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Agenda

● Cell Simulator Overview
● Dynamic Profiling Using Counters
● Instruction Scheduling
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Cell Simulator Highlights

● Full system simulator can help in debugging and 
performance optimization

Uni-Cell and multi-Cell simulation
GUI user Interfaces 
Cycle accurate SPU simulation
Facility for tracing and viewing simulation events

● Note: does not accurately model communication cost



4 6.189 IAP 2007 MITPhil Sung, MIT.

Run Cell Simulator

● Launch simulator GUI interface
% export SYSTEMSIM_TOP=/opt/ibm/systemsim-cell

/opt/ibm/systemsim-cell/bin/systemsim -g &

Then click "go"
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Main GUI Interface
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Simulated Linux Environments

● Simulated Linux shell as if running on Cell hardware
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Simulated and Native Linux Interoperability

● Simulated Linux has its own file system
● Files can be transferred between the native file 

system and the simulated file system using the 
callthru utility

● Example: transfer and execute a Cell program
% callthru /tmp/hello-world > hello-world
% chmod u+x hello-world
% ./hello-world
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Debugging

● View machine state
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Profiling

● Dynamic 
profiling and 
statistics

Separate stats 
for PPU and 
each SPU
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Code Instrumentation and Profiling

● Fine-grained measurements during simulation are 
possible via  prof_* routines

Profiling routines are no-ops on the Cell hardware

#include <profile.h>

...

prof_clear();

prof_start();

function_of_interest();

prof_stop();
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Cell Simulator Availability

● Simulator is not installed on the PS3 hardware
● Contact TAs if you want to run the simulator
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Agenda

● Cell Simulator Overview
● Dynamic Profiling Using Counters
● Instruction Scheduling



13 6.189 IAP 2007 MITPhil Sung, MIT.

Performance Counters on the SPUs

● Each SPU has a counter that counts down at a fixed 
rate (decrementer)

Can be used as a clock
Suitable for coarse-grained timing (1000s of instructions)
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Decrementer Example
#define DECR_MAX 0xFFFFFFFF
#define DECR_COUNT DECR_MAX

// Start counting
spu_writech(SPU_WrDec, DECR_COUNT);
spu_writech(SPU_WrEventMask, MFC_DECREMENTER_EVENT);
start = spu_readch(SPU_RdDec);

function_of_interest();

// Stop counting, print count
end = spu_readch(SPU_RdDec);

printf("Time elapsed: %d\n", start - end);
spu_writech(SPU_WrEventMask, 0);
spu_writech(SPU_WrEventAck, MFC_DECREMENTER_EVENT);
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Agenda

● Cell Simulator Overview
● Dynamic Profiling Using Counters
● Instruction Scheduling
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Review: Instruction Scheduling

● Instructions mostly of the form
r3 = f(r1,r2)

Assembly file is a human-readable representation of 
these instructions

● Conceptually, instructions execute in the order in 
which they appear in assembly

a

b

c

time

instructions
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Review: Instruction Scheduling

● With pipelining, order of instructions is important!
Pipeline stalls while waiting for dependencies to complete

instructions

time

a
b

c

•c flow dependent 
on b

• Assume 2 cycles 
operation latency

vs.

c

b

a
execute b before a

a:ADD r3,r1,r2

b:ADD r6,r4,r5

c:ADD r8,r6,r7
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Static Profiling

● Use static profiling to see where stalls happen
● Generate assembly and instruction schedule

Manually
# generate assembly (xlc –S also works)
% gcc –S filename.c
# generate timing information
% /opt/ibm/cell-sdk/prototype/bin/spu_timing
-running-count ./filename.s
• Output stored in filename.s.timing
• -running-count shows cycles elapsed after each instruction

With our Makefile
% SPU_TIMING=1 make filename.s
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Reading the Assembly

● Instructions of the form
OP DEST SRC1 SRC2 …

● Header indicates source files:

● Markers for source lines:

.file "dist_spu.c"

.file 1 "dist_spu.c"

.file 2 "/opt/ibmcmp/xlc/8.1/include/spu_intrinsics.h"

.LS_p1_f1_l19:

.loc 1 19 0

ila $7,a

File 1 (dist_spu.c),
Line 19
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Assembly

Interpreting Static Profiler Output

129 0D  90                           ai $6,$6,-1

129 1D  9012                         cwx $12,$5,$2

133 1    ---3456                     rotqby $8,$8,$10

134 1        4567                    rotqby $9,$9,$11

138 0D        ---890123              fm          $8,$8,$9

138 1D           890123              lqx $9,$5,$2

144 1             -----4567          shufb $8,$8,$9,$12

Pipeline 
No.

D for dual-issue

- for stalls

One digit for 
each cycle

(example: rotqby requires
4 cycles to complete)

Opcode Operands

-running-count adds 
cycle count column
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Instruction Scheduling on Cell

● In-order execution
● Dual pipeline

Pipeline selected based on instruction type
Two instructions can be issued simultaneously when 
dependencies allow

● Goal: scheduling instructions to minimize stalls
Loads, fp instructions liable to take a long time
Dual-issue whenever possible
IPC = 2 (instructions per cycles) 
CPI = .5 (cycles per instruction)
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Example Schedule Optimization

(dist_spu.s line 246) .LS_p1_f1_l26:

.loc 1 26 0

78                    or    $2,$3,$3

89                   ila $3,dist

901234              lqd $4,80($1)

-----5678          shli $4,$4,8

678901       lqd $5,96($1)

-----2345   shli $5,$5,2

---67 a     $4,$4,$5
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Example Schedule Optimization

(dist_spu.s line 246) .LS_p1_f1_l26:

.loc 1 26 0

789012                lqd $4,80($1)

890123               lqd $5,96($1)

90                  or    $2,$3,$3

01                 ila $3,dist

--3456            shli $4,$4,8

4567           shli $5,$5,2

---89         a     $4,$4,$5

8 cycles saved
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Exercise 1 (10 minutes)

● Improve performance by rescheduling instructions
wget http://cag.csail.mit.edu/ps3/recitation5/rec5.tar.gz
tar zxf rec5.tar.gz
cd rec5/lab1/spu

● Examine assembly code
export CELL_TOP=/opt/ibm/cell-sdk/prototype
SPU_TIMING=1 make dist_spu.s
Find an opportunity for performance gain via instruction scheduling and 
implement it (e.g., reduce stalls after lqd instructions near line 246)

● Generate object file from assembly
./make-obj-file; cd ..; make
make-obj-file compiles your modified assembly to binary, otherwise 
your optimization is lost

● Run and evaluate
How many cycles did you save?
– /opt/ibm/cell-sdk/bin/spu_timing -running-count dist_spu.s

Is the new code correct?
– Run and check if correctness test passes
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Instruction Scheduling

● Compilers are very good at doing this automatically
Unoptimized code: 469 cycles
Optimized code (xlc -O5): 188 cycles

● Hand-reordering of optimized assembly is unlikely to 
produce significant gains except in extreme 
scenarios
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Notes on Static Profiling

● Static profiler presents a skewed view of 
conditionals, loops

8 cycles saved in the static schedule how many 
cycles saved when the program runs?

● Data-dependent behavior not captured
Static profiler does not factor in loop trip counts or 
branch frequencies
Profiling doesn't account for branch misprediction
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Improving Branch Prediction

● Static branch hinting from source code
if(__builtin_expect(CONDITION, EXPECTED))

Useful macros:
– #define LIKELY(exp)   __builtin_expect(exp, TRUE)

#define UNLIKELY(exp) __builtin_expect(exp, FALSE)
– if(LIKELY(i == j)) { … }
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Summary

Low level; only does 
straight-line analysis

Identifies exactly 
where time is spent

Schedule analysis
Use to see instruction-
level interactions

Little insight into 
sources of stalls

Easy to set upDecrementers
Use to measure runtime 
for a segment of code

Simulator is slowGood statistics on 
stall sources; no 
recompile needed

Cell simulator
Use to get statistical info 
on program runs

ConsProsMethod

● Static and dynamic profiling tools are used to 
identify performance bottlenecks


