6.189 IAP 2007
Multicore Programming Primer and Programming Competition
(or Learn to Program the Sony PS3)

Saman Amarasinghe and Rodric Rabbah
Massachusetts Institute of Technology

http://cag.csail.mit.edu/ps3
6.189-chair@mit.edu
A new processor design pattern emerges: The Arrival of Multicores

- **AMD Opteron**
- **Dual Core**
- **Intel Montecito**
 - 1.7 Billion transistors
 - Dual Core IA/64
- **Intel Tanglewood**
 - Dual Core IA/64
- **Intel Pentium D**
 - (Smithfield)
- **Intel Dempsey**
 - Dual Core Xeon
- **Intel Pentium Extreme**
 - 3.2GHz Dual Core
- **Intel Yonah**
 - Dual Core Mobile
- **AMD Opteron**
 - Dual Core
- **Intel Tejas & Jayhawk Unicore (4GHz P4)**
- **Cancelled**
- **Intel Power 4 and 5**
 - Dual Cores Since 2001
- **IBM Power 6**
 - Dual Core
- **IBM Power 4 and 5**
 - Dual Cores Since 2001
- **IBM Cell**
 - Scalable Multicore
- **Sun Olympus and Niagara**
 - 8 Processor Cores
- **MIT Raw**
 - 16 Cores
 - Since 2002

Timeline:
- ... 2H 2004 1H 2005 2H 2005 1H 2006 2H 2006
What is Multicore?

- Multiple, externally visible processors on a single die where the processors have independent control-flow, separate internal state and no critical resource sharing.

- Multicores have many names…
 - Parallel Processors on a Chip
 - Chip Multiprocessor (CMP)
 - Tiled Processor
 - …
Why Move to Multicores?

- Many issues with scaling a unicom core
 - Power
 - Efficiency
 - Complexity
 - Wire Delay
 - Diminishing returns from optimizing a single instruction stream
Multicores Of The Future

Agarwal’s Corollary (to Moore’s Law):
number of cores on a chip will double every ~year!
The PS3: A Multicore Architecture

- “Cell Inside”
 - 9 processing units
 - 8 cores are the same (SPE)
 - 1 Power PC core (PPE)
Synergistic Processing Element (SPE)

- Short vector processor
- SIMD-only
 - 16 bytes register/memory access
- 128 x 128-bit registers
- 256KB local store
 - Aligned accesses only
 - 16 byte for load/store
 - 128 byte for IFETCH/DMA
- Dedicated DMA engine
 - Explicitly move data in and out of the local store
 - 16 outstanding requests
- Dual issue (under certain constraints)
- No H/W branch prediction
 - Compare/select predication
 - Branch hint instruction
Programming Multicores

- Programming multicores is different from traditional programming (for uniprocessors)

<table>
<thead>
<tr>
<th>Uniprocessors</th>
<th>Multicores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single flow of control</td>
<td>Multiple flows of control</td>
</tr>
<tr>
<td>Single memory image</td>
<td>Multiple local memories</td>
</tr>
<tr>
<td>Sequential Programming: no explicit need for orchestration of computation or communication</td>
<td>Parallel Programming: orchestration of computation and communication is a sure necessity</td>
</tr>
</tbody>
</table>

- Parallel programming traditionally in exclusive domains
 - NASA, Scientific codes, and the like
What’s New in Parallel Programming

- Parallel programming for the masses
- Parallel programming in many domains
- Parallel programming can be fun
The New Parallel Programming Phenomenon
What Is This Course About

- Learn about the emergence of multicores
 - Why is parallel hardware finally becoming mainstream

- Learn about parallel programming patterns
 - Classical and new work in the field

- Learn about challenges in parallel programming with hands on experience
 - Programming languages, tools for debugging, tools for performance monitoring

- Get your hands on a PS3 to make it all fun
 - Group projects will run on PS3 hardware
Project Ideas

- New feature rich games or applications
 - Exploit available resources for new effects or features
 - Multimedia feature extraction and indexing

- Simulation of molecular dynamics
 - For drug discovery, protein folding

- Security applications
 - Feature detection (face recognition), pattern matching (network intrusion detection, gene discovery)

- Monte Carlo simulations
 - Medical imaging to recognize abnormal tissues
 - Oil field analysis to find oil rich wells
 - Models for financial markets to maximize profits

- Algorithms that exploit SIMD properties of SPEs
More Project Ideas

- Linear Algebra Library
- Multi-pattern string matching
- Black Scholes PDE Solver
- JPEG or MPEG encoding
- Viterbi Algorithm applied to bioinformatics
Examples of Project Scope

- Can take existing algorithms and re-implement them in a parallel or SIMD equivalent
 - Pattern matching for security applications

- Can take existing applications and modify them for the PS3 adding new capabilities
 - Add new features to the Quake 3 game engine

- Design and implement a new project form scratch that harnesses the power of the Cell and PS3
Course Organization

- Lectures three times a week
 - Monday, Wednesday, and Friday
 - 2 – 1 hour lectures with small break between lectures
 - 10 am – 12:15pm

- Labs and recitation two times a week
 - Tuesday and Thursday

- Group project
 - Small teams (no more than 4-5 per group)
 - Project presentation on Thursday January 29
 - Each group will have dedicated access to PS3 and tools

- Awards and Reception on Friday January 30

- Course will be available on OCW
Course Enrollment

- Interested students should discuss project ideas first by Friday December 15
 - Choose from existing ideas
 - Or come up with your own project idea
 - We’ll help you

- Enrollment limited and by invitation
 - Preference to interesting projects
Project Support

- Direct access to PS3 hardware
- Direct access to Tools from Sony and IBM
 - Compilers, tutorials, example codes
- Projects can be implemented in
 - C using threads and Cell intrinsic instructions for direct access to the bare metal
 - StreamIt and StreamIt virtual machine which hides the bare metal and provides a rich programming interface
 - Other approaches are also possible (e.g., OpenMP or MPI)
Project Resources

- Go to the course Wiki
 - Browse list of projects idea
 - Submit your project idea
 - Sign up for a project
 - Find team members

- Follow link from course web page
 http://cag.csail.mit.edu/ps3
Who to Contact

- **6.189-chair@mit.edu**
 - Email to ask general questions about the course
 - Or to discuss (feasibility of) project ideas

- **6189@lists.csail.mit.edu**
 - Students and instructors
 - Send project ideas
 - Find team members
Acknowledgements

- Sony
- IBM
- Toshiba