
Lazy Task Creation:

A Technique for Increasing the Granularity

of Parallel Programs

Eric Mohr

Yale University

mohr@cs.yale.edu

David A. Kranz

M.I.T.

kranz@lcs.mit.edu

Robert H. Halstead, Jr.

DEC Cambridge Research Lab

halstead@crl.dec.com

Abstract

Many parallel algorithms are naturally expressed at a
�ne level of granularity, often �ner than a MIMD paral-
lel system can exploit e�ciently. Most builders of par-
allel systems have looked to either the programmer or a
parallelizing compiler to increase the granularity of such
algorithms. In this paper we explore a third approach
to the granularity problem by analyzing two strategies
for combining parallel tasks dynamically at run-time.
We reject the simpler load-based inliningmethod, where
tasks are combined based on dynamic load level, in
favor of the safer and more robust lazy task creation

method, where tasks are created only retroactively as
processing resources become available.

These strategies grew out of work on Mul-T [15],
an e�cient parallel implementation of Scheme, but
could be used with other languages as well. We de-
scribe our Mul-T implementations of lazy task creation
for two contrasting machines, and present performance
statistics which show the method's e�ectiveness. Lazy
task creation allows e�cient execution of naturally ex-
pressed algorithms of a substantially �ner grain than
possible with previous parallel Lisp systems.

Key words and phrases: parallel programming lan-
guages, load balancing, program partitioning, process
migration, parallel Lisp, task management.

1 Introduction

There have been numerous proposals for implementa-
tions of applicative languages on parallel computers.

0

All have in some way come up against a granularity
problem|when a parallel algorithm is written natu-
rally, the resulting program often produces tasks of
a �ner grain than an implementation can exploit ef-
�ciently. Some researchers look to hardware specially
designed to handle �ne-grained tasks [2, 9], while oth-
ers have looked for ways to increase task granularity by
grouping a number of potentially parallel operations
together into a single sequential thread. These latter
e�orts can be classi�ed by the degree of programmer
involvement required to specify parallelism, from par-
allelizing compilers at one end of the spectrum to lan-
guage constructs giving the programmer a �ne degree
of control at the other.

In the most attractive world, the programmer leaves
the job of identifying parallel tasks to a parallelizing
compiler. To achieve good performance, the compiler
must create tasks of su�cient size based on estimating
the cost of various pieces of code [6, 13]. But when
execution paths are highly data-dependent (as for ex-
ample with recursive symbolic programs), the cost of
a piece of code is often unknown at compile time. If
only known costs are used, the tasks produced may
still be too �ne-grained. And for languages that allow
mutation of shared variables it can be quite complex to
determine where parallel execution is safe, and oppor-
tunities for parallelism may be missed.

At the other end of the spectrum a language can leave
granularity decisions up to the programmer, providing
tools for building tasks of acceptable granularity such
as the propositional parameters of Qlisp [5, 7, 8]. Such
�ne control can be necessary in some cases to maximize
performance, but there are costs in programmer e�ort
and program clarity. Also, any parameters appearing in
the program require experimentation to calibrate; this
work may have to be repeated for a di�erent target ma-
chine or data set. Or, when the code is run in parallel
with other code or on a multi-user machine, a given pa-
rameterization may be ine�ective because the amount
of resources available for that code is unpredictable.
Similar problems arise when a parallelizing compiler is
parameterized with details of a certain machine.

1

We've taken an intermediate position in our research
on Mul-T [15], a parallel version of Scheme based on the
future construct of Multilisp [10, 11]. The program-
mer takes on the burden of identifyingwhat can be com-
puted safely in parallel, leaving the decision of exactly
how the division will take place to the run-time system.
In Mul-T that means annotating programs with future
to identify parallelism without worrying about granu-
larity; the programmer's task is to expose parallelism
while the system's task is to limit parallelism.

In our experience with the mostly functional style
common to Scheme programs, a program's parallelism
can often be expressed quite easily by adding a small
number of future forms (which however may yield a
large number of concurrent tasks at run time). The
e�ort involved is little more than that required for sys-
tems with parallelizing compilers, where the program-
mer must be sure to code in such a way that parallelism
is available. (We note that these dynamics of parallel
programming are shared by functional languages; the
philosophy and goals of the \para-functional" approach
[12, 14] are similar to ours.)

In order to support this programming style we
must deal with questions of e�ciency. The Encore
Multimax1 implementation of Mul-T [15], based on the
T system's ORBIT compiler [16, 17], is proof that the
underlying parallel Lisp system can be made e�cient
enough; we must now �gure out how to achieve suf-
�cient task granularity. For this we look to dynamic
mechanisms in the run-time system, which have the
advantage of avoiding the parameterization problems
mentioned earlier. The key to our dynamic strate-
gies for controlling granularity is the fact that that the
future construct has several correct operational inter-
pretations. The canonical future expression

(K (future X))

declares that a child computation X may proceed in
parallel with its parent continuation K. In the most
straightforward interpretation, a child task is created
to compute X while the parent task computes K.2 Re-
versing the task roles is also possible; the parent task
can compute X while the child task computes K. Fi-
nally, and most importantly for �ne-grained programs,
it is also usually correct for the parent task to compute
�rst X and then K, ignoring the future. This inlin-
ing of X by the parent task eliminates the overhead of
creating and scheduling a separate task and creating a
placeholder to hold its value.3

1Multimax is a trademark of Encore Computer Corporation.
2(future X) returns an object called a future, a placeholder

for the eventual value of X. The placeholder is said to be unre-

solved until X's value becomes available. Any task attempting

to use the value of an unresolved future is suspended until the

value is available. A touch is a use of a value V that will cause a

task to be suspended if V is an unresolved future.
3Such inlining is not always correct; sometimes it can lead to

deadlock as described in Section 3.3.

Inlining can mean that a program's run-time granu-

larity (the size of tasks actually executed at run time)
is signi�cantly greater than its source granularity (the
size of code within the future constructs of the source
program). A program will execute e�ciently if its aver-
age run-time granularity is large compared to the over-
head of task creation, providing of course that enough
parallelismhas been preserved to achieve good load bal-
ancing.

The �rst dynamic strategy we consider is load-based
inlining. In this strategy, (future X) means, \If the
system is not loaded, make a separate task to evalu-
ate X; otherwise inline X, evaluating it in the current
task." A load threshold T indicates how many tasks
must be queued before the system is considered to be
loaded. Whenever a call to future is encountered, a
simple check of task queue length determines whether
or not a separate task will be created.

The simple load-based inlining strategy works well
on some programs, but its several drawbacks (see Sec-
tion 3) led us to consider another strategy as well: why
not inline every task provisionally, but save enough in-
formation so that tasks can be selectively \un-inlined"
as processing resources become available? In other
words, create tasks lazily. With this lazy task creation

strategy, (K (future X))means \Start evaluatingX
in the current task, but save enough information so that
its continuation K can be moved to a separate task if
another processor becomes idle." We say that idle pro-
cessors steal tasks from busy processors; task stealing
becomes the primary means of spreading work in the
system.

The execution tree of a �ne-grained program has an
overabundance of potential fork points. Our goal with
lazy task creation is to convert a small subset of these
to actual forks, maximizing run-time task granularity
while preserving parallelism and achieving good load
balancing. In the subsequent discussion, this is con-
trasted with eager task creation, where all fork points
result in a separate task.

An example will help make these ideas more concrete.

2 An Example

As a simple example of the spectrum of possible solu-
tions to the granularity problem, consider the following
algorithm (written as a Scheme program) to sum the
leaves of a binary tree:

(define (sum-tree tree)

(if (leaf? tree)

(leaf-value tree)

(+ (sum-tree (left tree))

(sum-tree (right tree)))))

2

Figure 1: Direct execution of psum-tree.

(where leaf?, leaf-value, left, and right de�ne the
tree datatype). The natural way to express parallelism
in this algorithm is to indicate that the two recursive
calls to sum-tree can proceed in parallel. In Mul-T we
might indicate this by adding one future:4

(define (psum-tree tree)

(if (leaf? tree)

(leaf-value tree)

(+ (future (psum-tree (left tree)))

(psum-tree (right tree)))))

The natural expression of parallelism in this algo-
rithm is rather �ne-grained. With eager task creation
this program would create 2d tasks to sum a tree of
depth d; the average number of tree nodes handled by
a task would be 2. Figure 1 shows this execution pic-
torially; each circled subset of tree nodes is handled by
a single task. Unless task creation is very cheap, this
task breakdown is likely to lead to poor performance.

The ideal task breakdown is one which maximizes
the run-time task granularity while maintaining a bal-
anced load. For a divide-and-conquer program like this
one, that means expanding the tree breadth-�rst by
spawning tasks until all processors are busy, and then
expanding the tree depth-�rst within the task on each
processor. We will refer to this ideal task breakdown
as BUSD (Breadth-�rst Until Saturation, then Depth-
�rst). Figure 2 shows this execution pictorially for a
system with 4 processors.

How can we achieve this ideal task breakdown? A
parallelizing compiler might be able to increase granu-
larity by unrolling the recursion and eliminating some
futures, but in this example we want �ne-grained tasks
at the beginning so as to spread work as quickly as pos-
sible (breadth-�rst). The compiler might possibly pro-
duce code to do this as well if supplied with information

4This strategy for adding future relies on + evaluating its

operands from left to right; if argument evaluation went from

right to left, then (psum-tree (right tree)) would evaluate to

completion before (future (psum-tree (left tree))) began,

and no parallelism would be realized.

a

b c

Figure 2: BUSD execution of psum-tree on 4 proces-
sors.

(define (psum-tree-2 tree cutoff-depth)

(if (leaf? tree)

(leaf-value tree)

(+ (qfuture (> cutoff-depth 0)

(psum-tree-2 (left tree)

(- cutoff-depth 1)))

(psum-tree-2 (right tree)

(- cutoff-depth 1)))))

Figure 3: Code for psum-tree-2

about available processing resources, but making such
a transformation general is a di�cult task and would
still have the parameterization drawbacks noted earlier.

What if we control task creation explicitly as in
Qlisp? In many of Qlisp's parallel constructs the pro-
grammer may supply a predicate which, when evalu-
ated at run time, will determine whether or not a sepa-
rate task is created (one such predicate, (qemptyp) [8],
tests the length of the work queue, achieving the same
e�ect as our load-based inlining). If such a Qlisp-style
mechanism were used to create a hypothetical qfuture
construct, we might write psum-tree as in Figure 3
(very similar to an example in [5]).

In this example, cutoff-depth speci�es a depth be-
yond which no tasks should be created. The predicate
(> cutoff-depth 0) tells qfuture whether or not to
inline the recursive call. A cutoff-depth value of 2
would achieve the BUSD execution shown in Figure 2;
below level 2 all futures are inlined.

This solution has two problems. First, the
code has become more complex by the addition of
cutoff-depth|it is no longer completely straightfor-
ward to tell what this program is doing. Second, the
program is now parameterized by the cutoff-depth

argument, with the associated calibration issues noted
previously.

Load-based inlining and lazy task creation are
both attempts to approximate the BUSD perfor-

3

mance of psum-tree-2 without sacri�cing the clarity
of psum-tree. In an ideal run of psum-tree on a
four-processor system with load-based inlining, the �rst
three occurrences of future (at nodes a, b, and c of Fig-
ure 2) �nd that processors are free, and separate tasks
are created (breadth-�rst). Depending on the value of
the threshold parameter T , a few more tasks may be
created before the backlog is high enough to cause in-
lining. But since there is a large surplus of work, most
tasks are able to defray the cost of their creation by
inlining a substantial subtree (depth-�rst).

In an ideal run of psum-tree with lazy task creation,
the future at a (representing the subtree rooted at b) is
provisionally inlined, but its continuation (representing
the subtree rooted at c) is immediately stolen by an
idle processor. Likewise, the futures at b and c are
inlined, but their continuations are stolen by the two
remaining idle processors. Now all processors are busy;
subsequent futures are all provisionally inlined but no
further stealing takes place and each processor winds
up executing one of the circled subtrees of Figure 2.

This execution pattern depends on an oldest-�rst

stealing policy: when an idle processor steals a task,
the oldest available fork point is chosen. In this exam-
ple the oldest fork point represents the largest available
subtree and hence a task of maximal run-time granu-
larity.

We now consider how these idealized execution pat-
terns match up with real-life execution patterns for
these methods.

3 Comparison of Dynamic

Methods

Load-based inlining has an appealing simplicity and
does in fact produce good results for some programs
[15], but we have noted several factors which decrease
its e�ectiveness. A major factor is that inlining deci-
sions are irrevocable|once the decision to inline a task
has been made there is no way to revoke the decision
at a later time, even if it becomes clear at that time
that doing so would be bene�cial.

The following list summarizes the drawbacks of load-
based inlining; the following sections discuss each in
turn as a basis for comparing the two dynamic strate-
gies.

1. The programmer must decide when to apply load-
based inlining, and at what load threshold T .

2. Inlined tasks are not accessible; processors can
starve even though many inlined tasks are pend-
ing.

3. Deadlock can result if inlining is used on some
types of programs.

4. In an implementation with one task queue per
processor, load-based inlining creates many more
tasks than would be created with an optimal
BUSD division.

5. Load-based inlining is ine�ective in programs
where �ne-grained parallelism is expressed through
iteration.

3.1 Programmer Involvement

Even though load-based inlining is an automatic mech-
anism it still requires programmer input. Some pro-
grams run signi�cantly faster with eager task creation
than they do with load-based inlining, so the program-
mer must identify where load-based inlining should be
applied. For example, load balancing is crucial in a
coarse-grained program creating relatively few tasks|
inlining even a few large tasks can hurt load balancing
by lengthening the \tail-o�" period when processors
are �nishing their last tasks. With lazy task creation
however, load balancing can't su�er because all inlin-
ing decisions are revocable. At worst, all lazily-inlined
tasks will have their continuations stolen. But because
the cost of stealing a task is comparable to that of creat-
ing an eager task, performance will not be signi�cantly
worse than with eager task creation. Thus lazy task
creation can be used safely on such programs without
the danger of degrading performance.

With load-based inlining, the programmer must also
get involved by supplying a value for the load threshold
T . Experience has shown that choosing the right value
for T is crucial for good performance, but is di�cult
to do except by experimentation [26]. Since lazy task
creation requires no parameterization the programmer
is freed of this burden as well.

3.2 Irrevocability

The irrevocability of load-based inlining can mean that
processors become idle even though the continuations
of many inlined tasks have not yet begun to execute.
Such problems can be caused by bursty task creation

and parent-child welding. Bursty task creation refers to
the fact that opportunities to create tasks may be dis-
tributed unevenly across a program. At the moment
when a task is inlined, it may appear that there are
plenty of other tasks available to execute, but by the
time these tasks �nish executing there may be too few
opportunities to create more tasks. Consequently, pro-
cessors may go idle because the continuations of the

4

inlined tasks are not available for execution. This prob-
lem never arises with lazy task creation because these
continuations are always available for stealing.

Parent-child welding refers to the fact that inlining ef-
fectively \welds" together a parent and child task. If an
inlined child becomes blocked waiting for a future to re-
solve (or for some other event), the parent is blocked as
well and is not available for execution. With lazy task
creation, the information kept for each inlined child al-
lows the child to be decoupled if it becomes blocked,
allowing the parent to continue.

3.3 Deadlock

Perhaps the most serious problem with load-based in-
lining is that, for some programs, irrevocable inlining

is not a correct optimization. To see how inlining can
lead to deadlock, consider the program in Figure 4 for
�nding primes. It uses a standard prime-�nding algo-
rithm, checking each (odd) integer n for primality by
looking for divisors among the primes found so far, up
to
p
n. Futures introduce parallelism, as well as getting

around the di�culty of accessing both ends of a single
list (adding primes to the end as they are found while
reading primes from the front during divisor testing).

Initially, all-primes is bound to a lazily gen-
erated list of all the odd primes.5 The function
find-primes>=n generates a tail of all-primes by
�rst making a future to �nd all (odd) primes above
n, and then checking n for primality by walking down
all-primes, using the primes already generated.

Figure 5 shows di�erent possible scenarios in the ex-
ecution of find-primes. 5a shows that with eager task
creation a separate future is created to test each value
of n for primality. These futures could be scheduled in
any order, but a future testing a large value of n might
block when walking down the list of known primes if the
futures testing small values of n were unresolved. 5b
shows a possible scenario during eager execution; the
futures for n = 3; 5; 9; 13;15;17 have been executed,
while the futures for n = 7; 11 are still unresolved. No
blocking is shown; for example, the future for n = 17
was able to run to completion because only the �rst
two elements of the list of primes (3; 5) were needed to
determine that 17 is prime.

Figure 5(c) shows a possible execution snapshot with
load-based inlining. Inlining a future in find-primes

causes the parent task to test an additional value of n;
if several successive futures are inlined, a task will test
several values of n. 5c illustrates an important man-
ifestation of load-based inlining in find-primes: be-
cause an inlined task (containing the recursive call to

5delay, which creates a future object but does not spawn a

task, is used instead of future to avoid a race condition in the

letrec binding.

7 131193 5

(a) With eager task creation a future is created for each
value of n.

73 5 13 1711

(b) With eager task creation execution order is arbi-
trary, subject to data dependencies.

15, 1311, 9, 753

(c) With load-based inlining a single future may handle
several values of n.

3 11, 9, 7, 5

(d) Deadlock could occur with load-based inlining.

Figure 5: Possible execution scenarios for
find-primes.

find-primes>=n) is executed before its continuation, a
task testing several values of n tests the largest value

�rst. This is the interaction that can cause deadlock,
as would happen in the scenario of 5d. Here, inlining
three futures has created a task T to test n = 11; 9; 7; 5,
in that order. We expect T 's ultimate value to be a list
containing the elements 5; 7; 11 (and another future rep-
resenting the rest of the list). Let F be the future rep-
resenting this value. The call to prime? for n = 11 will
attempt to access the second element of all-primes,
but will block because the second element is \inside"
the unresolved future F ! The second element won't be
available until T itself gets around to testing n = 5, so
deadlock has occurred.

This type of deadlock is not possible with lazy task
creation because of the decoupling of blocked tasks
mentioned above. Any inlined task can be separated
from its parent, so programs that are deadlock-free with
eager task creation are also deadlock-free with lazy task
creation.

3.4 Too Many Tasks

The behavior of load-based inlining for programs like
psum-tree has been analyzed by Weening [26, 27]. He
assumes, as we do, that each processor maintains its
own local task queue and that inlining decisions are
based only on the local queue's length. He shows two
ways in which the need to maintain at least one task on
the local queue leads to non-BUSD execution. First, a
lone processor P executing a subtree of height h cre-
ates h tasks instead of just one; second, removing a task

5

(define (find-primes limit)

(letrec ((all-primes (cons 3 (delay (find-primes>=n 5))))

(find-primes>=n (lambda (n)

(if (> n limit)

'()

(let ((rest (future (find-primes>=n (+ n 2)))))

(if (prime? n all-primes)

(cons n rest)

rest))))))

(cons 2 all-primes)))

(define (prime? n primes)

(let ((prime (car primes)))

(cond ((> (* prime prime) n) #t)

((zero? (mod n prime)) #f)

(else (prime? n (cdr primes))))))

Figure 4: Program find-primes could deadlock with load-based inlining.

from P 's queue at an inopportune moment (a \trans-
fer") can lead to the creation of O(h2) tasks. He derives
an upper bound of O(p2h4) tasks using p processors,
and points out that this bound guarantees asymptot-
ically minimal task creation overhead as the problem
size grows exponentially in h. But this doesn't tell
the whole story|asymptotically acceptable overhead
may only be achieved when the problem size grows to
a running time measured in days. In our experience,
the overhead of task creation with load-based inlining
is signi�cant for problems of substantial size.

The bottom line is that load-based inlining with dis-
tributed task queues is unable to achieve oldest-�rst
scheduling; many of the tasks created represent small
subtrees. For example, consider what happens when a
transfer removes a task from the queue of a processor
P . The next time P encounters a future call, P will �nd
that its queue is empty and so will create a new task
to evaluate the call. But the position of T in the pro-
gram's call tree is really a matter of chance, determined
only by the timing of the transfer operation. Since the
majority of potential fork points lie toward the leaves
of the tree, T is likely to represent only a small subtree.

It is possible that using one central queue instead of
several distributed queues would decrease the number
of tasks, but the contention introduced by this alter-
native would probably be unacceptable and would cer-
tainly not be scalable. A much better alternative is the
oldest-�rst scheduling policy of lazy task creation; as
can be seen by the task counts in Section 5, lazy task
creation results in many fewer tasks than load-based
inlining. Tasks created by oldest-�rst scheduling are
able to inline larger subtrees, giving a much better ap-
proximation to BUSD execution.

3.5 Fine-Grained Iteration

Not all parallel programs have bushy call trees; for ex-
ample, some programs contain data-level parallelism
expressed by iteration over a linear data structure.
Load-based inlining is not e�ective in increasing the
run-time granularity of such programs. To see why,
consider the two versions of parallel map shown in Fig-
ure 6. Both versions apply a function f to every element
of a list l, exemplifying the two methods of parallelizing
an iterative loop.6

With both load-based inlining and lazy task creation,
e�ciency is increased for �ne-grained programs when
each task is able to inline many other tasks, increas-
ing the average run-time task granularity and reducing
overhead due to task creation. In both of these versions
of parallel map, many tasks are unable to inline any sub-
tasks, leading to high task-creation overhead when f is
�ne-grained.

In parmap-cars a parent task loops through the list,
calling future for each application of f to a list el-
ement. In this program, inlining futures can only in-
crease the granularity of the parent task; any child tasks
created will be �ne-grained because they have no inlin-
ing opportunities. So at best we will have one task of
large granularity and many of small granularity, leading
to poor performance.

In parmap-cdrs, future appears around a call to
map down the rest of the list; the parent task then
applies f to the current list element. It is conceivable
in this case that inlining could create several tasks of
large granularity; the parent could inline several futures
before making a real future F1, F1 could inline several

6This example involves recursion on lists; similar dynamics

appear with iteration on arrays.

6

(define (parmap-cars f l)

(if (null? l)

'()

(let* ((elt (future (f (car l))))

(rest (parmap-cars f (cdr l))))

(cons elt rest))))

(define (parmap-cdrs f l)

(if (null? l)

'()

(let* ((rest (future (parmap-cdrs f (cdr l))))

(elt (f (car l))))

(cons elt rest))))

Figure 6: Code for two versions of parallel map

futures before making a real future F2, etc. In practice
however, the system load is low initially and many small
tasks are created. With numerous processors, tasks are
executed faster than they can be created so the backlog
necessary for load-based inlining never builds up.

Unfortunately, lazy task creation su�ers the same
problems as load-based inlining on this type of pro-
gram. The eager stealing policy necessary for timely
scheduling of tasks leads in this case to many small
tasks and poor performance. Other approaches are
possible; we have considered more complex dynamic
methods as well as making use of compiler granularity
information in cases like this.

But it may be too harsh to fault our dynamic task
combination strategies for failing to improve the exe-
cution of programs where �ne-grained data-level par-
allelism is expressed using iteration. The sequentiality
of iteration inherently limits parallelism; even if task
creation overhead were nonexistent, the parallelism in
a loop like parmap-cars will never exceed tf=tl (the
cost of computing f vs. the cost of one loop iteration)
[11]. For a �ne-grained loop this ratio represents a real
limitation on the number of processors that can be kept
busy.

This is a case where expressing an algorithm in the
most convenient way inherently limits parallel perfor-
mance. We mentioned our view that the programmer
should identify what can be computed in parallel with-
out worrying about how the division will take place at
run-time. But iteration says a lot about the \how"|we
can't increase performance if the programmer doesn't
provide an algorithm with enough inherent parallelism.

One conclusion of this line of reasoning is that lists
are a bad data structure to use for a program with �ne-
grained data-level parallelism because their very struc-
ture requires sequential, iterative-style access. Even if
we knew in advance the optimal number of list ele-
ments handled by a single task, all elements still need

to be traversed to create the tasks. The random-access
nature of arrays make them a better choice for a divi-
sion of this nature. But we'd still like to free the pro-
grammer from specifying explicitly how array elements
should be chunked together in tasks.

One way of solving the \apply-to-all" problem
within our philosophical framework is to use a divide-
and-conquer division of an array's index set, as in
parmap-interval, shown in Figure 7. (No array is
visible here; the function f would use its index argu-
ment in an array calculation.) This method exposes
abundant parallelism without requiring the program-
mer to specify an exact partition of array elements to
tasks. And lazy task creation interacts well with this
program's bushy call tree, approximating a BUSD par-
tition at runtime. This is not a perfect solution though,
as parmap-interval is somewhat more complex than
the corresponding iterative loop. But the increase in
complexity is small, and the program is free of parame-
terization. We discuss some ideas for improving on this
solution at the end of the paper.

4 Implementation

We have seen that lazy task creation has several strong
advantages over load-based inlining. We now explore
the implementation issues to determine whether the
overhead of lazy task creation can be acceptably mini-
mized.

Both of our dynamic methods increase e�ciency by
ignoring selected instances of future. But lazy task
creation requires maintaining enough informationwhen
a future is provisionally inlined to allow another pro-
cessor to steal the future's continuation cleanly. The
cost of maintaining this information is the critical factor
in determining the �nest source granularity that can be
handled e�ciently. The cost is incurred whether a new

7

(define (parmap-interval f lo hi)

(if (= lo hi)

(f lo)

(let* ((mid-lo (quotient (+ lo hi) 2))

(mid-hi (+ mid-lo 1))

(lo-half (future (parmap-interval f lo mid-lo))))

(parmap-interval f mid-hi hi)

(touch lo-half))))

Figure 7: Code for parmap-interval

task is created or not, so a large overhead would over-
whelm a �ne-grained program. By comparison the cost
of actually stealing a task is somewhat less critical; if
enough inlining occurs the cost of stealing a task will
be small compared to the total amount of work the task
ultimately performs.

Still, the cost of stealing a continuation must be kept
in the ballpark of the cost of creating an eager future.
Stealing a continuation requires splitting an existing
stack, which in a conventional stack-based implemen-
tation requires the copying of frames from one stack
to another. Alternatively, we could use a linked-frame
implementation where splitting a stack requires only
pointer manipulations. However, care must be taken
with such an implementation to ensure that the normal
operations of pushing and popping a stack frame have
comparable cost with conventional stack operations.

We have pursued both avenues of implementation:
a conventional stack-based implementation for the En-
core Multimax version of Mul-T as well as a linked-
frame implementation for the ALEWIFE multiproces-
sor. The basic data structures and operations for lazy
task creation are common to both implementations
however, and are discussed next.

4.1 The Lazy Task Queue

Each task maintains a queue of stealable continuations
called the lazy task queue, shown abstractly in Figure 8.
When making a lazy future call corresponding to an
instance of future in the source code, a task T �rst
pushes a pointer to the future's continuation onto the
lazy task queue. If upon return the continuation has
not been stolen by another processor, T dequeues it.
We refer to T as the producer of lazy tasks; another pro-
cessor stealing them is called a consumer. Consumers
remove frames from the head of the lazy task queue
while the producer pushes and pops frames from the
tail.

Figure 8 tells a lazy task creation story for a producer
task P . 8a shows P 's stack (growing upward) with
eight frames. Three of these frames are continuations

to lazy future calls; pointers to these frames have been
placed on the lazy task queue. Note that the oldest
continuation is at the head (bottom) of the queue while
the newest continuation is at the tail (top) of the queue.
At this point a lazy future call occurs, corresponding
to the following code:

(K (future X))

As shown in 8b, a new continuationK is pushed onto
the stack, and a pointer to K is pushed on the lazy
task queue. The inlined future completes execution of
X before any stealing occurs, so P simply returns to K
after �rst popping the lazy task queue (removing the
pointer to K from the tail of the queue); this is shown
in 8c.

Now an idle consumer C decides to steal a continua-
tion from P 's lazy task queue. To do this correctly, C
must change P 's stack to make it look as though an ea-
ger future had actually been created to compute X. C
does this by creating a placeholder and modifying P 's
stack so that the value returned by the call to X will
resolve (i.e., supply a value for) the placeholder rather
than being passed directly to the continuation K. The
consumer then calls K itself, passing the unresolved
placeholder as an argument. 8d shows the completed
steal operation; it now looks as though an eager future
had been created, with one processor (the producer P)
evaluating the child X and another (the consumer C)
evaluating the parent K. Note an important feature of
the stealing operation: the consumer never interrupts

the producer.

Implementationsmust take care to guard against two
kinds of race conditions to ensure correctness of the
stealing operation. First, two consumers may race to
steal the same continuation; second, a producer trying
to return to a continuation may race with a consumer
trying to steal it.

4.2 Encore Implementation

We have implemented lazy task creation in the version
of Mul-T running on the Encore Multimax, a bus-based
shared-memory multiprocessor. Our Multimax has 18

8

(head)

(tail)

Lazy Task Queue

Stack

(a) Data structures for lazy task creation.

Lazy Task Queue

(tail)

(head)

Stack

(b) A lazy future call causes a continuation to
be queued.

(tail)

Lazy Task Queue

(head)

Stack

(c) Returning from a lazy future call causes a
continuation to be dequeued.

(head)

(tail)

Lazy Task Queue

Stack
Producer’s

Stack
Consumer’s

Placeholder

(d) A continuation is stolen.

Figure 8: Lazy task queue data structures and operations.

9

frame 1

frame 2

frame 3

lazy cont 3

lazy cont 2

lazy cont 1

base

ltq-tail

ltq-head

Figure 9: Lazy task queue implemented in conjunction
with a conventional stack.

processors; the National Semiconductor 32332 proces-
sors used have relatively few general-purpose registers
(8) but fairly powerful memory addressing modes. Syn-
chronization between processors is possible only by us-
ing a test-and-set instruction which acquires exclusive
access to the bus.

In this implementation stacks are represented con-
ventionally, in contiguous sections of the heap. As seen
in Figure 9, the lazy task queue is kept in contiguous
memory in the \top" part of a stack. As the producer
pushes lazy continuations the queue grows downward
while the stack frames grow upward. Stealing contin-
uations e�ectively shrinks the stack by removing in-
formation from both ends (the head of the lazy task
queue and the bottom frames of the stack). When
a stack overows (i.e., when the gap between stack
frames and lazy task queue gets too small), it may ei-
ther be repacked to reclaim space created by steal op-
erations or its contents may be copied to a new stack
of twice the original size.

To steal from the stack pictured, a consumer �rst lo-
cates the oldest continuation by following the ltq-head

pointer, through the lazy cont 1 pointer, to frame 1.
The consumer then replaces frame 1 in the stack with
a continuation directing the producer to resolve a place-
holder. Next the consumer copies frames from frame 1

down to the bottom of the live area of the stack (in-
dicated by base) to a new stack, updating base and
ltq-head appropriately.

To guard against the race conditions mentioned ear-
lier there is a lock for the entire stack plus a lock for
each continuation on the lazy task queue. Only the pro-
ducer modi�es ltq-tail, and only consumers modify
ltq-head and base.

4.2.1 Lazy Future Call and Return

We now present the lazy task queue operations in some-
what more detail. Figure 10 gives assembler pseudo-
code showing how the expression

(g (future (f x)))

would be compiled in Encore Mul-T with lazy task cre-
ation. The lazy future call and return in this example
show the crucial lazy task queue operations of enqueu-
ing and dequeuing a lazy continuation.

The �rst block (entry and call-g) shows the com-
piled code for the lazy future call to f and its contin-
uation, containing the standard call to g. stack is a
pointer to the current stack; lazy task queue pointers
such as ltq-tail are referenced via an o�set to this
pointer.7

The code shows that 2 longwords (4 bytes each) are
allocated in the lazy task queue area of the stack for
each lazy continuation|one for the continuation it-
self and one for a lock. After storing the continua-
tion pointer call-g and initializing the lock to 0 we
increment the ltq-tail pointer, which makes the lazy
continuation available for stealing. There is no need to
test explicitly for overow of the lazy task queue; the
stack overow check on entry simply tests the size of
the empty region between the actual stack (growing up-
wards) and the lazy task queue (growing downwards).

Before calling f we push return-from-lf-call on
the stack as the return address. This is a shared, out-
of-line routine that serves as the continuation to all
lazy future calls. It is shown in the second block of
code. Here we see synchronization to guard against
interference by a consumer trying to steal the same lazy
continuation the producer is trying to return to. The
returning producer �rst acquires the lazy task queue
item lock (using the Encore's interlocked test and set
instruction), busy-waiting if the lock is currently held

7This is a slight simpli�cation; in actuality, the current stack is

stored in a block of data kept locally by each processor; ltq-tail

is referenced using the double indirection capability of the NS

32332.

10

(lambda (x)

(g (future (f x))))

entry:

Standard stack overow test (3 instructions).

push-addr call-g # push return address (a.k.a. current continuation) on stack
move ltq-tail(stack),r1 # get pointer to tail of lazy task queue
move sp,8(r1) # store pointer to stack continuation in lazy task queue
move $0,12(r1) # initialize lazy task queue entry lock
add $8,ltq-tail(stack) # lazy continuation o�cially enqueued
push-addr return-from-lf-call # call to f will return to return-from-lf-call

Standard call to unknown procedure f (5 instructions).

call-g:

Standard continuation code, including call to unknown procedure g (6 instructions).

return-from-lf-call:

move ltq-tail(stack),r1 # get pointer to lazy task queue tail
test&set 4(r1) # try to lock tail item of lazy task queue
br-if-clr pop-ltq # if successful, go pop it
Busy-wait loop to lock tail item of lazy task queue.

pop-ltq:

sub $8,ltq-tail(stack) # lazy continuation o�cially dequeued
adjust-sp $-4 # remove return-from-lf-call address from stack
Standard return (2 instructions).

Figure 10: Assembler pseudo-code showing lazy future call and return in the Encore implementation.

by a consumer. Once the lock is acquired the return
address on top of the stack is guaranteed to be valid;
in this case it will be either the original value call-g
or else resolve-placeholder if the continuation has
been stolen. After dequeuing the tail entry of the lazy
task queue we return normally.

If, as is usually the case, the continuation to a lazy
future call is known (i.e., unless future appears in
tail-call position), the code shown in Figure 10 can be
streamlined by generating the return-from-lf-call

code in line. This optimization, which saves 4 instruc-
tions (and increases the code size slightly), has not yet
been implemented in the current system.

4.2.2 Steal Operation

Figure 11 gives the algorithm for stealing a lazy
continuation from another processor's lazy task queue.
The task to be stolen is chosen by a round-robin search
of other processors' lazy task queues. Two locks must
be acquired before a continuation is stolen|the pro-
ducer's stack is locked to avoid races with other con-
sumers and the continuation itself is locked to avoid a
race with the producer trying to return to it.

Once a stealable continuation has been chosen and
the necessary locks obtained, we replace it in the pro-
ducer's stack with a continuation to resolve the newly

created placeholder, and we update the producer's base
and ltq-head pointers. At this point the producer's
stack is in a consistent state, so we unlock the head
item of the lazy task queue.8 Then the bottom of the
producer's stack is copied to the consumer's stack (tak-
ing care to use the old continuation rather than the
newly swapped-in one!) and the consumer can begin
executing the stolen continuation, passing the place-
holder as an argument. The producer (or another pro-
cessor if further stealing occurs!) will eventually return
to our swapped-in continuation, providing a value for
the placeholder.

4.2.3 Blocking

There is one remaining loose end in this discussion:
what happens to the lazy task queue when a task T

blocks by touching an unresolved future? It is not suf-
�cient to save the lazy task queue as part of T 's state
because the queued lazy tasks would become inaccessi-
ble. We would then have the same potential deadlock
problem that arises with load-based inlining.

The simple solution adopted here is for T to \bite its
tail." T 's stack is split above the most recent lazy con-

8The producer's stack is not unlocked at this point because

of the possibility of stack overow|the repacking operation dis-

cussed earlier would conict mightily with a stealer's copying

operation.

11

� Allocate and initialize data structures: a place-
holder P , a new task object T2, and a new stack S2.

� Look for a continuation to steal.

{ Poll other processors to �nd one whose cur-
rent stack S1 has a non-empty lazy task queue
(i.e. ltq-tail � ltq-head).

{ Try to lock stack S1; if it's already locked,
skip to next processor.

{ Try to lock head item of S1's lazy task queue
Q; if it's already locked, skip to next proces-
sor.

� Steal the continuation. In the head item (now
locked) of Q is a pointer CP into the stack S2.
CP points to a stack frame C representing a steal-
able continuation. The bottom of the stack (the
portion between CP and S1's base pointer) must
be copied to the new stack S2.

{ Replace C in S1 with the continuation
(resolve-placeholder P).

{ Update base and ltq-head pointers in S1.

{ S1 is now in a consistent state; unlock head
item of Q.

{ Copy bottom portion of S1 into S2.

{ Unlock stack S1.

{ \Return" to top continuation in new stack S2,
passing placeholder P as the argument.

Figure 11: Algorithm for steal operation in Encore im-
plementation.

tinuation (at the tail of the lazy task queue), and only
the top piece is blocked along with T . As with a steal
operation, a placeholder is created to communicate a
value between the two pieces of the split stack. The ex-
ecuting processor P can continue using the other piece
of the stack, which contains all of the continuations on
the lazy task queue. No lazy tasks are inaccessible.
P dequeues the tail lazy continuation and returns to it,
passing the placeholder as an argument.

In essence, P has stolen a task from the tail of T 's
lazy task queue. One problem with this solution is that
it goes against our preference for oldest-�rst scheduling,
since we have e�ectively created a task at the newest
potential fork point. Performance can su�er because
this task is more likely to have small granularity. And
further blocking may result, possibly leading to the dis-
mantling of the entire lazy task queue. An improved
solution which avoids these problems has been imple-
mented for ALEWIFE, and is discussed in the next
section.

4.3 ALEWIFE implementation

The Encore implementation of lazy task creation just
described performs reasonably well by lowering the
overhead of using the future construct, but it still has
several other sources of overhead:

1. Strict operations doing future? checks on their
operands.

2. Checking for stack overow.

3. Use of a global resource (the bus) for locking op-
erations.

The ALEWIFE machine|a cache-coherent machine
being developed at MIT with distributed, globally
shared memory|is designed to address these prob-
lems. Its processing elements are modi�ed SPARC9

chips [1]. The modi�cations of interest here are fast
traps for strict operations on futures and support for
full/empty bits in each memory word. If a strict
arithmetic operation or memory reference operates on
a future a trap occurs; thus, explicit checks are not
needed. The full/empty bits allow �ne-grained lock-
ing: ALEWIFE includes memory-referencing instruc-
tions that trap when the full/empty state of the refer-
enced location is not as expected.

For the ALEWIFE implementation of lazy task cre-
ation, a stack is represented as a doubly linked list of
stack frames in order to minimize copying in the steal-
ing operation [19]. In this scheme, each frame has a link
to the previously allocated frame and another link to
the next frame to be allocated. Thus push-frame and
pop-frame operations are simply load instructions. An
important feature of this scheme is that stack frames
are not deallocated when popped. A subsequent push
will re-use the frame, meaning that in the average case
the cost of stack operations associated with procedure
call and return is very close to the cost of such opera-
tions with conventional stacks. The \next frame" link
is set to empty when no next frame has been allocated.
This strategy avoids the need to check explicitly for
stack overow when doing a push-frame operation: if
no next frame is available the push-frame operation will
trap and the trap handler will allocate a new frame.

An earlier version of this paper [18] described an ini-
tial ALEWIFE implementation. In that version, steal-
ing a lazy task involved copying the topmost stack
frame. The version described here avoids this copying
and also �xes a subtle bug in the original version.

Each frame is divided into two separate data struc-
tures, referred to as the stack frame and the frame stub.
The stack frames form a doubly linked list as described

9SPARC is a trademark of Sun Microsystems, Inc.

12

at the beginning of this section. Each stack frame con-
tains local and temporary variables as in an ordinary
stack frame. In addition, it contains a pointer to its as-
sociated frame stub. Each frame stub also has a pointer
back to its associated stack frame. The reason for sep-
arating these two structures will become clear later.

In this implementation the lazy task queue is
threaded through the frame stubs. Figures 12{15 show
the lazy future call and stealing operations graphically.
In these �gures we use the following register names:

FP Frame pointer register. Points to the current stack
frame (not frame stub).

LTQT Lazy task queue tail register. Modi�ed only by
the producer. Points to the current frame stub.

LTQH Head of the lazy task queue. This must be in
memory so that consumers on other processors
can steal frames from the head of the queue. Its
full/empty bit serves as the lock limiting access to
one potential consumer at a time.

Each stack frame has the following slots:

next This slot points to the \next" frame, which will
become current if a stack-frame push operation is
performed. The push-frame operation is thus per-
formed simply by loading next[FP] into FP. If the
next frame has not yet been allocated, next[FP]
is marked as empty.

cont This slot points to the \continuation" frame,
which will become current if a stack-frame pop op-
eration is performed. The pop-frame operation is
thus a load of cont[FP] into FP.

data Some number of slots for local variable bindings
and temporary results.

lf-frame This slot points to the associated frame stub.

Each frame stub has the following slots:

ltq-next This slot points to the next frame stub on
the lazy task queue (toward the tail of the queue).
This location's full/empty bit is the lock arbitrat-
ing between a consumer stealing a continuation
and the producer trying to invoke that continu-
ation.

ltq-prev This slot points to the previous frame stub
on the lazy task queue (toward the head of the
queue).

ltq-link The lazy future call code stores in this slot
the return address that the consumer should use if
it steals this frame's continuation. If the continu-
ation is stolen, the consumer reads out this return
address and replaces it with the placeholder object
it creates.

ltq-next

ltq-prev

ltq-link

ltq-frame

next

cont

(data)

lf-frame

LTQT,LTQH

FP

X X X

Figure 12: Just before lazy future call.

frame This slot points to the associated stack frame.

In this implementation, every call|whether a lazy
future call or an ordinary procedure call|is preceded
by a push-frame operation and followed by a pop-frame
operation. This contrasts with the more common ap-
proach of pushing a frame upon procedure entry and
deallocating it at procedure exit; further comments on
this subject appear at the end of this section.

Figure 12 shows how the stack frames and relevant
registers might look just before a lazy future call (but
after that call's push-frame operation has already oc-
curred). Note that each stack frame's next pointer
points to the next frame toward the top of the stack
and each cont pointer points to the next stack frame
toward the bottom of the stack. If a memory location's
contents are left blank in the �gure, its contents are
either unimportant (they will never be used) or inde-
terminate: for example, the next slot of the leftmost
frame in Figure 12 could either be empty or point to an-
other, currently unused frame. An \X" in the left-hand
part of a frame slot (see, for example, the ltq-next

slots in Figure 12) indicates that the full/empty bit of
the corresponding memory word is set to \empty."

The lazy task queue in Figure 12 has no frames in
it. A consumer would discover this by seeing that the
ltq-next slot of the frame stub pointed to by LTQH

is empty|if this task had stealable frames, this slot
would point to the �rst such frame.

Figure 13 shows the situation just after the lazy fu-
ture call. The frame stub associated with the current
stack frame (pointed to by FP) has joined the lazy task
queue. Accordingly, LTQT has changed to point to that
frame stub, and the ltq-next and ltq-prev links have
been updated as needed to maintain the doubly linked
lazy task queue. Note that the rightmost frame stub in
Figure 13 is not logically part of the lazy task queue|it
is serving as a convenient header object for the doubly

13

ltq-next

ltq-prev

ltq-link

ltq-frame

next

cont

(data)

lf-frame

FP

X X

LTQH

LTQT

Figure 13: Just after lazy future call.

ltq-next

ltq-prev

ltq-link

ltq-frame

next

cont

(data)

lf-frame

X X X X

X

LTQTc,LTQHc

LTQT,LTQH

FPFPc placeholder

X

Figure 14: After steal; new structures shaded.

linked queue. The middle frame is also not part of the
lazy task queue; it is simply part of the stack. The cur-
rent frame stub's ltq-link �eld contains the address
for the lazy future call's continuation, as required.

If no consumer steals this continuation, then this lazy
future call will eventually return. The code for the
return will restore the state of a�airs depicted in Figure
12, after which the pop-frame operation associated with
the lazy future call can be performed.

Figure 14 shows the state of the producer and con-
sumer tasks if instead a consumer steals the continua-
tion from the task shown in Figure 13. The consumer
task's state variables are shown with a c appended, as
in LTQHc. The shaded areas and shaded arrows show
structures that have been created by the consumer. An

ltq-next

ltq-prev

ltq-link

ltq-frame

next

cont

(data)

lf-frame

X X X X

X

LTQTc,LTQHc

LTQT,LTQH

FPFPc placeholder

Figure 15: After steal; frames belonging to producer
shown in black.

alternate view of this situation is shown in Figure 15.
Note that the consumer's stack (the part that is not
blacked out in Figure 15) now looks just like the pro-
ducer's stack did in Figure 12 just before the original
lazy future call (and just like the producer's stack would
have looked in the case of a normal return from the lazy
future call). E�ectively, the consumer has \taken over"
the continuation, created a placeholder to stand for the
value of the called computation (which is still being
performed by the producer), and forced an early return
from the lazy future call, supplying the placeholder as
the call's returned value. (No arrow is shown from any
of the consumer's data structures to the placeholder
because that value is returned in one of the consumer's
registers.)

The consumer has also made the producer's
ltq-link �eld point to the newly created placeholder.
When the producer completes its computation and
�nds that its continuation has been stolen, it looks here
to �nd the placeholder that should resolve to this com-
putation's value. The synchronization here is unusual
in that ltq-link is marked \empty" even though it
contains useful data. This technique handles close races
between a returning producer and a stealing consumer.
By inspecting ltq-next and ltq-prev pointers, a re-
turning producer can discover that its continuation has
been stolen before the consumer has actually stored the
placeholder in the ltq-link �eld. Correct operation
is ensured by having the consumer set the ltq-link

�eld's \empty" ag when the placeholder is installed,
and having the producer wait for this \empty" ag be-
fore attempting to read out the placeholder.

14

A producer returning from a lazy future call distin-
guishes between the situations shown in Figures 13 and
14 by locating the frame stub F pointed to by the
ltq-prev �eld of the frame stub pointed to by LTQT

and looking at the ltq-next �eld of F . In Figure 14,
where the continuation has been stolen, this �eld in F
is empty; in Figure 13, where the continuation has not
been stolen, it is not.

The algorithm for lazy future calls is spelled out in
more detail in the pseudo-code shown in Figure 16. The
in-line code for a lazy future call starts at the label
lf-call; the code at stolen is out-of-line code shared
by all lazy future calls. The algorithm for a consumer
to �nd and steal a continuation is given in Figure 17.

Since the producer is not explicitly noti�ed when a
steal operation is performed on its stack, any resources
the producer may continue to use after a continuation
is stolen may not be used by the consumer. Some com-
plexity in the algorithm for stealing results from this
fact. In particular, the consumer must copy the right-
most frame stub in Figure 14 so it can use the ltq-next
slot in that frame stub when it performs lazy future
calls. If this frame stub were shared with the producer,
such calls by the consumer could confuse the producer.

This approach has the drawback that a push-frame
operation occurs at every procedure call (lazy or not)
instead of at the entry point of a procedure, but there
are several mitigating factors:

1. Push-frame and pop-frame operations are inexpen-
sive (one instruction).

2. Compiler optimizations can eliminate some of
them (e.g., pop-push sequences that cancel out can
be detected and eliminated).

3. Some push-frame operations at procedure entry
turn out to be unnecessary due to conditional
branches; this approach delays them until they are
sure to be necessary.

We do not know the net e�ect of using this approach
but we believe that the di�erence is not signi�cant.

Finally, we return to the issue of what to do with the
lazy task queue when a task blocks on an unresolved
future. To preserve both oldest-�rst scheduling and
laziness in task creation we would like to make the lazy
task queue accessible for normal stealing by consumers.
This is accomplished by placing the entire blocked task,
lazy task queue and all, on the task queue of an appro-
priate processor.10 Consumers may steal either from a
task that is actually running or from a queued blocked
task; a processor may steal from the lazy task queue of

10Of course, the task is marked as blocked, so the processor

will not attempt to run it.

1. Select a processor for inspection and load its LTQH
pointer into a register H, leaving LTQH empty. If
LTQH is found already empty, move on to another
processor. (This enforces mutual exclusion among
consumers.)

2. Load ltq-next[H] into a register F , leaving
ltq-next[H] empty. If ltq-next[H] is found al-
ready empty, then this processor's lazy task queue
is empty|write H back into LTQH and move on to
another processor.

3. Store F into LTQH. This step commits the steal op-
eration and ends the exclusion of other consumers.
Other consumers can now steal other continuations
from this processor, even as this consumer contin-
ues its steal operation.

4. Load ltq-link[F] into a register retpc. This is
the consumer's return address from the lazy future
call.

5. Create a placeholder object and save its address in
a register retval.

6. Store retval into ltq-link[F], leaving
ltq-link[F] empty. If the producer is already
trying to return to the continuation being stolen,
this step frees the producer to proceed and deposit
its result into the placeholder.

7. Create the stack frame and the two frame stubs
shown shaded in Figure 14 and link them together
as shown by the shaded arrows in Figure 14. These
data structures are accessed only by this consumer
and hence neither the producer nor other con-
sumers need to synchronize with these operations.

8. Set the FPc, LTQTc, and LTQHc pointers properly
and execute a return to the address retpc, giving
retval as the returned value.

Figure 17: Algorithm for steal operation in ALEWIFE
implementation.

one of its own blocked tasks if it runs out of other use-
ful work. This solution addresses the problems raised
in Section 4.2.3.

4.4 Discussion

What are the advantages and disadvantages of these
implementations? The main disadvantage of the con-
ventional stack implementation is the copying it per-
forms. It would appear that the amount of copying re-
quired for a stealing operation is potentially unlimited,
so that the cost of stealing a lazy task is also unlimited.

15

lf-call:

load next[FP],FP # Push stack frame.
load lf-frame[FP],temp # Address of new frame stub.
store $continue,ltq-link[temp] # PC for consumer's return.
store LTQT,ltq-prev[temp] # Make lazy task queue backward ...
store temp,ltq-next[LTQT] # ... and forward links.
move temp,LTQT # Advance lazy task queue tail pointer.
Call the procedure.

load ltq-prev[LTQT],temp # Dequeue from lazy task queue tail,
empty ltq-next[temp] # trap to stolen if continuation stolen.
move temp,LTQT # Reset lazy task queue tail pointer.

continue:

load cont[FP],FP # Pop stack frame.

stolen:

Wait for ltq-link[LTQT] to be empty.

load-e ltq-link[LTQT],temp # Get placeholder to resolve.
Resolve the placeholder in temp to the value returned by the procedure.

Terminate the current task and �nd new work to do.

Figure 16: Assembler pseudo-code showing lazy future call and return in the ALEWIFE implementation.

While this is technically true it is somewhat misleading;
the overhead of copying when stealing a continuation
should be viewed against the cost of creating the con-
tinuation in the �rst place. A program with �ne source
granularity does little work between lazy future calls,
and so is not able to push enough items onto the stack
to require signi�cant copying. A program which cre-
ates large continuations (requiring stealers to do lots
of copying) must do a fair amount of work to push all
that information on the stack, and the cost of copying
is unlikely to be signi�cant in comparison.

One exception to this argument is a program that
builds up a lot of stack and then enters a loop that
generates futures:

(define (example)

(build-up-stack-and-then-call loop))

(define (loop)

(future ...)

(loop))

Stealing the �rst lazy task's continuation requires
copying the built-up stack. As argued, that cost is un-
likely to be signi�cant compared with the cost of build-
ing up the stack in the �rst place. But in this exam-
ple the stolen continuation immediately creates another
lazy task, so the next steal must copy the same informa-
tion again. In fact, spreading work to n processors in
this example via lazy tasks requires the built-up stack
information to be copied n times.

There are two easy solutions to this problem. First,
loop can be rewritten to resemble parmap-cdrs rather

than parmap-cars (see section 3.5), resulting in a pro-
gram where the built-up stack is never copied. Or, a
future could be inserted around the call to loop, re-
sulting in a program where the built-up stack is copied
only once.

It appears then that the e�ects of copying in a con-
ventional stack implementation can be minimized. But
it is still attractive to eliminate copying altogether us-
ing the linked-frame implementation described for the
ALEWIFE. Such an implementation is certainly more
e�cient on lazy task operations. It is somewhat more
di�cult to gauge exactly the overhead introduced in se-
quential sections of code. One rami�cation of re-using
stack frames is that all frames have a �xed size; choos-
ing the correct frame size involves a trade-o�. If a small
frame size is chosen, frames needing more space will
need to create an overow vector, increasing costs for
accessing frame elements and for memory allocation. If
a large frame size is chosen, most frames will contain
a lot of unused slots. This could lead to more frequent
garbage collection and might use up valuable space in
cache and/or virtual memory, although these latter fac-
tors could well be minimal in today's memory-rich sys-
tems. The current ALEWIFE implementation uses a
frame size of 17 slots. We must accumulate more ex-
perience with this promising implementation technique
before making a �nal evaluation.

16

5 Performance

In this section we present performance �gures for both
Mul-T implementations. Experiments for the conven-
tional stack version used Yale's Encore Multimax, con-
�gured with 18 NS-32332 processors and 64 megabytes
of memory.

Figures for the linked-frame version were obtained
using a detailed simulator of the ALEWIFE machine.
The Mul-T run-time system, as well as code for the
benchmarks, are compiled to SPARC instructions that
are interpreted by the simulator. Overheads due to fu-
ture creation, blocking, scheduling, etc., are accurately
reected in the statistics. Memory-referencing delays
were not simulated in these experiments.11

5.1 Comparison to Sequential T

When assessing the performance of a multiprocessor
system it is important to make comparisons with the
\best" sequential implementation. This assessment can
be done in two steps:

1. How does the parallel version running on one pro-
cessor compare to the sequential version?

2. How much does performance improve as processors
are added?

For the �rst step we compare Mul-T with T3.1, which
is not the best possible sequential implementation but
is close enough for our purposes [17]. The second step
is considered in Section 5.3.

For the Encore implementation, the sequential com-
parison shows the overhead due to compiler-inserted
future? checks on strict operations. Although the En-
core implementation is engineered to minimize future-
checking overhead [15], the cost can be signi�cant for
some programs. Table 1 compares running times of
several sequential programs12 in T3.1 with the same
program run in Mul-T on one processor. The Mul-
T programs run between 1.4 and 2.2 times as long as
their T3.1 counterparts.

ALEWIFE's hardware traps eliminate future-
checking overhead, so \sequential" and \parallel" times
on one processor are identical.13 Thus speedup �gures
can measure how close we get to the ideal of linear
speedup compared to the sequential version.

11Minimizingmemory-referencingdelays is crucial to good per-

formance in a distributed-memory machine. ALEWIFE's dis-

tributed caching scheme [3] reduces the need for remote refer-

ences; preliminary results of current research at MIT on a new

scheduler for ALEWIFE Mul-T show good performance even

with simulation of network delays.
12These programs are described either in Section 5.3 or in [15].
13It is interesting to note that the presence of hardware tag

checkingmay be more signi�cant in machines supporting parallel

Lisp than in machines supporting sequential Lisp.

Time (seconds)
Program Mul-T T ratio
fib 0.24 0.12 2.00
queens 1.07 0.74 1.45
mergesort 1.82 0.99 1.84
speech 95.9 43.4 2.21
compiler 159 98 1.62
permute 11,600 8,500 1.36

Table 1: Comparison of Running Times for Encore
Mul-T and T3.1.

5.2 Cost of Lazy Task Queue Opera-

tions

As mentioned earlier, it is crucial to minimize the over-
head of lazy future calls. Below are statistics for both
implementations on the additional cost of a lazy future
call over that of a conventional call, namely pushing a
continuation onto the lazy future queue and popping it
o�.

Encore 12 instructions, 12.6 �sec
ALEWIFE 9 instructions

For the Encore, 4 instructions could be eliminated
by using the compiler optimization mentioned in sec-
tion 10, saving roughly 3 �sec. Still, the ALEWIFE
sequence is probably the cheaper of the two, since the
RISC instructions of the SPARC are simpler than NS-
32332 instructions. Another important factor in the
Encore time is that synchronization must be done by
the rather expensive mechanism of a test-and-set in-
struction which acquires exclusive access to the bus.
ALEWIFE's full/empty bits provide much cheaper syn-
chronization.

The cost of stealing a continuation from another pro-
cessor's task queue is not as critical, since steals are
relatively rare. As seen below, stealing a task in the
Encore implementation has comparable cost to creat-
ing an eager future. Stealing a task in the ALEWIFE
implementation is noticeably cheaper; the linked-frame
stack implementation allows a much cleaner steal.

Machine / Operation Number of Instructions

Encore / Eager Future 118
Encore / Steal 150 + 4 per word copied
ALEWIFE / Steal 100

These instruction counts include all aspects of creat-
ing and executing a task; e.g., allocating and initializ-
ing placeholder, task, and stack objects, queueing and
dequeuing the task, and resolving the placeholder.

17

5.3 Benchmarks

We begin our discussion of actual Mul-T programs with
the synthetic benchmark grain, designed to measure
the e�ectiveness of the various task-creation strategies
over a range of task granularities. grain adds up a
perfect binary tree of 1's using a parallel divide and
conquer structure very similar to psum-tree, but be-
fore returning 1 at any leaf it executes a delay loop
of a speci�ed length, allowing granularity control. By
timing trials using a range of granularities we can get
an \e�ciency pro�le" for each task-creation strategy.
The e�ciency E for a given trial is calculated using the
formula

E =
Ts

nTp

where in this case the sequential time Ts is for a Mul-T
program without futures and the parallel time Tp was
measured using n = 16 processors. E�ciency of 1.0
means perfect speedup. The tree depth of 16 (65,536
1's) used in these trials ensures that processor idle time
at start-up and tail-o� is minimal, so close-to-perfect
speedup should be achievable.

The granularity �gures across the top of Table 2
tell how many NS-32332 instructions were used at the
leaves to execute the delay loop and return 1; they do
not include the instructions which implement the basic
divide and conquer loop. The average source granular-
ity is actually half of the given �gure because internal
nodes of the tree (where no delay loop is executed)
account for half of the futures in this program. The in-
struction counts would be di�erent for ALEWIFE due
to its RISC instruction set, but because the source code
is the same the e�ciency �gures are roughly compara-
ble.

As expected, the high cost of eager task creation
leads to poor e�ciency at �ne granularities. Load-
based inlining performs somewhat better, although per-
haps not as well as one might expect. The main prob-
lem is that with 16 processors far too many tasks are
created; roughly 20-30% of the possible total of 65,536.
We see here the impact of the mechanism discussed in
Section 3.4. With lazy task creation less than 1% of
future calls are converted to actual tasks, resulting in
much better performance. Still, the overhead of lazy fu-
ture calls is signi�cant, hurting e�ciency at the �nest
granularities. The lower overhead of lazy future calls
in ALEWIFE leads to somewhat greater e�ciency.

Table 3 shows performance statistics for several Mul-
T programs, allowing comparison of speedup under
each task creation strategy. The column labelled \seq
time" gives the elapsed time for running the benchmark
in Mul-T on one processor with all futures removed.
Times are given in seconds for Encore and in 1000's of

simulated SPARC cycles for ALEWIFE. The remaining
columns show the relative speedup when the parallel
benchmark is run using 1, 2, 4, 8, and 16 processors.
For load-based inlining (\LBI"), the load threshold T

was chosen in each case to give the fastest time on 16
processors.

Table 4 shows the number of tasks created under
each strategy. The header for each benchmark shows
the maximumnumber of tasks possible for that bench-
mark, which equals the number produced with eager
task creation.

fib-20 is the standard brute-force doubly recur-
sive program for computing the nth Fibonacci num-
ber (n = 20 in this case). This program is very
�ne-grained; extremely little computation is performed
between future calls. With eager task creation the
overhead of creating futures completely overwhelms
the calculation|even with 16 processors the sequential
time is not improved on. Load-based inlining elimi-
nates much of the overhead, but still creates manymore
tasks than an ideal BUSD execution would create. Lazy
task creation produces a much better approximation
to BUSD, as shown by the smaller number of tasks.
At such a �ne granularity the overhead of lazy future
calls is signi�cant, as can be seen by the 1-processor
\speedup" column.

queens �nds all possible solutions to the well-known
8 queens problem. A queen is placed on one row of the
board at a time; each time a queen is legally placed,
future appears around a recursive call to �nd all possi-
ble solutions stemming from the current con�guration.
The source granularity of queens is not particularly
�ne, but lazy task creation still makes a noticeable im-
provement. The 1-processor \speedup" column in Ta-
ble 3 gives an indication of the overhead of task creation
for each strategy. The eager number (0.69) shows that
the cost of creating eager futures is signi�cant for this
program. The number for load-based inlining (0.99) is
much better because the overhead of load-based inlin-
ing is very small when no task is created. With lazy
task creation, the higher cost of provisionally inlining
a task leads to a slightly smaller number (0.95). But
lazy task creation substantially reduces the number of
tasks created, allowing the performance increase when
many processors are used.

speech is a \real" program, part of a multi-stage
speech understanding system being developed at MIT.
This stage is essentially a graph-matching problem,
�nding the closest dictionary entry to a spoken utter-
ance. It uses a method resembling parmap-interval|
a divide-and-conquer division of the dictionary where
each leaf compares the utterance against one dictio-
nary entry. The granularity of this comparison is rather
coarse, so eager task creation doesn't perform too badly
and the improvement with lazy task creation is modest.

18

grain|E�ciency
Leaf Task Granularity (number of NS-32332 instructions)

Machine / Strategy 6 12 24 48 96 192 384 768 1536 3072
Encore / Eager .07 .07 .09 .12 .18 .29 .45 .64 .78 .88
Encore / LBI (T = 1) .19 .21 .25 .29 .39 .56 .66 .83 .88 .94
Encore / Lazy .56 .59 .65 .73 .78 .87 .92 .95 .97 .99
ALEWIFE / Lazy .74 .78 .82 .86 .91 .95 .97 .98 .99 1.00

Table 2: E�ciency of implementations for synthetic grain benchmark.

fib-20

seq Relative Speedup
Machine / Strategy time seq 1 2 4 8 16
Encore / Eager .24 1.00 0.09 0.18 0.34 0.60 0.83
Encore / LBI (T = 2) .24 1.00 0.69 1.09 1.60 2.40 3.43
Encore / Lazy .25 1.00 0.63 1.25 2.27 4.17 6.25
ALEWIFE / Lazy 318 1.00 0.71 1.38 2.65 4.84 8.06

queens

seq Relative Speedup
Machine / Strategy time seq 1 2 4 8 16
Encore / Eager 1.07 1.00 0.69 1.35 2.68 5.10 8.23
Encore / LBI (T = 1) 1.07 1.00 0.99 1.95 3.45 5.63 8.92
Encore / Lazy 1.01 1.00 0.95 1.91 3.61 6.73 11.22
ALEWIFE / Lazy 1282 1.00 0.97 1.93 3.72 6.93 12.53

speech

seq Relative Speedup
Machine / Strategy time seq 1 2 4 8 16
Encore / Eager 95.9 1.00 0.92 1.79 3.45 6.44 10.90
Encore / LBI (T = 1) 95.9 1.00 1.00 1.92 3.62 6.27 9.05
Encore / Lazy 96.4 1.00 0.99 1.96 3.74 6.69 10.37
ALEWIFE / Lazy 85K 1.00 1.00 1.94 3.66 6.56 10.94

Table 3: Performance of Mul-T benchmarks (absolute times are in seconds for Encore and in 1000's of SPARC cycles
for ALEWIFE).

fib queens speech

(10945 eager) (2056 eager) (39856 eager)
Encore ALEWIFE Encore ALEWIFE Encore ALEWIFE

n LBI(2) LTC LTC LBI(1) LTC LTC LBI(1) LTC LTC
1 172 0 1 5 0 1 1378 0 0
2 587 5 4 62 9 9 6173 583 613
4 1140 23 15 371 27 37 12577 1907 1946
8 1693 58 54 702 71 106 18011 4440 4807
16 2083 106 118 817 238 183 21667 7875 9930

Table 4: Number of Tasks Created in Mul-T benchmarks

19

For all 3 benchmarks, Table 4 shows the e�ects of the
mechanism discussed in Section 3.4; lazy task creation
gives a consistently better approximation to BUSD ex-
ecution than does load-based inlining. The task counts
for lazy task creation are rather variable from run to
run due to the variable timing of steal operations; we
do not believe that the di�erences between Encore and
ALEWIFE task counts reect signi�cant di�erences in
the implementations.

6 Related Work

Load-based inlining has been studied previously in the
Mul-T parallel Lisp system [15], and is also available in
Qlisp by using (deque-size) or (qemptyp) to sense the
current load [8, 26]. An analytical model of load-based
inlining for programs like psum-tree has been devel-
oped by Weening [26, 27]. His analytical results gen-
erally agree with empirical observations of load-based
inlining in both Mul-T and Qlisp; however, neither the
prior Mul-T work nor the prior Qlisp work have ex-
plored the alternative of lazy task creation.

Pehoushek and Weening [26] also present a strategy
which reduces task creation overhead when a queued
task is executed by the processor that created it. This
strategy takes advantage of the same phenomenon that
lazy task creation leverages: that when parallelism is
abundant most tasks are executed locally. Executing
such tasks with lazy task creation appears to be cheaper
than with their scheme; furthermore, their scheme only
works in programs with a fork/join style of parallelism.
Lazy task creation has no such restriction, interacting
well with the unlimited lifetime of futures in Mul-T.

The potential for deadlock when using load-based in-
lining was described in [15], but the example of Sec-
tion 3.3 is more plausible than the scenario painted in
[15]. It is interesting to note that selective load-based
inlining, as is possible in Qlisp, could be used by a so-
phisticated programmer to ensure that inlining is never
performed where it might cause deadlock. However,
this solution requires the programmer to accurately rec-
ognize all situations where the potential for deadlock
exists, and still does not o�er the other advantages of
lazy task creation.

WorkCrews [23] is a package that does perform lazy
task creation, intended for use with a fork-join or
cobegin style of programming. It is implemented on
top of Modula-2+ (an extension of Modula-2). For
every task that is to be created lazily, a WorkCrews
program calls RequestHelp(proc,data) and then pro-
ceeds with other work. A free processor looks for unan-
swered help requests, \steals" one, and applies its proc
to its data. When the requester �nishes its other work,
it calls GotHelp to see whether the RequestHelp task

was stolen. If not, it proceeds to do the work itself; if
so, it looks for other work to do. The performance of
WorkCrews was evaluated on several parallel Quicksort
programs and on MultiGrep, a program that searches
for occurrences of a given string in a group of �les [23].

The principal di�erence between WorkCrews-style
lazy task creation and Mul-T's lazy futures is that in-
voking lazy task creation in WorkCrews requires a sig-
ni�cantly larger amount of source code to be written|
the work performed by proc must be broken out into
a separate procedure, the argument block to be passed
as data must be explicitly allocated and �lled in, and
�nally the RequestHelp and GotHelp procedures must
be called. Moreover, synchronization with and value re-
trieval from the lazily created task are explicit respon-
sibilities of the programmer. By contrast, in Mul-T it
is only necessary to insert the keyword future to begin
enjoying the bene�ts of lazy task creation.

These stylistic di�erences lead to some implementa-
tion di�erences: our lazy future implementations di-
rectly manipulate implementation objects such as stack
frames and are thus more \built in" to the implemen-
tation than in the case of WorkCrews. We think some
e�ciency improvements result from our approach, but
the systems are di�erent enough that it is hard to make
a conclusive comparison. In any case, although the me-
chanics of the two systems are rather di�erent, there
is a very close relationship between their underlying
philosophies.

Our philosophy of encouraging programmers to ex-
pose parallelism while relying on the implementation
to curb excess parallelism resembles that of data-ow
researchers who have been concerned with throttling

[4, 20]. However, the main purpose of throttling is
to reduce the memory requirements of parallel com-
putations, not to increase granularity (which is gener-
ally �xed at a very �ne level by data-ow architectures
[2, 9]). Throttling thus serves the same purpose as our
preference for depth-�rst scheduling and is not directly
related to lazy task creation.

7 Conclusions and Future Work

We are encouraged that our performance statistics sup-
port the theoretical bene�ts of lazy task creation. For
programs with bushy call trees the programmer can
use future to identify parallelism, e�ectively ignoring
granularity considerations. One group of programs that
deserve further study are those with �ne-grained paral-
lelism expressed iteratively (see Section 3.5). Our sug-
gested solution �nesses the problem by rewriting such
programs to have bushy call trees, but a higher-level so-
lution involving less work from the programmer would
be preferable. We envision developing a data abstrac-
tion for aggregates and a set of high-level operations

20

with e�cient underlying parallel implementations, per-
haps following some of the ideas in Connection Machine
Lisp [22] or the Paralation model [21].

Such a high-level language for manipulating aggre-
gates would need to exhibit the following properties:

� Powerful enough to express common patterns of
parallel computation over aggregates.

� Translatable to e�cient parallel code.

There are really two parts to the e�ciency question,
two rather di�erent sources of overhead to worry about.
Certainly we must minimize parallel processing over-
heads due to task creation, idle processors, and commu-
nication (i.e., weighing the conicting needs for good
partitioning, load balancing, and locality). Lazy task
creation addresses some of these issues, although more
work is de�nitely needed. But before worrying about
these overheads we have to �rst deal with the consider-
able overhead introduced by using high-level constructs
(functional expressions on data aggregates) in the �rst
place. If in abstraction we lose too much e�ciency we
won't be able to regain the cost with parallelism.

For this second e�ciency issue, the work of Waters
[24, 25] seems relevant. He observes that programming
with high-level functional expressions on data aggre-
gates is very powerful, but that such approaches are
typically much less e�cient than writing the code \by
hand". His solution essentially provides a high-level
language for manipulating aggregates that is:

� Powerful enough to express most commonly-used
looping idioms.

� Translatable to e�cient sequential code (loops).

There is de�nitely some commonality between our
problem and that addressed by his approach. He has
provided a solid framework which captures common
patterns of sequential computation on aggregates and
hides low-level details. We are attempting to capture
commonpatterns of parallel computation on aggregates
and hide low-level details. Beyond noting this promis-
ing similarity our ideas for extending Waters' approach
to handle parallelism are still in the preliminary stages.

There is also the important issue of scalability. Both
the Encore machine and the ALEWIFE simulation de-
scribed assume that all memory references are of equal
cost, an unreasonable assumption for a large-scale mul-
tiprocessor. We are investigating how our lazy task
creation strategy can be augmented to take advantage
of locality in shared-memory systems where the physical
memory is distributed.

Because of their extra record-keeping burden, lazy fu-
ture calls are unlikely ever to be as cheap as the cheap-
est implementation of normal calls, but the incremental

cost of a lazy future call can be strongly inuenced by
a multiprocessor's hardware architecture. For example,
the linked-frame implementation shown in Section 4.3
bene�ts greatly from the ALEWIFE architecture's sup-
port for full/empty bits in memory that can be accessed
e�ciently as a side e�ect of a load or store instruction.

Nevertheless, the linked-frame implementation still
requires some memory operations for every call, and
even a few more memory operations for every lazy fu-
ture call. For architectures whose processors have reg-
ister windows we have contemplated another approach
with the potential of eliminating most memory opera-
tions: each register window could have an associated bit
in a processor register indicating whether it is logically
part of the lazy future queue, but only when a register
window was unloaded due to a window overow trap
would the frame actually be linked into the in-memory
data structure representing the queue. This would fur-
ther reduce the cost of lazy future calls, since one might
expect a large fraction of lazy future calls to return
without their associated register window ever having
been unloaded. However, some mechanism would have
to be provided for querying a processor to see if it
contains any stealable continuations (in the event that
none are found in memory) and for interrupting a pro-
cessor to request it to unload stealable continuations
needed by other processors. The costs and bene�ts of
this idea are not currently known.

The larger quest in which we have been engaged is
to provide the expressive power and elegance of future
at the lowest possible cost. Complete success in this
endeavor would make it unnecessary for programmers
ever to shun future in favor of lower-level, but more
e�cient, constructs. Success would also encourage pro-
grammers to express the parallelism in programs at all
levels of granularity, rather than forcing them to hand-
tune the granularity (at the source-code level) for the
best performance. Lazy task creation moves us closer
to this ideal, producing very acceptable performance
and greatly reducing the number of tasks created for
all of the benchmark programs in Section 5. And while
the ideal may never be achieved completely, every step
in the direction of making future cheaper increases the
number of situations in which the cost of future is no
bar to its use.

8 Acknowledgments

Special thanks to Dan Nussbaum for the �nal
ALEWIFE version. Thanks to Randy Osborne,
Richard Kelsey and Paul Hudak for helpful comments
on drafts of the paper, to Kirk Johnson for the speech
application, and to the Sloan foundation, IBM, the De-
partment of Energy (FG02-86ER25012) and DARPA
(N00014-87-K-0825) for their support.

21

References

[1] Agarwal, A., Lim, B.H., Kranz, D. and Kubiatow-
icz, J., \APRIL: A Processor Architecture for Mul-
tiprocessing," 17th Annual Int'l. Symp. on Com-

puter Architecture, Seattle, May 1990.

[2] Arvind and D. Culler, \Dataow Architectures,"
Annual Reviews in Computer Science, Annual Re-
views, Inc., Palo Alto, Ca., 1986, pp. 225{253.

[3] Chaiken, D., Kubiatowicz, J., and Agarwal, A.,
\LimitLESS Directories: A Scalable Cache Coher-
ence Scheme," MIT VLSI Memo. Submitted for
publication.

[4] Culler, D.E., \Managing Parallelism and Re-
sources in Scienti�c Dataow Programs," Ph.D.
thesis, M.I.T. Dept. of Electrical Engineering and
Computer Science, Cambridge, Mass., June 1989.

[5] Gabriel, R.P., and J. McCarthy, \Queue-based
Multi-processing Lisp," 1984 ACM Symp. on Lisp

and Functional Programming, Austin, Tex., Aug.
1984, pp. 25{44.

[6] Goldberg, B., \Multiprocessor Execution of Func-
tional Programs," Int'l. J. of Parallel Program-

ming 17:5, Oct. 1988, pp. 425{473.

[7] Goldman, R., and R.P. Gabriel, \Preliminary Re-
sults with the Initial Implementation of Qlisp,"
1988 ACM Symp. on Lisp and Functional Pro-

gramming, Snowbird, Utah, July 1988, pp. 143{
152.

[8] Goldman, R., R. Gabriel, and C. Sexton, \Qlisp:
Parallel Processing in Lisp," Springer-Verlag
LNCS 441, Proceedings of U.S./Japan Workshop

on Parallel Lisp, June 5{7, 1989, Tohoku Univer-
sity, Sendai, Japan.

[9] Gurd, J., C. Kirkham, and I. Watson,
\The Manchester Prototype Dataow Computer,"
Comm. ACM 28:1, January 1985, pp. 34{52.

[10] Halstead, R., \Multilisp: A Language for Con-
current Symbolic Computation," ACM Trans. on

Prog. Languages and Systems 7:4, October 1985,
pp. 501{538.

[11] Halstead, R., \An Assessment of Multilisp:
Lessons fromExperience," Int'l. J. of Parallel Pro-
gramming 15:6, Dec. 1986, pp. 459{501.

[12] Hudak, P., \Para-Functional Programming,"
Computer, 19(8):60-71, August 1986.

[13] Hudak, P., and B. Goldberg, \Serial Combina-
tors: `Optimal' Grains of Parallelism," Functional

Programming Languages and Computer Architec-

ture, Springer-Verlag LNCS 201, September 1985,
pp. 382{388.

[14] Hudak, P., and L. Smith, \Para-Functional Pro-
gramming: a Paradigm for Programming Mul-
tiprocessor Systems," 12th ACM Symposium on

Principles of Programming Languages, January
1986, pp. 243{254.

[15] Kranz, D., R. Halstead, and E. Mohr, \Mul-T,
A High-Performance Parallel Lisp", ACM SIG-

PLAN '89 Conference on Programming Language

Design and Implementation, Portland, OR, June
1989, pp. 81{90.

[16] Kranz, D., R. Kelsey, J. Rees, P. Hudak,
J. Philbin, and N. Adams, \Orbit: An Optimizing
Compiler for Scheme," Proc. SIGPLAN '86 Symp.

on Compiler Construction, June 1986, pp. 219{
233.

[17] Kranz, D., \ORBIT: An Optimizing Compiler
for Scheme," Yale University Technical Report
YALEU/DCS/RR-632, February 1988.

[18] Mohr, E., Kranz, D., and Halstead, R., \Lazy
Task Creation: A Technique for Increasing the
Granularity of Parallel Programs," Proceedings of

Symposium on Lisp and Functional Programming,
June 1990.

[19] Moss, J.E.B., \Managing Stack Frames in
Smalltalk," Proc. SIGPLAN '87 Symp. on Inter-

preters and Interpretive Techniques, June 1987,
pp. 229{240.

[20] Ruggiero, C.A., and J. Sargeant, \Control of Par-
allelism in the Manchester Dataow Machine,"
Springer-Verlag LNCS 274, Functional Program-

ming Languages and Computer Architecture, Port-
land, Oregon, September 1987, pp. 1{15

[21] Sabot, G., The Paralation Model, M.I.T. Press,
1988.

[22] Steele, G.L. Jr., and W.D. Hillis, \Connection Ma-
chine Lisp: Fine-Grained Parallel Symbolic Pro-
cessing," 1986 ACM Symp. on Lisp and Func-

tional Programming, Cambridge, MA, August
1986, pp. 279-297.

[23] Vandevoorde, M., and E. Roberts, \WorkCrews:
An Abstraction for Controlling Parallelism," Int'l.
J. of Parallel Programming 17:4, August 1988,
pp. 347{366.

[24] Waters, R.C., \Series", in Common Lisp: the

Language, Second Edition, G. Steele, Jr., Digital
Press, Maynard MA.

22

[25] Waters, R.C., Optimization of Series Expressions:

Part I: A User's Manual for the Series Macro

Package, Massachusetts Institute of Technology
technical report AIM-1082, January 1989.

[26] Weening, J., \An Analysis of Dynamic Partition-
ing," Springer-Verlag LNCS 441, Proceedings of

U.S./Japan Workshop on Parallel Lisp, June 5{7,
1989, Tohoku University, Sendai, Japan.

[27] Weening, J., \Parallel Lisp Programs," Stan-
ford Computer Science Report STAN-CS-89-1265,
June 1989.

23

