
Electrochemical Battery Model for the Cell Broadband Engine

James Geraci Sudarshan Raghunathan John Chu

Massachusetts Institute of Technology
jrgeraci@mit.edu

Abstract

This paper discusses the implementation of a two-
dimensional electrochemical battery model of a lead acid
battery cell on the Playstation 3. The battery model equa-
tions are a set of coupled highly non-linear partial differen-
tial equations that evolve with time. At each time step, these
equations are solved using Newton’s Method, and a direct
skyline LU solver without partial pivoting is used to solve
for the battery cell’s state at each Newton step.

The entire model was implemented on a Sony Playsta-
tion 3 and the direct solver at each Newton iteration step
exploits the parallelism in the Cell Broadband Engine to
improve performance. The parallelized direct solver out-
performs state-of-the-art dense and sparse solvers running
on an AMD Opteron 246-based workstation.

1 Outline

This article first describes the electrochemical model
used and the types of output one can get from the model.
Next, the numerical algorithm used for simulating the
model is described along with a description of the imple-
mentation on the Cell Broadband Engine. Finally, some
performance and scaling results are reported and compared
with existing dense and sparse solvers on a contemporary
desktop workstation.

2 Two-Dimensional Battery Model

The electrochemical battery model used in this study is
based on the model given in [1] and derived from first prin-
ciples in [2].

A typical lead acid battery, consisting of a lead dioxide
electrode, a lead electrode, and a liquid sulfuric acid elec-
trolyte is illustrated in Figure 1. The model tries to simu-
late the primary electrochemical reactions that occur during
charge and discharge in the area of an electrochemical cell

between the lead and lead dioxide plates (indicated by the
dotted region in Figure 1).

Sulfuric Acid
Electrolyte

Lead Dioxide
Electrode

Lead Electrode

{Region Considered by Model

Figure 1. A complete lead acid battery cell.

The model has four state variables that evolve with time:
the porosity of a regionε, the concentration of the elec-
trolyte C, the liquid phase electrical potentialφl, and the
solid phase electrical potentialφs.

The spatial region of interest is discretized into two dif-
ferent staggered two-dimensional grids of volumes as seen
in Figure 2. This technique is known as astaggered grid.
Three of the state variables, ConcentrationC, Liquid phase
electrical potentialφl, and Solid phase electrical potential
φs are centered on one grid (called the PV grid for poten-
tial values), while Porosityε is centered on the other grid



(called the FV grid for flux values). In contrast to the model
described in [1], the staggered grid approach for the po-
tential and flux values avoids having to enforce continuity
conditions at the electrode/electrolyte boundaries.

= Point where e is defined
l s

{

= Point where f, f, and c are defined

{ {Lead
Dioxide

Electrode Electrolyte
Lead

Electrode

Figure 2. A battery cell with both the PV grid
and FV grids shown. Diamonds show the
center of the PV grid while circles show the
center of the FV grid.

Implicit time stepping is used for the variables on the PV
grid. They are treated as a coupled set of non-linear equa-
tions and are solved for at each time step using Newton’s
method. The porosityε, however, is not included in the Ja-
cobian for each Newton step as it is on the FV grid. Explicit
time stepping is used for the porosity equation.

The equations for the model are listed here:

1. Change of Porosity

∂

∂t
(ε)+SFcop

{
∇ ·

(
−κeff∇φl

)
+∇ ·

(
−κeff

ec∇ln (C)
)}

= 0

(1)

2. Material Balance

∂

∂t
(εC) +∇ ·

(
−Deff∇C

)

+ SFMB

{
∇ ·

(
−κeff∇φl

)
+∇ ·

(
−κeff

ec∇ln (C)
)}

= 0

(2)

3. Electrode Kinetics

∇ ·
(
−κeff∇φl

)
+∇ ·

(
−κeff

ec∇ln (C)
)

−SAinti
PbO2
0

C

C∗

(

e
αan(φs−φl−φeq)F

RT − e
αcn(φl−φs+φeq)F

RT

)

= 0

(3)

4. Divergence of Current

∇·
(
−κeff∇φl

)
+∇·

(
−κeff

ec∇ln (C)
)
+∇·

(
−σeff∇φs

)
= 0

(4)

Whereκeff andκeff
ec come from Ohm’s Law in Solution,

il = − εexκ
︸︷︷︸

κeff

∇φl +− εexκ
(
2t◦+ − 1

) RT
F

︸ ︷︷ ︸

κeff
ec

∇ln (C)

= −κeff∇φl +−κeff
ec∇ln (C)

(5)

andSFcop, SFmb, SAint, φeq, andσ are region depen-
dent and are given by,

SFcop =







− 1

2F

[
MWP bSO4

ρP bSO4
−

MWP bO2

ρP bO2

]

lead dioxide electrode

0 electrolyte

− 1

2F

[
MWP b

ρP b
−

MWP bSO4

ρP bSO4

]

lead electrode

(6)

SFmb =







(
2t◦+−3

2F

)

lead dioxide electrode

0 electrolyte
(

2t◦+−1

2F

)

lead electrode

(7)

SAint =







SAPbO2
int lead dioxide electrode

0 electrolyte

SAPb
int lead electrode

(8)

φeq =







φeq
PbO2

lead dioxide electrode

0 electrolyte

φeq
Pb lead electrode

(9)

σeff =







εexmσPbO2 lead dioxide electrode

0 electrolyte

εexmσPb lead electrode

(10)

2.1 Code Interface

2.1.1 PPU Code

The PPU code is located in the BatteryModel directory.
Within the BatteryModel directory, three important files are
’FVbatteryModel.cpp’, ’Globals.cpp’, and ’common.h’.

Bulding the Model To build the program simply type

make

at the command prompt from within the BatteryModel di-
rectory on any system with a properly installed cell-sdk.
This should build the battery model and produce a program
called FVbatteryModel.



Running the Model The model can be run by typing

./FVbatteryModel

at the command prompt.

Controlling the Model The physical dimensions of the
model (units of cm) are set using the following code from
’FVbatteryModel.cpp’.

double ldxHeight = 10.0;
double ElectrolyteHeight = 10.0;
double ldHeight = 10.0;

double ldxDepth = 7.0;
double ElectrolyteDepth = 7.0;
double ldDepth = 7.0;

double ldxWidth = 0.03;
double ElectrolyteWidth = 0.03;
double ldWidth = 0.03;

The number of volumes in the FV grid is also set in the
file ’FVbatteryModel.cpp’ using the following lines:

csData->setldxFVColumns(11);
csData->setElectrolyteFVColumns(11);
csData->setldFVColumns(11);
csData->setnumFVRows(31);

The number of columns in the PV grid will be the total num-
ber of columns in the FV grid plus 1. The number of rows
in the PV grid will be the total number of rows in the FV
grid plus 1.

The time step size, the number of time steps to be taken,
and the current drawn from the cell are set within the ’my-
Globals.cpp’ file by adjusting the following code:

extern double dt = 4; // seconds
extern int tSteps = 60000; // number of time steps
extern double I = 1e0; // current

Compute Power The number of SPUs used is set by the

NUM_SPU

parameter in ’common.h’.

2.1.2 SPU Code

There are four files in the ’BatteryModel/spu’
directory. These are ’Makefile’, ’spuprog.cc’,
’spu prog.cc.BANDED’ and ’spuprog.cc.FULL’.
’spu prog.cc.BANDED’ contains a banded direct solver,
and ’spuprog.cc.FULL’ contains a dense direct solver.
Both solvers work off forward elimination back substitu-
tion.

Selecting a solver Either solver can be used by copying it
onto the file ’spuprog.cc’, removing the file ’spuprog.o’ if
it is present in the directory, and remaking the program. For
example,

[BatterModel/spu]# cp spu_prog.cc.FULL spu_prog.cc
[BatterModel/spu]# rm spu_prog.o
[BatterModel/spu]# cd ..
[BatterModel]# make

will build the model with the dense solver instead of the
default banded solver.

2.2 Output

After each time step, the value of each of the three phys-
ical parametersC, φl, and φs is written to a file named
’mySV x.dat’, where ’x’ is the time step starting with 0.
These files can be read into Matlab and plotted using the
function ’svDataTool(int,int,int)’ found in the file ’svData-
Tool.m’ which is also found in the ’BatteryModel’ direc-
tory.

’svDataTool(numColumns, numRows, TimeStep)’ is a
function that takes three arguments. The first is the num-
ber of PV columns that existed in the model that created the
data file. Next is the number of PV rows that existed in the
model that created the data file, and last is the time step of
the data that you wish to plot. Typing

svDataTool(34,32,0)

at the Matlab prompt will plot the data from
’mySV 0.dat’ if there were 34 PV columns and 32 PV rows
in the model that created the file ’mySV0.dat’.

Figure 3 shows how ’svDataTool’ might plot the con-
centration of electrolyte,C, throughout the cell after 800
seconds of discharge at a rate ofI = 1−3.

3 Sparse Algorithm and Implementation

Implicit time stepping was used for the variables on the
PV grid, and the values of the state of the variables on the
PV grid were solved for at each time step using Newton
iteration. Each Newton iteration requires the solution of a
system of the formJx = r, whereJ is the Jacobian matrix
produced by the system, see Figure 4, andr is the residual
vector.

The Jacobian for this system has a condition number of
approximately108. This is in part due to the weak cou-
pling between the volumes in the y-direction due to the large
height of the battery cell (10.0 cm) when compared to the
small width of the battery cell (0.09 cm). Due to the large
spacing in the y direction, the reference potential, chosen
to beφl in the lower right corner of the lead electrode, has



0
10

20
30

40

0

10

20

30

40

4.8996

4.8997

4.8998

4.8999

4.9

x 10
−3

Vertical distance from upper left
of battery cell (Volumes)

Horizontal distance from 
upper left

 of battery cell
 (Volumes)

C
on

ce
nt

ra
tio

n 
m

ol
es

/c
m

3

Figure 3. Concentration of electrolyte C
within each PV of the battery cell after the
battery cell has been discharged at a rate of
I = 1−3 for 800 seconds. The point located
at coordinates (0, 0) corresponds to the up-
per left corner of the region described by the
model as seen in Figure 1

only a weak influence on the values at other points in the
system in the y-direction.

Since the Jacobian has a condition number of approxi-
mately108, there are effectively only 8 digits of useful pre-
cision in any answer, consequently, the model is said to con-
verge when the largestr value is less than10−8. Further-
more, such a poor condition number does not often work
well with an iterative solver, so a direct solver is used to
computex at each Newton iteration.

The direct solver has two major computational phases:
forward elimination followed by back substitution. The for-
ward elimination part is more computationally intensive,
O(b2N) (whereN is the size of the Jacobian andb is the
half-bandwidth) and is therefore performed in parallel on
the Synergistic Processing Units (SPUs) of the cell proces-
sor with the Power Processing Unit (PPU) being used for
synchronization. The back substitution phase is computa-
tionally less expensive (O(bN)) and is therefore done com-
pletely on the PPU.

Pseudocode for the forward elimination step running on
the SPUs is given in Algorithm 1. For conciseness, Algo-
rithm 1 only shows the operations on the Jacobian; a similar
set of operations is used to update the corresponding com-
ponent of the residual.

In the actual implementation, the Jacobian is assembled

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 460

Figure 4. Location of the non-zero entries in
the Jacobian. In this case, the Jacobian is a
60 × 60 with matrix with 460 non-zero entries.
The skyline form of the matrix can be clearly
seen.

in the main memory of the PS3 as a dense matrix with ele-
ments stored in row-major order. This scheme ensures unit
stride access to the non-zero elements in each row by the
SPUs during elimination. The actual code that runs on the
SPUs is double buffered and employs SIMD instructions to
maximize computation efficiency.

4 Performance results

Figure 5 illustrates the performance of the direct banded
solver for Jacobians of different sizes with increasing num-
ber of SPUs. It is observed that while the algorithm does
scale with increasing number of SPUs, the speedup is sub-
linear beyond two SPUs. This can be attributed to the in-
crease in time it takes the PPU to synchronize the increasing
numbers of SPUs as seen in Figure 6.

Figure 7 shows the performance of the parallel direct
solver relative to existing sparse and dense solvers in UMF-
PACK [3] and LAPACK [4] respectively for a Jacobian ma-
trix of size3264× 3264.

Even though the technique used in each of the solvers
is different, for consistency the performance in GFlops is
measured using the operation count for solving a dense lin-
ear linear system of orderN :

Gflops=
2

3
N3 − 1

2
N2

∆t× 10243
(11)



Input: The Jacobian matrix,J at a Newton iteration
with half-bandwidthb and the residual vector,r

Result: Forward elimination is performed on the
Jacobian and the residual vector

for i←− 1 to N − 1 do
// Fetch base row i from main

memory
Jlocal,i = post recv(J[P[i], i : i + b])
// Fetch first elimination row

for this SPU, i + spuid from
main memory

if i + spuid ≤ N then
Jlocal,i+spuid =
post recv(J[P[i + spuid], i + spuid :
i + spuid+ b])

end
// Wait for base row and first

elimination row to arrive
wait for completion(Jlocal,i,
Jlocal,i+spuid)
for j ←− i + spuid to i + b do

// Pre-fetch next elimination
row for this SPU, j + spuid
from main memory

if j + spuid ≤ N then
Jlocal,j+spuid = post recv(J[P[j +
spuid], j + spuid : j + spuid+ b])

end
// Perform elimination on row j
Jlocal,j [i]←− Jlocal,j [i]/Jlocal,i[i]
for k ←− i + 1 to i + b do

Jlocal,j [k]←− Jlocal,j [j]× Jlocal,i[k]
end
// Post the updated row back to

main memory
post send(Jlocal,j)
// Wait for all pending posts
wait for completion(Jlocal,j)
// Wait for next elimination

row to arrive
if j + spuid ≤ N then

wait for completion(Jlocal,j+spuid)
end

end
// Wait before starting next base

row
wait for notification

end

Algorithm 1: Algorithm for parallel forward elmina-
tion step of the banded direct solver.

1 2 3 4 5 6
10

1

10
2

10
3

Number of SPUs

G
F

lo
ps

 

 

1224x1224
2142x2142
3264x3264
4284x4284

Figure 5. Performance in Gflops achieved by
the CBE based LU algorithm. To maintain
consistency between this figure and Figure
7 Gflops has been computed using (11), the
equation for a dense solver even though the
PS3 solver is a banded solver.

where∆t is the total amount of time to perform forward
elimination and back substitution.

The results for UMFPACK and the PS3 based solver can
be interpreted as being the performance of a dense solver
that would be needed in order to achieve the∆t achieved
by UMFPACK or the PS3 based solver.

Figure 7 shows that the PS3 based solver is 1.56x faster
than UMFPACK when 2 SPUs are used. However, due
to the extra synchronization overhead incurred when using
more SPUs, there is no performance to be gained when us-
ing more than 2 SPUs.

References

[1] D. M. Bernardi and H. Gu. Two-dimensional mathe-
matical model of a lead-acid cell.Journal of Electro-
chemical Society, 140(8):2250–2258, 1993.

[2] J. Geraci.Electrochemical Battery Models. PhD thesis,
Massachusetts Institute of Technology, 2007.

[3] T.A. Davis. Algorithm 832: UMFPACK v4.3—
an unsymmetric-pattern multifrontal method.ACM
Transactions on Mathematical Software, 30(2):196–
199, 2004.

[4] LAPACK UserśGuide. SIAM, 1999.



1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Number of SPUs

P
er

ce
nt

ag
e 

of
 s

ol
ut

io
n 

tim
e 

in
 e

ac
h 

ph
as

e

Where time is spent during LU solve

 

 

SPU/PPU time (Synchronization)
SPU time (Forward Elimination)
PPU time (Back Solve)

Figure 6. Three major time consuming steps
for the sparse LU solver on the PS3. These
are forward elimination, back solve and SPU
synchronization. As the number SPUs is in-
creased, the percent of time spent synchro-
nizing the SPUs increases dramatically.

1224 2242 3264 4284
10

0

10
1

10
2

Size of the Jacobian Matrix

G
F

lo
ps

 

 

Sparse/UMFPACK
Dense/LAPACK
CBE/6 SPU
CBE/5 SPU
CBE/4 SPU
CBE/3 SPU
CBE/2 SPU
CBE/1 SPU

Figure 7. A comparison of the performance
of LAPACK, UMFPACK, and the PS3 based
solver. All performance numbers were com-
puted using (11).


