
6.189 IAP 2007 MIT

6.189 IAP 2007

Student Project Presentation

Software Radio

Brodsky, Thiagarajan

Flexible Stream Processing
On the Cell

Case Study: Software Radio

Arvind Thiagarajan and Micah Brodsky

Motivation
Cell isn’t easy to program

No shared mem, messy msg passing

Extracting parallelism is nontrivial
E.g., pipelining can be quite tricky

Stream programming (as discussed) can help
address both issues

What We Built
Lightweight, but expressive streaming framework
targeted at DSP apps

Data model based on WaveScope streaming DBMS

Case study:
Simple Software Radio (Incoherent ASK)

Main Goals:
Simplify life for developers
Automate as much parallelism as possible

Programming Model
Basic execution unit is the “operator”

Analogous to StreamIt work fn, or GNURadio block

Can be arbitrary C++ classes, with state
Overload iterate() to process block of data

Apps built by chaining operators:
CREATE_BOX(FIRFilter<float>, filter1, args…)
CREATE_BOX(WhiteNoiseGen, noisegen, args…)
CONNECT(filter1, noisegen)
....

Framework Components
Lightweight Scheduler on PPE and SPEs

Static operator mapping to SPEs, but easy to extend

Signal Blocks (adapted from WaveScope)
Ref counting, avoid in-memory copies
Convenient API, with “append” and “subseg”

Queue, and remote heap mgmt library for Cell
Automatic pipelining for streaming, SPE-SPE
Autonomous memory mgmt (not PPE controlled)

S/W Radio Implementation

Simple prototype to evaluate framework

25 Operators, mapped to PPE + 5 SPEs

~3K lines of code (2K framework, 1K radio)

S/W Radio (Contd.)

Simulated Channel
Random FIR Filter (emulate multipath)
Additive Gaussian white noise

Simple ASK modulation

Incoherent demodulation (quick and dirty)

Example Decoded Waveform

Challenges
Distributed, almost zero-copy objects

Lock-free remote heap for streaming data

Low code footprint on SPE

Efficient scheduling, SPE-SPE flow control

Race conditions and memory corruption
Not completely solved yet

Prelim Results (S/W Radio)

~ 6406 (1 PPE + 5 SPEs)

~ 1701 (Only PPE)

Throughput (-O2)
(x1000 samples/sec)

of Processors Used

Speedup with max #SPEs ~ 4
Code footprint of framework ~ 75K

Issues and Bottlenecks

Flow control not completely resolved
PPE spends 50% of its time blocked for SPE
queues to drain

Code footprint needs further reduction
Restricts queue sizes, worsens flow problem

Future Work
Reduce code footprint

Use framework to investigate dynamic/static
operator SPE assignment algorithms

Automatic data parallelism
Run same op in parallel

Build more apps for Cell using framework

Project Summary

Dynamic, flexible streaming framework

Convenient for DSP apps
Block passing abstraction

Reasonably scalable (Pipeline parallelism)

Lots of work remains…

