
6.189 IAP 2007 MIT

6.189 IAP 2007

Student Project Presentation

Speech Synthesis

Altschul, Chen, Eisner, Stephens, Westrick



Speech Synthesis

Omari Stephens
Joyce Chen
Eric Eisner
Drew Altschul
Brown Westrick



Speech Synthesis Goals

Produce speech in real time by 
modeling airflow in the vocal tract

Modify existing gnuspeech software 
to run on Cell

Improve speech quality by using 
additional computational cycles



Why Gnuspeech?

Gnuspeech available free under the GNU 
public license

Models airflow in the vocal tract in real time
no prerecorded sounds

Designed for linguistics research

Potential to increase in quality with model 
complexity and computational power



Algorithm Components

Text

Vocal Tract 
Parameters

Phonetic 
Representation

Sound

gnuspeech engine

MONET

Tube Resonance Model



Part 1: Gnuspeech Engine

dictionary lookup for pronunciation
ambiguous cases determined by simple linguistic 
model
markers for punctuation information

word and phrase boundaries
basic intonation

"all your base are belong to us"
/c // /0 # /w /_aw_l /w /_y_aw_r /w /_b_e_i_s /w 
ar_r /w b_i./_l_o_ng /w t_uu /w /l /*a_s # // /c

transform text into purely phonetic form



Part 2: MONET

Transform standard phonetic form into vocal 
tract simulation parameters
Determine appropriate rhythm and 
intonation for the given phrase
Calculate effects neighboring sounds have 
on each other
Output seqence of postures – snapshots of 
the shapes the vocal tract takes over time



Part 3:Tube Resonance Model

Vocal tract divided into 8 main regions, plus nose
modeled as coaxial cylinders with variable radius
noise source at one end

Shape of the vocal tract changes over the course of 
an utterance
Models propagation of pressure wave

constantly changing vocal tract shape
physics

Pressure wave exiting the mouth = speech



Allocating Resources

Gnuspeech, 
MONET
Little computation
Extensive dictionary 
lookups
No improvements in 
quality feasible
Run on PPE

Tube Resonance 
Model
More computation
Small (constantly 
updated) data set
Step size decrease 
may improve output
Run on SPEs



TRM Algorithm

Input: sequence of postures
Main loop:

Update the noise generator (“vocal folds”)
Move the shape of the vocal tract one 
step towards the next posture
Update the pressure wave by one 
timestep inside the new vocal tract shape
Record the state of the wave at the 
mouth aperture



TRM Profile

Where is the time spent in TRM?
Task: Percent of Total Time

Updating the noise generator: 52%
Main loop (except noise gen.): 25%
Post-processing sound data: 22%

Time per main loop: ~15µs
Decreasing step size won’t affect above 
balance of computation in main loop 



Parallelism in the Algorithm

Very scarce
Each main loop iteration has true 
dependences on the previous one

state of air flow in vocal tract
state of noise generator wave

Default main loop frequency: 70kHz
Pipelining possible for post-processing



Challenges

Objective C and GNUStep
difficult to read
even harder to debug
cannot be compiled for SPE

Time-consuming conversion attempts

Dynamic pointer alignment



What is working now

Line-buffered text to utterances to execution 
of the TRM

Monet replacement works minimally

Tube runs on PPE

Tube partially runs on SPE



What is not working yet

Obscure GNUStep/Monet dictionary bug

Monet does not properly execute the tube

The tube does not successfully receive data

The driver does not receive data from the 
post-processor



Conclusions and Future Work

Extremely difficult to parallelize

Parallelization can help vocalization quality
naturalness
speaker identification
vowel identification

Worth the time to rewrite from scratch
C and/or C++
without the GUI


