sohi, we beganto explore alternatves suchaspointerchainsthat
couldstill yield a constantcostpernode. (Pointerchainingtech-
nigues which wereadoptedor the IEEE ScalableCoherentinter
face linked cachedcopiesusingpointerchainsrootedatthehome
memorynode).We wereconcernedboutthelong latencieof sin-
gle pointerchainsandthe compleities of thedoubly linked alter
natives. We alsolookedat purelysoftware-basedpproachessing
trapsandsoftwareallocationof pointersin garbage-collectedeap
storageanddiscardedhemasbeingtoo expensve, atleastfor the
processememoryspeedatiosatthattime.

During this time of uncertaintyin the project, Kubiatavicz had
begunto designa system-lgel messagnterfacesoAlewife could
perform1/O operationsefficiently. It thenoccurredto usthatwe
could take adwantageof software-injectedmessagesnd a trap-
basedprocessoiinterfaceto extend the limited-directorymecha-
nisminto softwarein therarecasehatawidely sharedtem caused
alimited directoryoverflow. By gracefullyextendingthedirectory
into garbage-collectetieapstorageand maintainingit as a soft-
ware hashtable with linked lists, we could allow widely shared
objectsto revert to the softwarestructures We namecthis scheme
LimitLESS - limited directorieslocally extendedwith software
support— anddesigneda unified messagabstractioracrossboth
thesoftwareandthehardware. The LimitLESS schemeavaspartic-
ularly appealingbecauset enabledbuilding an experimentalsys-
temthatallowed usto vary the numberof hardwarepointersfrom
five to zero, zerobeingthe all-software casein which all remote
memoryoperationsverebeinghandledn software.

We believed that experimentingwith the zeropointercasewas
importantbecausé affordedasystenwith minimal hardwaresup-
port for sharedmemory As demonstratethy Chaikenin his PhD



thesistheall-softwarecasewasonly abouta factorof two or three
off from the hardware case. Kirk Johnsors PhD thesistook the
all-softwareapproactonestepfurtherandexploredthe feasibility
of acoherensharednemorysystemcalledCRL built ontop of an
efficient messag@assingsubstrateInterestingly this thesisartic-
ulatesa key benefitof interrupt-drizendelivery of messagesdnter-
ruptsarebetterthanpolling whenasynchronousnessagesvoke
handlerghatareunrelatedo thecomputationdeingperformedcon
thereceving processors.

Although the software-basedLimitLESS approachhad been
conceved to solwe the scalability problem of directories, we
learnedsoon enoughthat it had other appealingpropertiessuch
asflexibility andadaptability Chailen’s thesisdiscusseseveral
suchadaptve protocols— for example,thosethat switch between
individual invalidatesand software broadcasts- and presentsx-
perimentaldataon their performance.Our instinct aboutthe all-
software caseproved to be alundantlytrue asthe flexibility and
scalability of software approachesave all but shutout hardware
directoryapproache morerecentresearctprojects.

The LimitLESS casestudy highlightsperhapghe two mostim-
portantreasorfor building real systemsn researctervironments.
First, unlike simulators realworking systemsseldomhide serious
flaws. And secondwhenaresearchgrouphasundertakento build
a novel systemthey will inventthe necessarynechanisnanddo
whatever it takesto make it work. Suchanernvironmentof neces-
sity thatbreeddnventionis impossibleto simulate.

Themessagingnterfacechangedhefaceof Alewife andrapidly
establishedhe value of integrating both messagingand shared
memory Recall,during the early Alewife days,sharedmemory
andcheapmessagesvere provided largely in exclusionin previ-
oussystems.Evenin Alewife, messagesverefirst introducedas
a meansof performingefficient I/0. They werethenextendedto
provide the foundationsfor a software-basedlirectory architec-
ture. The messagénterfacealsoallowed cost-efective solutions
to deadlockproblemscausedby limited buffering in the network
hardware. As themessagenechanisnwasexposedo systensoft-
wareit rapidly penadedtheruntimesystemsincemary operations
suchasschedulingandsynchronizatiorwerebestperformedwith
messages.

Sincethe initial messagénterfacewasavailableonly at system
level, userlevel softwareincurreda heary overheadn usingmes-
sages.The softwarefolks campaignedor the samefunctionality
to beavailableatuserlevel, andcorvincedthearchitectgo provide
auserlevel messagasend.Althoughit may seemthatimplement-
ing bothtakesa kitchen-sinkapproacho the architectureijt turns
out that sharedmemory systemsrequiremuch of the underlying
hardware functionality aryway. The additionalrequirementsare
to exposethis functionality to the software. Kubiatavicz's thesis
hasa solid analysisof the extentto which resourceganbe shared
betweersharednemoryandmessag@assing.

Implementation and Evaluation We decidedto use
an application-specifiantegratedcircuit (ASIC) for the Alewife

cacheandmemorymanagemeninit (CMMU). Thischip provided
mostof thehardwaresupportfor messagingndcoherenceAt this
point we discoseredthat ASIC vendorswere hardly tripping over
eachotherto obtainour ASIC business.In fact, mostASIC ven-
dorswill notsupportaresearctchip projectevenwith ahighNRE

(non-recurringexpense— a one-timechage paid to the vendor)
becausehe productionchip volumesare usually quite low com-
paredto thenumbershey areusedto. Continuingour relationship
with LSI, we establishedontactwith BrianHalla, thenthegeneral
managenf the ASIC divisionat LSI (currentlyCEO of National),
who graciouslyagreedo supportour chip building efforts.

The chip designinvolved writing more simulators. The early

phasesof Alewife involved trace-drven simulators. Thesewere
replacedby ASIM, aninstruction-level simulator As the CMMU

chip designstarted,ASIM was itself replacedby NWO (which
stoodfor New World Order),which wasfaithful to therealdesign.
NWO, in fact,incorporatedsomeof the controllogic directly from

the real design. Testingand validation of the CMMU was done
usingLSI’'s simulators augmentedvith a TCP interfaceto NWO.

NWO alsoranon Thinking Machines CM-5, a configurationthat
facilitatedsoftwarevalidationsandarchitecturaktudies.

Looking back,theimplementatioreffort wasa procesf incre-
mentaldiscovery in itself, andwe happenediponseveralinterest-
ing discoveriesalongtheway. As discusse@arlier theintegration
of messagassingand sharedmemorywas one of the mostim-
portantones. Anotherwasthe discovery of the “window of vul-
nerability” problem.Althoughwe hadknown thatseverallivelock
scenariosandsomedeadlockscenarioexistedin the presencef
multi-phasememorytransactionsye hadnever encounterethem
in our initial simulations.Soonenoughhowever, we raninto the
first of these namelya livelock scenariathat ariseswhenboth an
instructionandits associatedataitem mapto the samecachdine.
Our initial solutioninvolved additionalstatein the cachetagsto
recognizeand correctthis problemby temporarilylocking down
cachelines. However, as the implementationprogressedit be-
cameclearthatlocking down cachelinesintroduceddeadlocksn
the presencef message-passirandLimitLESS traps. Naturally,
we hadto make the systemwork, and shortly thereafterwe de-
velopedanalgorithmcalled”associatve thrashlock”anda unified
hardwareframavork calledthetransactiorbuffer for solvingthese
problemsin generaf

Thetransactiorbuffer mechanisnhelpedsolve yetanotheprob-
lem thatwe encounteredor moretruthfully, took uponoursehes.
Latein the designphase we choseto modify our coherencepro-
tocolsto supportmisorderingof messagei the network. Our
reasonfor doing this wasto develop a more generallyapplicable
solutionthanthatrequiredfor our own network (which did deliver
message order). It turnedout that minor modificationsto the
protocolsin concertwith thetransactiorbuffer mechanisnenabled
usto male this significantimprovementto our protocols.We also
took adwantageof the reorderingprotocolsto createa software-
basecdhetwork overflow solution,therebyeliminatingthe needfor
multiple networksor virtual channels.

As theimplementatiorprogresseda largebody of softwarewas
written to make the machineusable. New synchronizationand
schedulingalgorithmswere amongthese(seeLim’s and Nuss-
baums PhD theses). Interestingly somediscoreriescameabout
throughlimitationsin the prototype. Alewife did not supportvir-
tual memory since we believed we could answerour research
guestionswithout it. Barua and Kranz developed a software
methodcalled software addresgranslationin which the compiler
inlined customizabldranslationgnto the code. This methoddid
notseemuchusewhenfirst developed but we believe thatits flex-
ibility combinedwith theemegenceof usercustomizableoperat-
ing systemdik e ExokernelandSPINwill make it appealingn the
future asareplacemenor anadjunctto hardware TLBs.

Our collaborationwith LS| onthe Sparcleprocessoworked out
very well. Therewasa scaryperiod,though,whenGeneHill left
LSI, andthe questionof why Sparclewasbeingsupportedarose.
With helpfrom ourtechnicalcounterpartat LS| andSun,Godfrey
D’Souzaat LS| andMik e Parkin at Sun,we wereableto obtainthe
supportof AmnonFisherat LS|, andour Sparcleefforts continued
smoothly As depictedin thetimelinein thefigure,working Spar

S Chailen’s Mastersthesisdiscusseshe thrashingproblemsand one of our early
solutions. Kubiatavicz’'s PhD thesiselaborate®n the window of vulnerability and
thetransactiorbuffer solution. Kubiatovicz’s thesisalsocontainsa nicediscussiorof
the chip design,implementatiorandtestefforts, andthe futility of chip refabrication
in auniversity



cle chipsarrivedfrom LSl in early 1992.

We alsoinitiated a collaborationon packagingwith Bob Parker,
Jef LaCossandDianeDeluteatthe advancedpackagingechnol-
ogy (APT) groupat ISI in California. Inspiredby Tom Knight's
work on pressureconnectorswe cameup with a prototypede-
signwith Jef LaCoss. This “cool” designhadtwo key features:
it did not involve backplaneboards,and it was highly compact.
Its biggestproblemwasthatthe replacemenbf a singleboardin-
volveddecompressingll the connectorstherebyviolating the ba-
sic tenetof successfubystembuilding — if it ain’'t broke, don't
touch(sic)it. Fortunatelywe jettisonedhis packagingechnology
for muchlessrisky technology:passie backplanesnodeboards,
andtraditionalconnectors.

Wefirst designedandbuilt anodeboardatMIT. This designwas
built with a large numberof probepointsandoptimizedfor table-
top dehugging. Then,APT turnedthis prototypeboarddesigninto
a more compactproductionquality designand alsodesignedhe
backplaneboards.They alsocameup with the power distribution
andcoolingdesign.MIT addedthe designsfor clock distribution
andJTAG support.

The following figure shaws the progressof our implementation
effort. Perhapshemostsignificantfeatureof ourschedulevasour
grossunderestimationf thetime it would take to testthe CMMU
chip. Fortunately we got working partsback,andour aggressie
software effort thatran concurrentlywith the chip designpaid off
handsomelyWe had2 nodesworking togetherin a week,8 nodes

in two weeks,and 16 nodesin amonthanda half.
90 Sparcle spec

1 CMMU spec
91 Sparcle nets run first program

Sparcle layout begins

Y CMMU nets execute "Hello World"
Sparcle chips return

93 CMMU base wafer tapeout

CMMU metal layout begins
CMMU chips (3) return May
9T Alewife at 32 MHz (2 nodes) May 8
/ 9 CMMU chips arrive
8-node Alewife runs Water May 17
———-_ 10 CMMU chips arrive

\ 16-node Alewife runs June 17
40 CMMU chips arrive
70 assembled boards ~Nov 4

32-node Alewife ~Nov 8

As the machinecameonline, our evaluationprocessegan. The
effort got a massie infusion of enthusiasmand enegy whenRi-
cardoBianchinicameto work with usoverthe summer Following
Ricardos enepetic efforts, we had a large numberof the Splash
applicationsportedto Alewife within months. The resultsfrom
our evaluationsarereportedin the Alewife paperincludedin this
issue.As we concluden the Alewife paperthebasicsharednem-
ory programmingabstractioraugmentedavith mechanismsuchas
explicit messagingfine-grainsynchronizatiorandcontext switch-
ing, provided both use-performancéeaseof useand reasonably
goodperformanceandmeansgor furthertuning.

Looking Back Althoughit is alittle early to look backand
assesa projectthatcameto fruition four yearsago,it is instructve
to do so nonethelesslin particular it is usefulto discussfeatures
that did not deliver on their promise. As might be expected,we
grew to love all of Alewife mechanismsdespiteall their warts,
soit is alwaysdifficult to knock ary one of them. However, the
readercantake alessthanenthusiasticespons@boutafeatureas
a sign of a negative result. Furthermore asdiscussedreviously
andfurtheron in this writeup, mary of the featuresturnedout to
be usefulin unanticipatedvays, sothe negative resultsreally are
oftenin the contet of theanticipateduses.
Perhapsmostimportantly theanswergo thetwo key questions

we setoutto answerattheinitiation of the project,namely how to
exploit locality in ameshnetwork andhow to build atruly scalable
directorysystemturnedout to be of lesserimportancethansome
of the other contritutions of the project. The software approach
to directoriesand the integration of messageassingand shared
memoryturnedout to have the biggerimpact. We furtherobsere
thatalthoughsoftware-basedlirectoriesandintegratedmessaging
seemto have impactedotherresearctprojects.thisimpacthasnot
beenfelt in industryatthistime.

It is interestingto speculateon why theissuesof scalabilitywe
thoughtsoimportanttenyearsagoturnedout not to be so signifi-
cant. With the enablingtechnologieof sharednemoryprogram-
ming andcost-efective meshnetworksopento scalablemachines,
we believe their usability and bill-of-materialscostare no longer
theissue.We speculatehatthereasorlies in the noneistence(at
leastatthistime) of alarge classof problemshatdemandscalable
machineperformance.Consequentlyonly a relatively small per
centageof thecomputingworld really caresaboutlarge-scalenul-
tiprocessorsAs in the past,a selectcadreof users— who arewill-
ing to hand-tuneheir applications- expendextraordinaryeffort to
meettheir computationaheeds.The businescasefor addressing
the needsof this relatively small market remainsaselusive today
asit wasadecadeago.

Thereareotherpracticalfactorsthatrelateto the scalabilityand
applicability of LimitLESS directoriesin either their hardware-
softwareform or in a purely softwareform. Although our results
demonstratethe compellingcost-performancef two-pointerdi-
rectoriesby balancingthe hardware and software componentof
a multiprocessqrwe doubttherewill ever be commercialor re-
searchmachineghat combinehardware and software like Limit-
LESS.SinceAlewife wasanexperimentaimachinejt madesense
toimplementafew pointersin hardwaresincewe couldexplorethe
degradationsufferedin going from several pointersto zeropoint-
ers. As our resultsindicated,the five pointer casewas compet-
itive with an all-hardware system,and the all-software casewas
betweera factorof two or threeworse.

In the commercialervironmentpreseniat the time of this writ-
ing, it makessenseto build all-hardware systemssincethe hard-
wareoverheads not significantfor systemswith few tensof pro-
cessorsand sincethis approachdoesnot involve modifying ex-
isting processotinterfaces. Furthermore multigrain systemsal-
low modest-sizedystemso be built by composingsmallerma-
chinesusing software page-basedoherencéetweenthe compo-
nents.For theserelatively small systemsyve will likely seeatran-
sition from the hardware approachto a software approach(prob-
ably using a separateprotocol processoiin the shortterm anda
unified processoin thelongerterm)astheincreasingateny gap
betweerthe processoclock andmainmemorymalkessoftwareat-
tractive.

If Moore’s Law ever breaksdown, however, scalability will
be applicableto mainstreantomputing(asopposedo marketing
hype),andit is very possiblethatthesamemarketforcesmightdic-
tateadifferenttradeof betweersoftwareandhardware. Assuming
thatanew computingparadigmdoesnotemepge, LimitLESS-style
coherenceouldwell becomeappealindgor its scalingproperties.

Oneof thesurprisesfter Alewife wasbuilt wasthatmary appli-
cationswritten usingshared-memorwerefoundto becompetitve
with the sameapplicationswritten usingmessag@assing.While
this was a significantand unanticipatedesultin favor of shared
memory it wascounterto our intuition. A sensitvity analysisre-
vealedlater that the stateof technologyplaysa majorrole in de-
terminingwhich s better It turnsout thatsharedmemoryis com-
petitive or betterthan messaggassingwhen the processorsare
slow comparedo the interconnectandthe oppositeis true when
the processoclocksincreaserelative to network speeds.We fur-
therobseredthatasynchronoumessag@otificationis inherently



bettersuitedto operatingsystemlik e applicationssuchasCRL.

Oneof the questionawe asled oursehes waswhetherbuilding
wasnecessann the faceof our sophisticatedimulationtechnol-
ogy. Not surprisingly for the applicationsthat ran on our simu-
lators, our resultsfrom the real prototypewere not qualitatively
differentfrom our detailedsimulators However, the availability of
the real prototypeallowed us to develop a large numberof appli-
cationsandobtainresultsfor realisticproblemsizesrapidly. Since
therewereno majorsurprisestunningtheseapplicationsandlarge
problemsizessenedto validateour conclusions.

And of course,as discussecearlier mary of the key Alewife
mechanismsvould not have beeninventedotherwise. Taking the
example of integratedmessagingwe doubt Kubiatavicz would
have even contemplatedhe introductionof a real message-based
1/0 mechanisnfor a simulator Finally, the simulatorscould not
have reachedheir level of sophisticatiorhadwe not beenon an
implementationpath. As a casein point, NWO leveragedmary
of the samecontrol statemachinespecificationsusedin the real
hardware. As oneof usis fond of saying,if therehadbeena way
to hypnotizeourselhesinto believing that we were working on a
real machine,we could have sased a year spentin designverifi-
cationwhosemajor value could be measuredot in termsof the
contrikutionsto sciencebut in valueto the soul.

Whatof fine-grainsynchronizatiorandcontext switching? The
insignificantvalueof hardwaresupportfor fine-grainsynchroniza-
tion wasone of the salientnegative resultsfrom the project. As
reportedby Donald Yeungin his Masters thesis,the meansfor
expressingine-grainparallelismin the sourcelanguages of con-
siderableémportancewhile the specialhardware supportfor full-
emptybitsis of mamginal value.

The jury on contet switchingis still out. Context switchingis
intendedto improve the performanceof applicationswith a lot of
parallelismthat suffer low processoutilization dueto their poor
cachebehaior. Context switchingis mostusefulwhenthe net-
work hasa large lateng but candeliver high bandwidth. Context
switchingdeliveredonits promisefor applicationsvith poormem-
ory performancesuchasMP3D. A dedicateccontet for handling
asynchronousnessageénterruptswithout disruptingthe compu-
tational stateon the processomwas also valuable. However our
applicationsexhibited reasonableachebehaior, andthereforea
reasonabl@rocessoutilization. Clearly MP3Dis anexception”

Theopenquestionthen,is whethertherewill besuficientappli-
cationsthat exhibit poor cachebehaior whenwritten in a natural
mannerundersharedmemoryby averageprogrammersLooking
back,althoughBianchiniandLim have donesomefollow up eval-
uationof context switchingon Alewife,® we have beenremissin
not expendingthe effort to find moreapplicationsandfully evalu-
ating context switching.

Alewife leveragedmary of the adwancesof previous research
suchaswormhole-routedow-dimensioninterconnectsdirectory
basedcoherenceandefficient messagénterfaces.In turn, in ad-
vancingthe notionsof software-basedlirectoriesand integrating
messagingind sharedmemory we hopeit contritutedin modest
measureo this cycle of research.

7Onemight be temptedto speculatehat mary of theseapplicationswere devel-
opedfor DASH or Alewife, both cache-basedhachines,and thereforecodedin a
cache-friendlystyle.

8Bianchiniand Lim evaluatedcontet switching on Alewife and publishedtheir
findingsin the August1996issueof JPDC.They concludethat“prefetchingis prefer
able over multithreadingfor machineswith low remoteaccesdatenciesand/orap-
plicationswith poor locality and consequentlyshortrun-lengths. The performance
of both techniquess comparabléor applicationswith high remoteaccesdatencies
and/orgoodlocality.” They alsoarguethatcontect switchinghasaddedvaluein mi-
crokernelervironments.

References

[1] AnantAgarwal, RichardSimoni,JohnHennessyandMark Horowitz.
An Evaluationof Directory Schemedor CacheCoherence.In Pro-
ceedings of the 15th International Symposium on Computer Architec-
ture, page<280-289Honolulu,HI, Junel988.IEEE.



