
Phil Sung, MIT. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Recitation 5

Cell Profiling Tools



2 6.189 IAP 2007 MITPhil Sung, MIT.

Agenda

● Cell Simulator Overview
● Dynamic Profiling Using Counters
● Instruction Scheduling



3 6.189 IAP 2007 MITPhil Sung, MIT.

Cell Simulator Highlights

● Full system simulator can help in debugging and 
performance optimization

Uni-Cell and multi-Cell simulation
GUI user Interfaces 
Cycle accurate SPU simulation
Facility for tracing and viewing simulation events

● Note: does not accurately model communication cost



4 6.189 IAP 2007 MITPhil Sung, MIT.

Run Cell Simulator

● Launch simulator GUI interface
% export SYSTEMSIM_TOP=/opt/ibm/systemsim-cell

/opt/ibm/systemsim-cell/bin/systemsim -g &

Then click "go"



5 6.189 IAP 2007 MITPhil Sung, MIT.

Main GUI Interface



6 6.189 IAP 2007 MITPhil Sung, MIT.

Simulated Linux Environments

● Simulated Linux shell as if running on Cell hardware



7 6.189 IAP 2007 MITPhil Sung, MIT.

Simulated and Native Linux Interoperability

● Simulated Linux has its own file system
● Files can be transferred between the native file 

system and the simulated file system using the 
callthru utility

● Example: transfer and execute a Cell program
% callthru /tmp/hello-world > hello-world
% chmod u+x hello-world
% ./hello-world



8 6.189 IAP 2007 MITPhil Sung, MIT.

Debugging

● View machine state



9 6.189 IAP 2007 MITPhil Sung, MIT.

Profiling

● Dynamic 
profiling and 
statistics

Separate stats 
for PPU and 
each SPU



10 6.189 IAP 2007 MITPhil Sung, MIT.

Code Instrumentation and Profiling

● Fine-grained measurements during simulation are 
possible via  prof_* routines

Profiling routines are no-ops on the Cell hardware

#include <profile.h>

...

prof_clear();

prof_start();

function_of_interest();

prof_stop();



11 6.189 IAP 2007 MITPhil Sung, MIT.

Cell Simulator Availability

● Simulator is not installed on the PS3 hardware
● Contact TAs if you want to run the simulator



12 6.189 IAP 2007 MITPhil Sung, MIT.

Agenda

● Cell Simulator Overview
● Dynamic Profiling Using Counters
● Instruction Scheduling



13 6.189 IAP 2007 MITPhil Sung, MIT.

Performance Counters on the SPUs

● Each SPU has a counter that counts down at a fixed 
rate (decrementer)

Can be used as a clock
Suitable for coarse-grained timing (1000s of instructions)



14 6.189 IAP 2007 MITPhil Sung, MIT.

Decrementer Example
#define DECR_MAX 0xFFFFFFFF
#define DECR_COUNT DECR_MAX

// Start counting
spu_writech(SPU_WrDec, DECR_COUNT);
spu_writech(SPU_WrEventMask, MFC_DECREMENTER_EVENT);
start = spu_readch(SPU_RdDec);

function_of_interest();

// Stop counting, print count
end = spu_readch(SPU_RdDec);

printf("Time elapsed: %d\n", start - end);
spu_writech(SPU_WrEventMask, 0);
spu_writech(SPU_WrEventAck, MFC_DECREMENTER_EVENT);



15 6.189 IAP 2007 MITPhil Sung, MIT.

Agenda

● Cell Simulator Overview
● Dynamic Profiling Using Counters
● Instruction Scheduling



16 6.189 IAP 2007 MITPhil Sung, MIT.

Review: Instruction Scheduling

● Instructions mostly of the form
r3 = f(r1,r2)

Assembly file is a human-readable representation of 
these instructions

● Conceptually, instructions execute in the order in 
which they appear in assembly

a

b

c

time

instructions



17 6.189 IAP 2007 MITPhil Sung, MIT.

Review: Instruction Scheduling

● With pipelining, order of instructions is important!
Pipeline stalls while waiting for dependencies to complete

instructions

time

a
b

c

•c flow dependent 
on b

• Assume 2 cycles 
operation latency

vs.

c

b

a
execute b before a

a:ADD r3,r1,r2

b:ADD r6,r4,r5

c:ADD r8,r6,r7



18 6.189 IAP 2007 MITPhil Sung, MIT.

Static Profiling

● Use static profiling to see where stalls happen
● Generate assembly and instruction schedule

Manually
# generate assembly (xlc –S also works)
% gcc –S filename.c
# generate timing information
% /opt/ibm/cell-sdk/prototype/bin/spu_timing
-running-count ./filename.s
• Output stored in filename.s.timing
• -running-count shows cycles elapsed after each instruction

With our Makefile
% SPU_TIMING=1 make filename.s



19 6.189 IAP 2007 MITPhil Sung, MIT.

Reading the Assembly

● Instructions of the form
OP DEST SRC1 SRC2 …

● Header indicates source files:

● Markers for source lines:

.file "dist_spu.c"

.file 1 "dist_spu.c"

.file 2 "/opt/ibmcmp/xlc/8.1/include/spu_intrinsics.h"

.LS_p1_f1_l19:

.loc 1 19 0

ila $7,a

File 1 (dist_spu.c),
Line 19



20 6.189 IAP 2007 MITPhil Sung, MIT.

Assembly

Interpreting Static Profiler Output

129 0D  90                           ai $6,$6,-1

129 1D  9012                         cwx $12,$5,$2

133 1    ---3456                     rotqby $8,$8,$10

134 1        4567                    rotqby $9,$9,$11

138 0D        ---890123              fm          $8,$8,$9

138 1D           890123              lqx $9,$5,$2

144 1             -----4567          shufb $8,$8,$9,$12

Pipeline 
No.

D for dual-issue

- for stalls

One digit for 
each cycle

(example: rotqby requires
4 cycles to complete)

Opcode Operands

-running-count adds 
cycle count column



21 6.189 IAP 2007 MITPhil Sung, MIT.

Instruction Scheduling on Cell

● In-order execution
● Dual pipeline

Pipeline selected based on instruction type
Two instructions can be issued simultaneously when 
dependencies allow

● Goal: scheduling instructions to minimize stalls
Loads, fp instructions liable to take a long time
Dual-issue whenever possible
IPC = 2 (instructions per cycles) 
CPI = .5 (cycles per instruction)



22 6.189 IAP 2007 MITPhil Sung, MIT.

Example Schedule Optimization

(dist_spu.s line 246) .LS_p1_f1_l26:

.loc 1 26 0

78                    or    $2,$3,$3

89                   ila $3,dist

901234              lqd $4,80($1)

-----5678          shli $4,$4,8

678901       lqd $5,96($1)

-----2345   shli $5,$5,2

---67 a     $4,$4,$5



23 6.189 IAP 2007 MITPhil Sung, MIT.

Example Schedule Optimization

(dist_spu.s line 246) .LS_p1_f1_l26:

.loc 1 26 0

789012                lqd $4,80($1)

890123               lqd $5,96($1)

90                  or    $2,$3,$3

01                 ila $3,dist

--3456            shli $4,$4,8

4567           shli $5,$5,2

---89         a     $4,$4,$5

8 cycles saved



24 6.189 IAP 2007 MITPhil Sung, MIT.

Exercise 1 (10 minutes)

● Improve performance by rescheduling instructions
wget http://cag.csail.mit.edu/ps3/recitation5/rec5.tar.gz
tar zxf rec5.tar.gz
cd rec5/lab1/spu

● Examine assembly code
export CELL_TOP=/opt/ibm/cell-sdk/prototype
SPU_TIMING=1 make dist_spu.s
Find an opportunity for performance gain via instruction scheduling and 
implement it (e.g., reduce stalls after lqd instructions near line 246)

● Generate object file from assembly
./make-obj-file; cd ..; make
make-obj-file compiles your modified assembly to binary, otherwise 
your optimization is lost

● Run and evaluate
How many cycles did you save?
– /opt/ibm/cell-sdk/bin/spu_timing -running-count dist_spu.s

Is the new code correct?
– Run and check if correctness test passes



25 6.189 IAP 2007 MITPhil Sung, MIT.

Instruction Scheduling

● Compilers are very good at doing this automatically
Unoptimized code: 469 cycles
Optimized code (xlc -O5): 188 cycles

● Hand-reordering of optimized assembly is unlikely to 
produce significant gains except in extreme 
scenarios



26 6.189 IAP 2007 MITPhil Sung, MIT.

Notes on Static Profiling

● Static profiler presents a skewed view of 
conditionals, loops

8 cycles saved in the static schedule how many 
cycles saved when the program runs?

● Data-dependent behavior not captured
Static profiler does not factor in loop trip counts or 
branch frequencies
Profiling doesn't account for branch misprediction



27 6.189 IAP 2007 MITPhil Sung, MIT.

Improving Branch Prediction

● Static branch hinting from source code
if(__builtin_expect(CONDITION, EXPECTED))

Useful macros:
– #define LIKELY(exp)   __builtin_expect(exp, TRUE)

#define UNLIKELY(exp) __builtin_expect(exp, FALSE)
– if(LIKELY(i == j)) { … }



28 6.189 IAP 2007 MITPhil Sung, MIT.

Summary

Low level; only does 
straight-line analysis

Identifies exactly 
where time is spent

Schedule analysis
Use to see instruction-
level interactions

Little insight into 
sources of stalls

Easy to set upDecrementers
Use to measure runtime 
for a segment of code

Simulator is slowGood statistics on 
stall sources; no 
recompile needed

Cell simulator
Use to get statistical info 
on program runs

ConsProsMethod

● Static and dynamic profiling tools are used to 
identify performance bottlenecks


