
Phil Sung, MIT. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Recitation 6

SIMD Programming on Cell

2 6.189 IAP 2007 MITPhil Sung, MIT.

Agenda

● Overview of SIMD
● Vector Intrinsics on Cell
● SIMD Design Considerations

3 6.189 IAP 2007 MITPhil Sung, MIT.

SIMD

● Most compute-bound applications are performing
the same computations on a lot of data

Dependence between iterations is rare
Opportunities for data parallelization across iterations
and within iterations

4 6.189 IAP 2007 MITPhil Sung, MIT.

Example: Scalar Operation

B0

*

C0

C[0] = A[0] * B[0]

A0

5 6.189 IAP 2007 MITPhil Sung, MIT.

Example: SIMD Vector Operation

A0

B0

*

C0

for(i = 0; i < N/4; ++i)
C[i] = vector_mul(A[i],B[i]);

A1

B1

*

C1

A2

B2

*

C2

A3

B3

*

C3

A4

B4

*

C4

A5

B5

*

C5

A6

B6

*

C6

A7

B7

*

C7

6 6.189 IAP 2007 MITPhil Sung, MIT.

Agenda

● Overview of SIMD
● Vector Intrinsics on Cell
● SIMD Design Considerations

7 6.189 IAP 2007 MITPhil Sung, MIT.

Hardware Support for Data Parallelism

● Registers are 128-bits
● Can pack vectors of different data types into registers
● Operations consume and produce vector registers

Special assembly instructions
Access via C/C++ language extensions (intrinsics)

8 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Registers

● Only registers in SPU are 128-bit registers
Any type (including scalar types) can go into any register

● Scalar values go in a particular position in register

● There is overhead associated with loading and
storing scalars

9 6.189 IAP 2007 MITPhil Sung, MIT.

Writing Efficient SIMD Code

● Used the aligned compiler directive to control
placement

Quadword alignment for loads and stores (aligned(16))

● Transfer multiples of 16 bytes on loads and stores
Pad end of data if necessary

10 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Data Types

● Vector data types dictate how to interpret 128 bits
● Available on PPU and SPU:

16x 8-bit int: vector signed char
8x 16-bit int: vector signed short
4x 32-bit int: vector signed int
4x float: vector float

● Available on SPU:
2x 64-bit int: vector signed long long
2x double: vector double

● Pointer types, arrays, etc. work correctly

11 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Operations

● Compilers will insert vector instructions correctly for
+, ∗, etc. when applied to vector types

● Intrinsics provide C/C++ access to vector
instructions, including many which do not
correspond to any operator

Example: vector signed int c = spu_add(a, b);

No need to worry about registers for operands
Looks like a function call
Compiler automatically generates instructions in assembly
Slightly different intrinsics available on PPU, SPU

12 6.189 IAP 2007 MITPhil Sung, MIT.

Source Headers Necessary for Intrinsics

● SPU intrinsics
#include <spu_intrinsics.h>
#include <spu_mfcio.h>

● PPU intrinsics
#include <ppu_intrinsics.h>
#include <vec_types.h>

13 6.189 IAP 2007 MITPhil Sung, MIT.

Initializing Vectors

● One of these cast notations should work (depending
on your compiler):
vector signed int a =
(vector signed int)(10, 20, 30, 40);

… (vector signed int){10, 20, 30, 40};

● Or use an intrinsic:
vector signed int b = spu_splats(20);
// Same as (20, 20, 20, 20)

14 6.189 IAP 2007 MITPhil Sung, MIT.

Accessing Vector Elements

● typedef union {
int v[4];
vector signed int vec;

} intVec;
● Unpack scalars from vector:

intVec a;
a.vec = …;
… = a.v[2];
… = spu_extract(va, 2);

● Pack scalars into vector:
a.v[0] = …; a.v[1] = …;
a.v[2] = …; a.v[3] = …;
… = a.vec;

Interpret a segment of
memory either as an

array…

or as a vector type…

so that values written in
one format can be read

in the other

v[0]

vec

v[1] v[2] v[3]

15 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Operations

● Integer instructions
● Floating-point instructions
● Permutation/formatting instructions
● Load and store instructions

● Complete reference available from course web site

16 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Arithmetic and Logical Operations

● PPU
vec_add, vec_sub, vec_madd, …
vec_and, vec_or, vec_xor, …

● SPU
spu_add, spu_sub, spu_madd,
spu_mul, spu_re, …
spu_and, spu_or, spu_xor, …

● Integer/FP operation associated with the correct
vector types (char, int, float, etc.) is usually
automatically selected by the compiler

17 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Shuffle Operation

● Rearrange bytes of vectors: spu_shuffle(A, B, pattern)
Each byte of the output is one of the bytes of A or B
For each byte of output, corresponding byte of pattern
specifies which byte of A or B to copy
– Bit 4 of each pattern byte specifies A or B
– Bits 0-3 (4 low-order bits) of each pattern byte specify which

byte (0-15) of source to take
– Ex: 2nd byte of pattern is 0x14, so take byte 4 from B

VT = spu_shuffle(VA, VB, VC)

18 6.189 IAP 2007 MITPhil Sung, MIT.

a = spu_shuffle(a, a,
(vector unsigned char)(15,14,13,12,

11,10, 9, 8,
7, 6, 5, 4,
3, 2, 1, 0);

pattern =
(vector unsigned char)(b0, b1, b2, b3,

b4, b5, b6, b7,
b8, b9,b10,b11,
b12,b13,b14,b15);

Vector Shuffle Operation

● Generating the shuffle pattern:

● Example: reverse the order of bytes in a

19 6.189 IAP 2007 MITPhil Sung, MIT.

Vector Rotate Operations

● Rotate shifts vector elements left or right
spu_rl(v, count)
vec_rl(v, count)

20 6.189 IAP 2007 MITPhil Sung, MIT.

Review: sim (Recitation 2)

● Simple 3D gravitational body simulator
● n objects, each with mass, initial position, initial

velocity

● Simulate motion using Euler integration
Calculate the force of each object on every other
Calculate net force on and acceleration of each object
Update position

float mass[NUM_BODIES];
VEC3D pos[NUM_BODIES];
VEC3D vel[NUM_BODIES];

typedef struct _VEC3D {
float x, y, z;

} VEC3D;

VEC3D d;
// Calculate displacement from i to j
d.x = pos[j].x - pos[i].x;
d.y = pos[j].y - pos[i].y;
d.z = pos[j].z - pos[i].z;

21 6.189 IAP 2007 MITPhil Sung, MIT.

Re-engineering for SIMD

● One approach to SIMD: array of structs
Pad each (x, y, z) vector to fill a quadword
Components (x, y, z) correspond to first three words of a
vector float
Quadwords for different vectors stored consecutively

x0 y0 z0

Q
uadw

ords

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

typedef union _VEC3D {
struct {float x, y, z;};
vector float vec;

} QWORD_ALIGNED VEC3D;

22 6.189 IAP 2007 MITPhil Sung, MIT.

Re-engineering for SIMD

● Now we can replace component-wise addition,
subtraction, and multiplication with SIMD instructions

VEC3D d;
// Calculate displacement from i to j
d.x = pos[j].x - pos[i].x;
d.y = pos[j].y - pos[i].y;
d.z = pos[j].z - pos[i].z;

vector float d;
// Calculate displacement from i to j
d = spu_sub(pos[j].vec, pos[i].vec);

23 6.189 IAP 2007 MITPhil Sung, MIT.

Exercise 1 (15 minutes)

● Complete the SIMD implementation of sim
wget http://cag.csail.mit.edu/ps3/recitation6/rec6.tar.gz

tar xzf rec6.tar.gz
cd rec6/sim_aos
export CELL_TOP=/opt/ibm/cell-sdk/prototype

● spu/sim_spu.c, line 49: implement eltsumf4()
Given a vector float (a,b,c,d), return the vector float
(a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d)

You can do this with two shuffles and two adds
Note vec_float4 is shorthand for vector float
Check your results with ./sim 1
– Will print “Verify succeeded” if your implementation is correct

24 6.189 IAP 2007 MITPhil Sung, MIT.

Exercise 1

● Solution is in sim_aos_soln
● Sample implementation:
vec_float4 b;

b = spu_shuffle(a, a,
(vector unsigned char)(4, 5, 6, 7, 0, 1, 2, 3,

12, 13, 14, 15, 8, 9, 10, 11));
a = spu_add(a, b);

b = spu_shuffle(a, a,
(vector unsigned char)(8, 9, 10, 11, 12, 13, 14, 15,

0, 1, 2, 3, 4, 5, 6, 7));
a = spu_add(a, b);

return a;

25 6.189 IAP 2007 MITPhil Sung, MIT.

Agenda

● Overview of SIMD
● Vector Intrinsics on Cell
● SIMD Design Considerations

26 6.189 IAP 2007 MITPhil Sung, MIT.

SIMD Design Considerations

● Data layout: struct of arrays vs. array of structs
Exercise 1 used an AOS layout
Alternatively we could use a SOA layout to lay out fields
consecutively
Can apply different algorithms on new data layout

x0
Structof arrays

x1 x2 x3

x4 x5 x6 x7

y0 y1 y2 y3

y4 y5 y6 y7

z0 z1 z2 z3

z4 z5 z6 z7

x0 y0 z0

A
rray of structs

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

27 6.189 IAP 2007 MITPhil Sung, MIT.

Struct of Array Layout

● Need 12 quadwords to store state for 8 objects
x, y, z position and velocity components
No padding component needed in SOA

● For each component, do four pair-interactions at
once with SIMD instructions

Rotate quadword 3 more times to get all 16
pair-interactions between two quadwords

x0 x1 x2 x3

x4 x5 x6 x7

x0 x1 x2 x3

x5 x6 x7 x4
Rotate etc.

28 6.189 IAP 2007 MITPhil Sung, MIT.

Performance Results Summary

● Example code in rec6/sim_soa
● 6144 objects, compiled with –O2
● Time per simulation step

SIMD array of structs: 300 ms
SIMD struct of arrays: 80 ms

29 6.189 IAP 2007 MITPhil Sung, MIT.

Summary of Cell Optimizations
That Were Covered

● Baseline native code was sequential and scalar
Scalar (PPU): 1510ms (rec6/sim_spu, -O3)

● Parallelized code with double buffering for SPUs
Scalar (6 SPUs): 420ms (rec6/sim_db)

● Applied SIMD optimizations
SIMD array of structs: 300ms (rec6/sim_aos_soln)

● Redesigned algorithm to better suite SIMD parallelism
SIMD struct of arrays: 80ms (rec6/sim_soa)

● Overall speedup compared to native sequential execution
Expected: ~ 24x (6 SPUs ∗ 4 way SIMD)
Achieved: 18x

