
A Retrospective on
The MIT Alewife Machine: Ar chitecture and Performance

AnantAgarwal
Laboratoryfor ComputerScience

MassachusettsInstituteof Technology

The MIT Alewife project evolved out of exploratory work at
Stanfordon directory schemesfor cachecoherence[1] (also in-
cludedin this issue). Using datafrom small bus-basedmultipro-
cessors,this earlywork demonstratedthatdirectoryschemeswere
asefficient asbus-basedsnoopingprotocols,andthatby distribut-
ing directoriesalongwith main memory, they could provide the
foundationsfor a cache-coherentshared-memorymultiprocessor
basedon an interconnectionnetwork. This paperfurther recog-
nizedthe scalinglimits of bit-vectordirectories– they consumed
memoryproportionalto thesquareof thenumberof processors–
andspeculatedthat variantssuchaslimited pointerdirectoriesor
limited broadcastdirectories

�

might beattractive scalablealterna-
tives.Thepaper, however, stoppedshortof demonstratingthefea-
sibility of limited directories,largely becauseof the lack of either
addresstracesor parallelprogramswritten for a scalablecoherent
shared-memorysystem.This lackof datawasnotsurprisinggiven
thatsucha machinehadnotbeeninventedyet!

Exploration The Alewife project was born out of a desire
to build a shared-memory multiprocessorthat was truly scalable
(seethe section“Perspectives andSummary”in the Alewife pa-
perin theProceedingsof theWorkshopon ScalableSharedMem-
ory Multiprocessors,Kluwer AcademicPublishers,1991,to geta
senseof our early thinking). Although scalablemessage-passing
multicomputershadbeenaroundfor years,they wereknown to be
notoriouslyhardto program.Webelievedthatsharedmemorywas
easierto program,andaccordingly, we choseearlyon to offer no
compromiseon thesharedmemoryprogrammingmodel.

�

Notice
thatourearlyAlewife thinkingofferednoplansto exposemessage
passingto thesoftwaresystem.

For scalability, we choseto borrow heavily from messagepass-
ing machinesconceived by researcherssuchas Seitz and Dally.
Messagepassingmachinesachieved their scalabilityby distribut-
ing constantper-processorresourcesover a point-to-point inter-
connectand exposing this distribution to the programmer. Ac-
cordingly, we decidedearly on to distribute memoryandproces-
sorsover a point-to-pointmeshnetwork (asopposedto a uniform-
accessmultistagenetwork) andstroveto keepper-nodecostsmore
or lessconstant.We believed that scalingto even tensof proces-
sorsrequiredsupportfor locality managementfrom schedulersand
compilers.As we discoveredyearslater, (for example,seeNuss-

�

A limited pointerdirectorymaintainspointersto afixednumberof cachedcopies
of data.A limited broadcastdirectorydividestheprocessorsinto sets,andmaintains
a pointer to eachsetof processors,sendingbroadcastinvalidationsto the entireset
whenneeded.

�

During theearlyAlewife days,thenotionof sharedmemorywith weaker mem-
ory semanticshadnot yet beenformally defined. Therefore,we took sequentially
consistentsharedmemoryasa given. As discussedlater, we choseto usecontext
switchingasa wayof toleratinglatency. Whentheweaker modelsbeganto appearin
asequenceof path-breakingpapersfrom USC,Wisconsin,andStanford– all threeare
includedin this issue– wewerefacedwith thechoiceof adoptingaweakermodel.At
this point, we decidedto supportthe sequentiallyconsistentmemorymodelsinceit
did notrequirecompromisingthesharedmemoryprogrammingabstraction,andsince
our investigationsrevealedthattheperformanceof weakconsistency wascomparable
to otherformsof latency tolerance.

baum’sPhDthesis),softwaremanagementof interconnectlocality
in a cache-basedsystembecameimportantonly for systemsthat
exceededmany hundredsof processors.

�

We also learnedlater
that the real benefitof meshnetworks for few tensof processors
wastheir low cost,modularity, andeaseof packaging.

When the project started,we believed limited directoriesof-
fered the solution to scalablememoryrequirements,since their
per-processorcostsscaledasthelog of thenumberof processors.
The discussionbelow tells why our initial optimismwith regard
to limited directorieswascompletelymisplaced,andhow Alewife
avoidstheirdeficiencies.

Adhering to our shared-memoryprogrammingdiscipline, we
wantedto avoid exposinglocality to the programmerat all costs.
Alewife doesexposelocality to the softwaresystem,andwe be-
lievedwe coulddevelop limited-directory-basedhardwareandan
accompanying softwaresystemthat could exploit the underlying
locality for scalableperformance,while providing an uncompro-
mising sharedmemoryabstractionto the programmer. Our chal-
lengewasto build sucha systemandto demonstratethat thetwin
goalsof programmabilityandscalabilitycouldbemet.

Notice that in the very early Alewife days(Spring,1988), the
following featureswerechosen:a point-to-pointmeshintercon-
nectthatexposedlocality to thesoftware,a limited directorydis-
tributedwith memoryamongtheprocessingnodes,anda shared-
memoryprogrammingmodel.Featuressuchascontext switching,
fine-grainsynchronization,messagepassing,andin fact,thename
Alewife itself, camelater– eachwith an interestinghistoryof its
own. Our early researchaddressedtwo majorquestions,both re-
latedto scalability. Couldsharedmemorysystemstoleratethe la-
tenciesof meshinterconnects?Couldlimited directoriesscale?

Although architectstoday do not think twice aboutusing net-
workswith non-uniformcommunicationlatency for sharedmem-
ory, interestingly, we spenta lot of time worrying about their
“programmability,” that is, whethertheir non-uniformlatency and
bandwidthwere mismatchedwith the demandsof the uniform-
accesssharedmemoryabstraction.Anecdotally, we wereableto
find someemail from Agarwal to Hennessyin April of 1988that
talksof thetradeoffs in usingameshnetwork: “Therearecertainly
a lot of problems[with meshnetworks],andperhapsthemainone
is the issueof programmability. But if we are to get anywhere
building largemachines,this issueof locality (proximity) mustbe
madevisible to thecompiler/scheduler(or to theprogrammerasin
messagepassingmachinesor connectionmachines)in somegrace-
ful way.”

Even more interestingly, the multithreadingsolution to the la-
tency problemadoptedby Alewife wasinspiredby the following
responsefrom Hennessytwo days later: “When thinking about
how to scalea sharedmemorymachineabove a few hundredpro-
cessors,the difficulty becomestoleratingthe latency. I tried to

�

A key reasonis thatevenwith efficiently engineeredinterfaces,asignificantcom-
ponentof the remoteaccesslatency is attributable to overheadsat the sourceand
destination.



think how the messagepassingfolks deal with their horrible la-
tenciesandit occurredto me- they context switch. Supposeyou
couldbuild a machinethatcouldcontext switchquickly (easyfor
a MIPS-styleRISCmachine,just usemultiple registersets).Sup-
poseyou knew whena memoryrequestwould take a long time -
simplycontext switch.”

We choseto usecontext switchingon cachemissesasa mech-
anismto toleratethe latenciesof meshnetworks. We alsobegan
talkingto BertHalsteadatMIT, whosegroupwasexploringthede-
signof a multithreadedprocessorcalledMarch. Like HEP, March
usedfine-grainmultithreading(context switchingon eachcycle)
to toleratememorylatency. March alsoincludedtag supportfor
Multilisp Futuresandfine-grainsynchronization.Alewife’s pro-
cessor, Sparcle,(initially namedApril, for it followed March!),
inheritedmany of the featuresof March, and improved upon it
in many ways.

�

We believed singlethreadperformancewaskey
to the competitivenessof multithreadedprocessors.Accordingly,
Sparclecontext switchedonly on cachemissesto remotemem-
ory andsynchronizationfailures(both large latency events). In-
frequentcontext switchesallowedthearchitectureto exploit tradi-
tional pipelineoptimizationsfor goodsinglethreadperformance.
It also enableda simple implementationof Sparcle,sinceinfre-
quentcontext switchesaretolerantto relatively longcontext switch
times (about10 cycles). Taking a minimalist approach,we also
simplified the tagsupportarchitecturefor fine-grainsynchroniza-
tion.

Realizingthat building a multiprocessorsystemwasa massive
effort, we beganto explore potentialcollaborationsthat could re-
duceour own effort. Thefirst of suchcollaborationswaswith LSI
Logic. We realizedin theSummerof 1989thattheSunMicrosys-
tems’SPARC architecturecouldyield asimplepathto implement-
ing the Sparcleprocessor(Sparclewasactuallynamedfollowing
ourdecisionto useSPARCs).Wemetwith GeneHill of LSI Logic,
thentheheadof theSPARC division,andheagreedto helpusim-
plementSparcleby modifying LSI’s SPARC implementation.A
fruitful collaborationwith LSI and Sun followed this initial dis-
cussion.

We exploreda collaborationwith Tom Knight on interconnects.
Knight wasinterestedin developinga high-speedcircuit-switched
multistageinterconnect,including a packagingtechnologyusing
“fuzz button” pressureconnectorsin a liquid cooledsystem.Given
our focus on communicationlocality, Knight offered to provide
short-circuitfeedbackpathsin themultistageinterconnectto sup-
port fastnear-neighborcommunicationin themultistagenetwork.

�

Weultimatelydecidedto stickwith themeshinterconnectfor many
reasons.We felt theinterconnecttechnologyintroducedtoo many
additionalfailure modesinto what wasalreadyan ambitiousand
risky project. Themeshnetwork wasa bettermatchto Alewife’s
pedagogy. Earlysimulationresultsindicatedthatpacket switching
providedbetterperformancethancircuit switchingfor our system
parameters.Finally, andperhapsmostimportantly, we werealso
ableto obtainworking MeshRoutingChips(MRCs) from Chuck
Seitzat Caltech,therebyeliminating (or so we thought)a major
risk factor.

It turnedout that the self-timedprotocolof the MRC wasboth
a blessinganda problem. It helpedus in that we did not have to
worry aboutclock synchronizationacrossthe entiremachine. It
alsoallowedus to conductsensitivity experimentson theAlewife
machineby varying the processorclock for the samenetwork
speed. Thesesensitivity experimentswere critical in determin-
ing theratiosof processorto network clock speedunderwhich ei-
thersharedmemoryor messagepassingwasoptimal. Their asyn-

�

KranzandNussbaumworkedon theMarchprojectandlaterjoinedAlewife.
	

The nameAlewife itself cameup in 1988 during a discussionwith Knight.
Alewife wasa recentlyconstructedstationon the red line in Boston’s subway sys-
tem.Knight’s interconnectprojectcontinuedunderthenameTransit.

chronousnatureresultedin somenightmarishtestinganddebug-
ging problems,turning many Alewife researchersinto transmis-
sionline hackers.Theasynchrony alsorequiredsomecreative test
methodologies.Overall, we believe we cameout well aheadby
usingtheMRCs,andwe arebeholdento ChuckSeitzfor making
themavailableto us.Ontheotherhand,theAlewife implementors
will beverywary of asynchronouslogic in thefuture.

By theFall of 1989,theAlewife architecturehadevolvedto the
following: Its fastcontext-switchingSparcleprocessorswould be
basedonSPARCsandits meshnetwork woulduseCaltechMRCs.
TheSparcleprocessorwouldsupportfine-grainfull/emptybit syn-
chronization.We,however, werebeginningto weakenon thelim-
iteddirectory, andmessagepassinghadnotshown upyet.

Design Extensive simulationsagainstaddresstracesfor large
numbersof processorsobtainedby running several parallel pro-
gramsfrom IBM, MIT, andStanfordduring1989and1990began
to leadus to the conclusionthat limited directoriesweresimply
not robust. Although all programsexhibited predominatelylim-
ited datasharing,disquietingly, almostevery programincludedat
leastasmallnumberof widely-shared(but mostlyread-only)vari-
ables. Initially, we hypothesizedcompiler and software system
passesthatwould automaticallydetectsuchwidely sharedobjects
andfix theproblem,andtherebyobtainedfairly positiveresultsout
of our simulatorsby subtractingthe effectsof theseerrantrefer-
ences.For example,webelievedwecouldeliminatewidely shared
variablesin barriersby usingscalablesoftwarecombiningtrees.

Simulatorhackscanonly take you sofar whenyou have under-
taken to build a realworking system,sowe beganto develop the
hypothesizedsoftwarepassesneededfor widely sharedreferences.
Unfortunately, eachnew programencountereda new typeof opti-
mizationthathadto beperformed.Thegrowing list of optimiza-
tionsmadethesystemextremelyfragile,andgradually, ourresolve
weakenedasevidencemountedonthefallibilities of limited direc-
tories. As a resultof discussionswith David JamesandGurindar
Sohi,we beganto explorealternativessuchaspointerchainsthat
couldstill yield a constantcostpernode. (Pointerchainingtech-
niques,which wereadoptedfor theIEEEScalableCoherentInter-
face,linkedcachedcopiesusingpointerchainsrootedat thehome
memorynode).Wewereconcernedaboutthelonglatenciesof sin-
gle pointerchainsandthecomplexities of thedoubly linkedalter-
natives.Wealsolookedatpurelysoftware-basedapproachesusing
trapsandsoftwareallocationof pointersin garbage-collectedheap
storage,anddiscardedthemasbeingtooexpensive,at leastfor the
processor-memoryspeedratiosat thattime.

During this time of uncertaintyin theproject,Kubiatowicz had
begunto designasystem-level messageinterfacesoAlewife could
performI/O operationsefficiently. It thenoccurredto us that we
could take advantageof software-injectedmessagesand a trap-
basedprocessorinterfaceto extend the limited-directorymecha-
nisminto softwarein therarecasethatawidely shareditemcaused
alimited directoryoverflow. By gracefullyextendingthedirectory
into garbage-collectedheapstorageandmaintainingit asa soft-
ware hashtable with linked lists, we could allow widely shared
objectsto revert to thesoftwarestructures.Wenamedthis scheme
LimitLESS – limited directorieslocally extendedwith software
support– anddesigneda unifiedmessageabstractionacrossboth
thesoftwareandthehardware.TheLimitLESSschemewaspartic-
ularly appealingbecauseit enabledbuilding anexperimentalsys-
temthatallowedusto vary thenumberof hardwarepointersfrom
five to zero,zerobeingthe all-softwarecasein which all remote
memoryoperationswerebeinghandledin software.

We believed that experimentingwith the zeropointercasewas
importantbecauseit affordedasystemwith minimalhardwaresup-
port for sharedmemory. As demonstratedby Chaiken in his PhD



thesistheall-softwarecasewasonly abouta factorof two or three
off from the hardwarecase. Kirk Johnson’s PhD thesistook the
all-softwareapproachonestepfurtherandexploredthefeasibility
of acoherentsharedmemorysystemcalledCRL built on topof an
efficient messagepassingsubstrate.Interestingly, this thesisartic-
ulatesakey benefitof interrupt-drivendeliveryof messages:inter-
ruptsarebetterthanpolling whenasynchronousmessagesinvoke
handlersthatareunrelatedto thecomputationsbeingperformedon
thereceiving processors.

Although the software-basedLimitLESS approachhad been
conceived to solve the scalability problem of directories, we
learnedsoonenoughthat it had other appealingpropertiessuch
asflexibility andadaptability. Chaiken’s thesisdiscussesseveral
suchadaptive protocols– for example,thosethat switch between
individual invalidatesandsoftwarebroadcasts– andpresentsex-
perimentaldataon their performance.Our instinct aboutthe all-
softwarecaseproved to be abundantlytrue as the flexibility and
scalabilityof softwareapproacheshave all but shutout hardware
directoryapproachesin morerecentresearchprojects.

TheLimitLESS casestudyhighlightsperhapsthetwo mostim-
portantreasonfor building realsystemsin researchenvironments.
First,unlike simulators,realworking systemsseldomhideserious
flaws. And second,whena researchgrouphasundertakento build
a novel system,they will invent thenecessarymechanismanddo
whatever it takesto make it work. Suchanenvironmentof neces-
sity thatbreedsinventionis impossibleto simulate.

Themessaginginterfacechangedthefaceof Alewife andrapidly
establishedthe value of integrating both messagingand shared
memory. Recall,during the early Alewife days,sharedmemory
andcheapmessageswereprovided largely in exclusionin previ-
oussystems.Even in Alewife, messageswerefirst introducedas
a meansof performingefficient I/O. They werethenextendedto
provide the foundationsfor a software-baseddirectory architec-
ture. The messageinterfacealsoallowed cost-effective solutions
to deadlockproblemscausedby limited buffering in the network
hardware.As themessagemechanismwasexposedto systemsoft-
wareit rapidlypervadedtheruntimesystem,sincemany operations
suchasschedulingandsynchronizationwerebestperformedwith
messages.

Sincethe initial messageinterfacewasavailableonly at system
level, user-level softwareincurreda heavy overheadin usingmes-
sages.The softwarefolks campaignedfor the samefunctionality
to beavailableatuserlevel, andconvincedthearchitectsto provide
a user-level messagesend.Althoughit mayseemthat implement-
ing both takesa kitchen-sinkapproachto thearchitecture,it turns
out that sharedmemorysystemsrequiremuchof the underlying
hardware functionality anyway. The additionalrequirementsare
to exposethis functionality to the software. Kubiatowicz’s thesis
hasa solid analysisof theextentto which resourcescanbeshared
betweensharedmemoryandmessagepassing.

Implementation and Evaluation We decided to use
an application-specificintegratedcircuit (ASIC) for the Alewife
cacheandmemorymanagementunit (CMMU). Thischipprovided
mostof thehardwaresupportfor messagingandcoherence.At this
point we discoveredthatASIC vendorswerehardly tripping over
eachotherto obtainour ASIC business.In fact,mostASIC ven-
dorswill notsupportaresearchchipprojectevenwith ahighNRE
(non-recurringexpense– a one-timecharge paid to the vendor)
becausethe productionchip volumesareusuallyquite low com-
paredto thenumbersthey areusedto. Continuingour relationship
with LSI, weestablishedcontactwith BrianHalla,thenthegeneral
managerof theASIC divisionat LSI (currentlyCEOof National),
whograciouslyagreedto supportourchipbuilding efforts.

The chip designinvolved writing more simulators. The early

phasesof Alewife involved trace-driven simulators. Thesewere
replacedby ASIM, an instruction-level simulator. As theCMMU
chip designstarted,ASIM was itself replacedby NWO (which
stoodfor New World Order),whichwasfaithful to therealdesign.
NWO, in fact,incorporatedsomeof thecontrollogic directly from
the real design. Testingandvalidation of the CMMU wasdone
usingLSI’ssimulators,augmentedwith a TCPinterfaceto NWO.
NWO alsoranon Thinking Machine’s CM-5, a configurationthat
facilitatedsoftwarevalidationsandarchitecturalstudies.

Lookingback,theimplementationeffort wasa processof incre-
mentaldiscovery in itself, andwe happeneduponseveral interest-
ing discoveriesalongtheway. As discussedearlier, theintegration
of messagepassingandsharedmemorywasoneof the mostim-
portantones. Anotherwasthe discovery of the “window of vul-
nerability” problem.Althoughwe hadknown thatseveral livelock
scenariosandsomedeadlockscenariosexistedin thepresenceof
multi-phasememorytransactions,wehadnever encounteredthem
in our initial simulations.Soonenough,however, we ran into the
first of these,namelya livelockscenariothatariseswhenbothan
instructionandits associateddataitemmapto thesamecacheline.
Our initial solution involved additionalstatein the cachetagsto
recognizeandcorrectthis problemby temporarilylocking down
cachelines. However, as the implementationprogressed,it be-
cameclearthat locking down cachelines introduceddeadlocksin
thepresenceof message-passingandLimitLESS traps.Naturally,
we had to make the systemwork, and shortly thereafterwe de-
velopedanalgorithmcalled”associative thrashlock”anda unified
hardwareframework calledthetransactionbuffer for solvingthese
problemsin general.




Thetransactionbuffer mechanismhelpedsolveyetanotherprob-
lem thatwe encountered,or moretruthfully, took uponourselves.
Late in thedesignphase,we choseto modify our coherencepro-
tocols to supportmisorderingof messagesin the network. Our
reasonfor doing this wasto develop a moregenerallyapplicable
solutionthanthatrequiredfor ourown network (whichdid deliver
messagesin order). It turnedout that minor modificationsto the
protocolsin concertwith thetransactionbuffer mechanismenabled
usto make this significantimprovementto our protocols.We also
took advantageof the reorderingprotocolsto createa software-
basednetwork overflow solution,therebyeliminatingtheneedfor
multiple networksor virtual channels.

As theimplementationprogressed,a largebodyof softwarewas
written to make the machineusable. New synchronizationand
schedulingalgorithmswere amongthese(seeLim’s and Nuss-
baum’s PhD theses).Interestingly, somediscoveriescameabout
throughlimitations in theprototype.Alewife did not supportvir-
tual memory, since we believed we could answerour research
questionswithout it. Barua and Kranz developed a software
methodcalledsoftwareaddresstranslationin which thecompiler
inlined customizabletranslationsinto the code. This methoddid
notseemuchusewhenfirst developed,but webelieve thatits flex-
ibility combinedwith theemergenceof user-customizableoperat-
ing systemslike ExokernelandSPINwill make it appealingin the
futureasa replacementor anadjunctto hardwareTLBs.

Our collaborationwith LSI on theSparcleprocessorworkedout
very well. Therewasa scaryperiod,though,whenGeneHill left
LSI, andthe questionof why Sparclewasbeingsupportedarose.
With helpfrom ourtechnicalcounterpartsatLSI andSun,Godfrey
D’SouzaatLSI andMikeParkinatSun,wewereableto obtainthe
supportof AmnonFisheratLSI, andourSparcleeffortscontinued
smoothly. As depictedin thetimelinein thefigure,working Spar-

�

Chaiken’s Mastersthesisdiscussesthe thrashingproblemsandoneof our early
solutions. Kubiatowicz’s PhD thesiselaborateson the window of vulnerability and
thetransactionbuffer solution.Kubiatowicz’sthesisalsocontainsanicediscussionof
thechip design,implementationandtestefforts,andthefutility of chip refabrication
in a university.



cle chipsarrivedfrom LSI in early1992.
We alsoinitiateda collaborationon packagingwith Bob Parker,

Jeff LaCoss,andDianeDeluteat theadvancedpackagingtechnol-
ogy (APT) groupat ISI in California. Inspiredby Tom Knight’s
work on pressureconnectors,we cameup with a prototypede-
sign with Jeff LaCoss.This “cool” designhadtwo key features:
it did not involve backplaneboards,and it was highly compact.
Its biggestproblemwasthat thereplacementof a singleboardin-
volveddecompressingall theconnectors,therebyviolating theba-
sic tenetof successfulsystembuilding – if it ain’t broke, don’t
touch(sic) it. Fortunately, wejettisonedthispackagingtechnology
for muchlessrisky technology:passive backplanes,nodeboards,
andtraditionalconnectors.

Wefirst designedandbuilt anodeboardatMIT. Thisdesignwas
built with a largenumberof probepointsandoptimizedfor table-
topdebugging.Then,APT turnedthisprototypeboarddesigninto
a morecompactproductionquality designandalsodesignedthe
backplaneboards.They alsocameup with thepower distribution
andcoolingdesign.MIT addedthedesignsfor clock distribution
andJTAG support.

The following figureshows theprogressof our implementation
effort. Perhapsthemostsignificantfeatureof ourschedulewasour
grossunderestimationof thetime it would take to testtheCMMU
chip. Fortunately, we got working partsback,andour aggressive
softwareeffort that ranconcurrentlywith thechip designpaidoff
handsomely. We had2 nodesworking togetherin a week,8 nodes
in two weeks,and16 nodesin a monthanda half.

93

94

90 Sparcle spec

91
CMMU spec
Sparcle nets run first program

Sparcle layout begins

92 CMMU nets execute "Hello World"
Sparcle chips return

CMMU base wafer tapeout

CMMU metal layout begins
CMMU chips (3) return
Alewife at 32 MHz (2 nodes)
9 CMMU chips arrive
8−node Alewife runs Water
10 CMMU chips arrive
16−node Alewife runs
40 CMMU chips arrive

May 4
May 8

May 17

June 17

70 assembled boards ~Nov 4
32−node Alewife ~Nov 8

As themachinecameonline,our evaluationprocessbegan.The
effort got a massive infusion of enthusiasmandenergy whenRi-
cardoBianchinicameto work with usover thesummer. Following
Ricardo’s energetic efforts, we hada large numberof the Splash
applicationsportedto Alewife within months. The resultsfrom
our evaluationsarereportedin theAlewife paperincludedin this
issue.As weconcludein theAlewife paper, thebasicsharedmem-
ory programmingabstractionaugmentedwith mechanismssuchas
explicit messaging,fine-grainsynchronizationandcontext switch-
ing, provided both use-performance(easeof useand reasonably
goodperformance)andmeansfor furthertuning.

Looking Back Although it is a little early to look backand
assessaprojectthatcameto fruition four yearsago,it is instructive
to do so nonetheless.In particular, it is usefulto discussfeatures
that did not deliver on their promise. As might be expected,we
grew to love all of Alewife mechanisms,despiteall their warts,
so it is alwaysdifficult to knock any oneof them. However, the
readercantake a lessthanenthusiasticresponseabouta featureas
a sign of a negative result. Furthermore,asdiscussedpreviously
andfurther on in this writeup,many of the featuresturnedout to
be usefulin unanticipatedways,so thenegative resultsreally are
oftenin thecontext of theanticipateduses.

Perhaps,mostimportantly, theanswersto thetwo key questions

wesetout to answerat theinitiation of theproject,namely, how to
exploit locality in ameshnetwork andhow to build atruly scalable
directorysystem,turnedout to beof lesserimportancethansome
of the othercontributionsof the project. The softwareapproach
to directoriesand the integration of messagepassingandshared
memoryturnedout to have thebiggerimpact.We furtherobserve
thatalthoughsoftware-baseddirectoriesandintegratedmessaging
seemto have impactedotherresearchprojects,this impacthasnot
beenfelt in industryat this time.

It is interestingto speculateon why the issuesof scalabilitywe
thoughtsoimportanttenyearsagoturnedout not to besosignifi-
cant. With theenablingtechnologiesof sharedmemoryprogram-
mingandcost-effective meshnetworksopento scalablemachines,
we believe their usability andbill-of-materialscostareno longer
theissue.We speculatethatthereasonlies in thenonexistence(at
leastat this time)of a largeclassof problemsthatdemandscalable
machineperformance.Consequently, only a relatively small per-
centageof thecomputingworld reallycaresaboutlarge-scalemul-
tiprocessors.As in thepast,a selectcadreof users– who arewill-
ing to hand-tunetheirapplications– expendextraordinaryeffort to
meettheir computationalneeds.Thebusinesscasefor addressing
theneedsof this relatively small market remainsaselusive today
asit wasa decadeago.

Thereareotherpracticalfactorsthatrelateto thescalabilityand
applicability of LimitLESS directoriesin either their hardware-
softwareform or in a purelysoftwareform. Althoughour results
demonstratedthecompellingcost-performanceof two-pointerdi-
rectoriesby balancingthe hardwareandsoftwarecomponentsof
a multiprocessor, we doubt therewill ever be commercialor re-
searchmachinesthat combinehardwareandsoftwarelike Limit-
LESS.SinceAlewife wasanexperimentalmachine,it madesense
to implementafew pointersin hardwaresincewecouldexplorethe
degradationsufferedin going from several pointersto zeropoint-
ers. As our resultsindicated,the five pointer casewas compet-
itive with an all-hardwaresystem,and the all-softwarecasewas
betweena factorof two or threeworse.

In thecommercialenvironmentpresentat the time of this writ-
ing, it makessenseto build all-hardwaresystemssincethe hard-
wareoverheadis not significantfor systemswith few tensof pro-
cessors,andsincethis approachdoesnot involve modifying ex-
isting processorinterfaces. Furthermore,multigrain systemsal-
low modest-sizedsystemsto be built by composingsmallerma-
chinesusingsoftwarepage-basedcoherencebetweenthecompo-
nents.For theserelatively smallsystems,we will likely seea tran-
sition from the hardwareapproachto a softwareapproach(prob-
ably usinga separateprotocolprocessorin the short term anda
unifiedprocessorin thelongerterm)astheincreasinglatency gap
betweentheprocessorclockandmainmemorymakessoftwareat-
tractive.

If Moore’s Law ever breaksdown, however, scalability will
beapplicableto mainstreamcomputing(asopposedto marketing
hype),andit is verypossiblethatthesamemarket forcesmightdic-
tateadifferenttradeoff betweensoftwareandhardware.Assuming
thatanew computingparadigmdoesnotemerge,LimitLESS-style
coherencecouldwell becomeappealingfor its scalingproperties.

Oneof thesurprisesafterAlewife wasbuilt wasthatmany appli-
cationswrittenusingshared-memorywerefoundto becompetitive
with thesameapplicationswritten usingmessagepassing.While
this wasa significantandunanticipatedresult in favor of shared
memory, it wascounterto our intuition. A sensitivity analysisre-
vealedlater that the stateof technologyplaysa major role in de-
terminingwhich is better. It turnsout thatsharedmemoryis com-
petitive or better than messagepassingwhen the processorsare
slow comparedto the interconnect,andtheoppositeis truewhen
theprocessorclocksincreaserelative to network speeds.We fur-
therobservedthatasynchronousmessagenotificationis inherently



bettersuitedto operatingsystemlike applicationssuchasCRL.
Oneof the questionswe asked ourselveswaswhetherbuilding

wasnecessaryin thefaceof our sophisticatedsimulationtechnol-
ogy. Not surprisingly, for the applicationsthat ran on our simu-
lators, our resultsfrom the real prototypewere not qualitatively
differentfrom ourdetailedsimulators.However, theavailability of
the real prototypeallowed us to develop a largenumberof appli-
cationsandobtainresultsfor realisticproblemsizesrapidly. Since
therewerenomajorsurprises,runningtheseapplicationsandlarge
problemsizesservedto validateour conclusions.

And of course,as discussedearlier, many of the key Alewife
mechanismswould not have beeninventedotherwise.Taking the
exampleof integratedmessaging,we doubt Kubiatowicz would
have even contemplatedthe introductionof a real message-based
I/O mechanismfor a simulator. Finally, the simulatorscould not
have reachedtheir level of sophisticationhadwe not beenon an
implementationpath. As a casein point, NWO leveragedmany
of the samecontrol statemachinespecificationsusedin the real
hardware. As oneof us is fond of saying,if therehadbeena way
to hypnotizeourselves into believing that we wereworking on a
real machine,we could have saved a yearspentin designverifi-
cationwhosemajor valuecould be measurednot in termsof the
contributionsto sciencebut in valueto thesoul.

Whatof fine-grainsynchronizationandcontext switching?The
insignificantvalueof hardwaresupportfor fine-grainsynchroniza-
tion wasoneof the salientnegative resultsfrom the project. As
reportedby Donald Yeungin his Master’s thesis,the meansfor
expressingfine-grainparallelismin thesourcelanguageis of con-
siderableimportance,while thespecialhardwaresupportfor full-
emptybits is of marginal value.

The jury on context switchingis still out. Context switchingis
intendedto improve theperformanceof applicationswith a lot of
parallelismthat suffer low processorutilization dueto their poor
cachebehavior. Context switching is mostuseful when the net-
work hasa large latency but candeliver high bandwidth.Context
switchingdeliveredonitspromisefor applicationswith poormem-
ory performancesuchasMP3D.A dedicatedcontext for handling
asynchronousmessageinterruptswithout disruptingthe compu-
tational stateon the processorwas also valuable. However our
applicationsexhibited reasonablecachebehavior, andthereforea
reasonableprocessorutilization. Clearly, MP3D is anexception.

�

Theopenquestion,then,is whethertherewill besufficientappli-
cationsthatexhibit poorcachebehavior whenwritten in a natural
mannerundersharedmemoryby averageprogrammers.Looking
back,althoughBianchiniandLim havedonesomefollow upeval-
uationof context switchingon Alewife,



we have beenremissin
not expendingtheeffort to find moreapplicationsandfully evalu-
atingcontext switching.

Alewife leveragedmany of the advancesof previous research
suchaswormhole-routedlow-dimensioninterconnects,directory
basedcoherence,andefficient messageinterfaces.In turn, in ad-
vancingthe notionsof software-baseddirectoriesandintegrating
messagingandsharedmemory, we hopeit contributedin modest
measureto this cycleof research.

�

Onemight be temptedto speculatethat many of theseapplicationsweredevel-
opedfor DASH or Alewife, both cache-basedmachines,and thereforecodedin a
cache-friendlystyle.

�

Bianchini andLim evaluatedcontext switchingon Alewife andpublishedtheir
findingsin theAugust1996issueof JPDC.They concludethat“prefetchingis prefer-
ableover multithreadingfor machineswith low remoteaccesslatenciesand/orap-
plicationswith poor locality andconsequentlyshort run-lengths. The performance
of both techniquesis comparablefor applicationswith high remoteaccesslatencies
and/orgoodlocality.” They alsoarguethatcontext switchinghasaddedvaluein mi-
crokernelenvironments.

References

[1] AnantAgarwal, RichardSimoni,JohnHennessy, andMark Horowitz.
An Evaluationof Directory Schemesfor CacheCoherence.In Pro-
ceedings of the 15th International Symposium on Computer Architec-
ture, pages280–289,Honolulu,HI, June1988.IEEE.


