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Abstract

Software-extended systems use a combination of hardware and software to imple-
ment shared memory on large-scale multiprocessors. Hardware mechanisms accelerate
common-case accesses, while software handles exceptional events. In order to provide
fast memory access, this design strategy requires appropriate hardware mechanisms in-
cluding caches, location-independent addressing, limited directories, processor access
to the network, and a memory-system interrupt. Software-extended systems benefit
from the flexibility of software, but they require awell-designed interface between their
hardware and software components to do so.

This dissertation proposes, designs, tests, measures, and models the novel software-
extended memory system of Alewife, a large-scale multiprocessor architecture. A
working Alewife machine validates the design, and detailed ssmulations of the architec-
ture (with up to 256 processors) show the cost versus performancetrade-offsinvolvedin
building distributed shared memory. The architecture with afive-pointer LimitLESS di-
rectory achieves between 71% and 100% of full-map directory performance at a constant
cost per processing element.

A worker-set model uses a description of application behavior and architectural
mechanismsto predict the performance of software-extended systems. The model shows
that software-extended systems exhibit little sensitivity to trap latency and memory-
system code efficiency, aslong as they implement a minimum of one directory pointer
in hardware. Low-cost, software-only directories with no hardware pointers are very
sengitive to trap latency and code efficiency, even in systems that implement special
optimizations for intranode accesses.

Alewife sflexible coherence interfacefacilitatesthe devel opment of memory-system
software and enables a smart memory system, which uses intelligence to help improve
performance. This type of system uses information about applications dynamic use
of shared memory to optimize performance, with and without help from programmers.
An automatic optimization technique transmits information about memory usage from
the runtime system to the compiler. The compiler uses this information to optimize
accesses to widely-shared, read-only data and improves one benchmark’s performance
by 22%. Other smart memory features include human-readable profiles of shared-
memory accesses and protocols that adapt dynamically to memory reference patterns.
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Chapter 1
Shared Memory Design

The search for inexpensive parallel computing continues. Computer manufacturers
would like to tell consumers that processing is as easy to add to a system as memory. A
system should be able to start with a single processor and grow arbitrarily large, as its
owner’sneed for processing increases. Thetask of adding processorsto asystem should
require only commaodity components — packaged modularly — and perhaps some extra
floor space in acomputer room.

To a certain extent, this goal has aready been achieved. Most workstation vendors
market a product line that ranges from single-processor machines to high-end servers
containing up to sixteen processors. The structure, or architecture, of these parallel
systems keeps costs relatively low. Each processor’s packaging looks much the same as
in a standard workstation, and a bus (a set of up to 256 wires) connects the processors
together. This combination of commodity processing elements and an inexpensive
communication substrate keeps costs low.

Many of these multiprocessor systems offer a shared memory programming model
that allows all processors to access the same linearly-addressed memory. Since this
model is close to the one used for single-processor systems, it provides a convenient
abstraction for writing multiprocessor applications: processors can storeinformation for
themselves or communicate information to others using a single mechanism.

Physical limitations restrict the ability of these computer architectures to scale past
a small number of processors. Communication delay and bandwidth are the primary
culprits. If every access to shared memory required interprocessor communication, the
latency caused by reading and writing data would be prohibitive. Given the high rate of
memory accesses required by today’sfast processors, a bus ssimply can not move enough
datato satisfy the number of requests generated by more than afew processors.

Cache memoriessolve part of thelatency problem, just asthey do in single-processor
systems. By storing copies of frequently accessed data physically close to processors,
cachesprovidefast average memory accesstimes. Inmultiprocessors, caches also reduce
the bandwidth that processors require from their communication substrate. The memory
accesses that caches handle do not require round-trips on a system’s bus.

Unfortunately, making copies of data causes the cache coherence problem: one
processor’s modifications of the datain shared memory must become visible to others.
Small multiprocessors solve this problem by using the fact that all of the processorson a
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bus can receive all of the messages transmitted on it. This broadcast capability isat once
liberating and constraining. By watching each other’s transmissions, caches can keep
themselves coherent. On the other hand, physical mediathat broadcast information have
limited bandwidth. Even with caches, current technology limits inexpensive parallel
computing to less than twenty high-performance processors.

Researchers who work beyond this limit strive instead for cost-effective parallel
computing. A cost-effective system solves a customer’s problem in the least expensive
(and sometimes the only available) way, taking into account programming time, system
cost, and computation time. The definition of a cost-effective system depends on each
customer’s application, but it typically requires a cost-efficient system: a cost-efficient
system’s price grows approximately linearly with the number of processors.

For the reasons discussed above, the decision to abandon a bus when designing
a large, cost-efficient system is mandatory. The other choices involved in building a
larger system are much more difficult. One possibility is to build a system without
shared memory, and let programmers suffer the consequences. This strategy works
for computing applications that consist of many large, independent tasks. Another
possibility isto build a system without caches. This strategy requires an extremely high-
bandwidth and expensive interconnection network, and might work well for applications
that require so much computation that the system can effectively hide the latency of
communication. A final possibility isto implement shared memory and caches without
a broadcast mechanism.

An appropriate combination of hardware and software yields a cost-efficient system
that provides coherent, fast, shared memory access for tens or hundreds of processors.
The following chapters prove this thesis by demonstrating such a system and analyzing
its performance.

There are two challenges involved in building coherent shared memory for alarge-
scale multiprocessor. First, the architecture reguires an appropriate balance of hardware
and software. The integrated systems approach provides the cost-management strategy
for achieving this goal: implement common case operations in hardware to make them
fast and relegate less common activities to software. Examining the access patterns
of shared memory applications reveals that a typical worker set (the set of processors
that simultaneously access a unit of data) tends to be small. In fact, most blocks of
shared memory are accessed by exactly one processor; other blocks are shared by afew
processors; and a small number of blocks are shared by many (or all) processors.

This observation leads to a family of shared-memory systems that handle small
worker sets in hardware and use software to handle more complex scenarios. Such
software-extended memory systems require anumber of architectural mechanisms. The
shared memory hardware must handle as many requests as possible; it must be able
to invoke extension software on the processor; and the processor must have complete
access to the memory and network. The balancing act is tricky, because the architect
must control hardware complexity and cost without sacrificing performance.

The second challenge involves designing the software component of a memory
system. As in any software system, there is a trade-off between abstraction and raw
performance. If the system is to perform well as a whole, the software must execute
efficiently; if the system is to benefit from the flexibility of software, it must facilitate
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rapid code development. A software-extended system requires an interface between the
memory-system hardware and software that achieves both of these goals.

The ability to extend the hardware provides the opportunity for software to take
an active role in improving system performance. At a minimum, the software can
measure its own performance. Appropriate data collection and information feedback
techniques can alow the software to help programmers understand their applications,
enable compilers to generate better code, and tune the system as it runs. Thus, not
only does the software-extension approach lead to a cost-efficient machine, it enables
the synergy between components of a multiprocessing system that high performance
requires.

A software-extended memory system has been proposed, designed, tested, measured,
and analyzed during the construction of Alewife[2], a shared-memory architecture that
scales to 512 processors. Alewife serves as both a proof-of-concept for the software-
extension approach and as a platform for investigating shared-memory design and pro-
gramming. Sincethe study has been conducted in the context of areal system, it focuses
on simple solutions to practical problems. This engineering process has resulted in a
multiprocessor that is both scalable and programmable.

Experience with Alewife shows that software-extended memory systems achieve
high performance at a per-processor cost that is close to standard workstations. A
combination of minimal hardware and intelligent software realizes performance compa-
rable to expensive shared memory implementations. By adopting this design strategy,
computer vendors can build truly scalable product lines.

1.1 Contributions

This dissertation:

e Proposes the software-extension approach and develops agorithms for hybrid
hardware/software cache coherence protocols.

e Measures and analyzes the performance of the first software-extended memory
system, using two complete implementations of the Alewife multiprocessor: a
physical machine proves the viability of the design, and a simulation system
allows experimentation with a spectrum of memory systems.

e Describes a flexible coherence interface that expedites development of memory
system software. Detailed performance measurements of the software show the
trade-off between flexibility and performance.

e Constructs and validates an analytical model of software-extended systems. This
model surveys the design space and predicts the performance impact of a variety
of architectural mechanisms.

e Demonstrates examples of smart memory systems that use the flexibility of soft-
ware to help improve system performance. One of these systems implements a
novel technique for optimizing the use of shared memory.
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1.2 Organization

The next chapter elaborates on the design of large-scale shared memory systems. It
reviews the work related to this dissertation and defines the terms used in the following
chapters. Chapter 3 describes the tools used to perform the study of software-extended
systems. models, smulators, hardware, and applications. Chapter 4 summarizes the
study that shows that large-scale multiprocessors need a software-extended memory
system. The study also specifies the coherence algorithms used by Alewife's memory
system hardware. Chapter 5 describes the software side of Alewife's memory system,
including the flexible coherence interface. Chapter 6 presents the results of an empirical
study of Alewife's software-extended system. The study examines the trade-offs be-
tween cogt, flexibility, and performance. Chapter 7 uses the empirical study to validate
a mathematical model of the performance of software-extended systems. The chapter
then uses the model to explore the space of shared memory designs. Chapter 8 describes
the user interfaces, implementations, and benefits of three smart memory systems. Fi-
nally, Chapter 9 concludes by specifying a minimal software-extended shared memory
architecture.
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Chapter 2
Distributed Shared Memory

Contemporary research on implementing scal abl e shared memory focuses on distributed
shared memory architectures. Rather than partitioning memory and processors into
separate modules, these architectures distribute memory throughout a machine aong
with the system’s processors. A processing element — also called anode — contains a
processor, a bank of memory, and usually a cache. Each processor can access memory
in its own node or transmit a request through the interconnection substrate to access
memory in a remote node. Intranode accesses proceed just as memory accesses do
in a normal single-processor system; internode memory accesses require much more
substantial architectural mechanisms.

A distributed shared memory architecture must service processors internode re-
guests for data and maintain the coherence of shared memory. Before the work on
software-extended shared memory, systems used either software or hardware to imple-
ment protocols that perform these functions.

Softwaredistributed shared memory architectures[20, 57, 24, 11, 9, 8, 41] implement
truly inexpensive parallel computing. They provide a shared memory interface for
workstations and networks, using only standard virtual memory and communication
mechanisms. In order to reduce the effects of the overhead of software support and long
communicationdelays, these systemstransfer large blocksof data(typically thousands of
bytes) and amortizethe overhead over many memory accesses. Accordingly, applications
achieve good performance if their subtasks share large data objects and communicate
datain bursts.

Recent developments in software distributed shared memory use a combination of
programmer annotations and protocol optimizations to allow systems to transmit kilo-
bytes of dataat atime, and only as much data as is needed to maintain coherence. These
techniques use weaker memory consistency models[1] than sequential consistency [52]
(a convenient model of shared memory), but provide synchronization mechanisms that
allow programmers to write correct applications. In addition, some software memory
systems make intelligent choices about data transfer and coherence policies. The latest
software implementations of distributed shared memory exhibit good parallelism for
small systems running large problem sizes.

Hardware implementations of distributed shared memory [55, 33, 45] attempt to
provide cost-effective implementations of larger systems. These systems accommodate
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Figure 2-1: Alewife uses a hybrid approach to implement distributed shared memory.

applicationswith subtasks that share datain unitsof tens or hundreds of bytes, and make
useof the high bandwidth andlow latency provided by high-performanceinterconnection
networks. Weak consistency models may also be applied to the design of these systems,
but they are not absolutely essential for good performance: weak consistency is just
one of a number of available latency-tolerance techniques [31]. Existing hardware
implementations of distributed shared memory have expensive and complex memory
systems. They are cost-effective solutions for applications when they are the only
solution.

The software-extension approach, illustrated in Figure 2-1, bridges the gap between
these two design styles [16, 34, 81]. By implementing basic transfer and coherence
functionsin hardware, software-extended systems provide efficient access to small units
of data. The software part of these systems helps manage costs by using intelligent
transfer and coherence policies when the hard-wired mechanismsrequire assistance. For
historical reasons, software-extended systems are viewed as hardware implementations
of distributed shared memory with software support. Section 8.5 examines the design
approach from the opposite viewpoint.

Two parallel architectures[79, 23] combine the hardware and software approaches
in adifferent way. These hybrid systems use bus-based coherence protocols for small
clusters of processors, and software distributed shared memory techniques to enforce
coherence between clusters. Each individual cluster can handle subtasksthat share small
objects and synchronize often; but for these systems to perform well, tasks located in
different clusters must share large data objects and synchronize infrequently.

2.1 Cache Coherence Protocols

Therearetwo logical sides of ashared memory system: the processor (request) side and
the memory (response) side. In distributed systems, each node contains its own part of
both sides of the system. The request side fields memory accesses from a processor,
determines whether each access can be satisfied within the local node, and transmits
messages into the network to initiate internode memory requests. The memory side
receives intranode and internode requests, transmits data to requesting processors, and
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maintains coherence.

The software-extended approach may be applied to either side of the memory system.
While the processor side and the memory side of a memory system are inextricably
linked in the design of a cache coherence protocol, they may be treated separately when
considering a software-extension methodology. Each side of the protocol has its own,
separate finite-state specification. Exactly which states and transitions happen to be
implemented in software should be decided independently for each machine.

2.1.1 TheProcessor Side

Each node must provide support for location-independent addressing, which is a fun-
damental requirement of shared memory. Hardware support for location-independent
addressing permits application software to issue an address that refersto an object with-
out knowledge of where it is resident. This hardware support includes an associative
matching mechanism to detect if the object iscached, amechanismto translate the object
address and identify itslocation if it is not cached, and a mechanism to issue a message
to fetch the object from aremotelocation if it isnot in local memory.

Asnodesare added to amultiprocessor, thetotal of all of the processor-sidestructures
in the system grows at most linearly. Curioudly, it is possible to argue that the cost of
the processor side might grow sublinearly with the number of nodes. while holding
problem size constant, cache working sets decrease as the number of nodes increases.
Thus, smaller caches might be used in large multiprocessors than in small ones.

Since this research concentrates on the problem of cost management, it does not
address the processor side of cache coherence protocols. It is certainly possible that —
for reasons of flexibility, if not cost — a system designer might choose to implement part
of the processor-side state machine in software. While this decision process may benefit
from the experience described in the following chapters, it will hinge on a different set
of constraints, such as processor cycle time and cache hit rates.

In addition, there are a host of techniques used to tolerate the latency of com-
munication between nodes, including multiple-context support, prefetching, and weak
consistency models. Since these techniques primarily impact the design of the processor
side of the interface, they are not critical in the decision to extend part of the memory-
side state machine into software. Therefore, this dissertation does not study the cost or
performance implications of these mechanisms.

2.1.2 TheMemory Side

I mplementing memory coherencefor alarge number of processorsrequiresthe systemto
keep track of the locations of cached copies of data. A directory isa structure that helps
enforce the coherence of cached data by maintaining pointersto the locations of cached
copies of each memory block. When one node modifies a block of data, the memory
system uses the information stored in the directory to enforce a coherent view of the
data. At least one company has designed a centralized directory for small, bus-based
systems [26]. For larger systems, directories are not monolithic structures: they are
distributed to the processing nodes along with a system’s shared memory.
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A cache coherence protocol consists of the directory states, the cache states, and the
internode messages that maintain coherence: request messages ask for data; response
messages transmit data; invalidation messages ask cachesto destroy (or to return) copies
of data; and acknowledgment messages indicate completed invalidations. Using a
directory to implement cache coherence eliminates the need for a broadcast mechanism,
which becomes a serious performance bottleneck for systems with more than sixteen
processors.

The DASH multiprocessor [55] implements a distributed full-map directory [12, 73,
54], which uses hardwareto track up to the maximum number of copiesfor every block of
datain asystem. Such an implementation becomes prohibitively expensive for systems
with more than 64 processors. This strategy implicitly assumes that every block of data
has ahomelocation that contains both the block’s data and an associated directory entry,
which holds the pointers to cached copies.

Hierarchical directories [33, 45] implement the directory as a tree-like structure
that is distributed throughout the system. This implementation strategy eliminates the
need for a home location, and allows application data and directory information to
migrate throughout the machine. This policy isboth more intelligent and more complex
than other directory schemes. Recent studies indicate that the increased data locality
afforded by hierarchical directories improves performance marginally over lower-cost
schemes [62, 37].

Another decentralized scheme [36, 7] uses home locations but distributes directory
information to caches along with copies of data. Coherence information is stored in
linked-lists; each link of a chain resides in a different cache. While these chained
directories have reasonable storage requirements, they are relatively complicated and
suffer from long write latencies.

It is also possible to design hardware to implement a cost-efficient limited direc-
tory [5], which only permits a small number of copies of any block of data. However,
the performance of limited directoriesfalls dramatically when many processors attempt
to share asingle block of data[14].

The software-extension approach leads to the family of LimitLESS protocols, which
achieve close to the performance of a full-map directory with the hardware of alimited
directory [16]. Thisscheme, described by Chapter 4indetail, implementsasmall number
of pointersin a hardware directory (zero through five in Alewife), so that the hardware
can track a few copies of any memory block. When these pointers are exhausted, the
memory system hardware interrupts alocal processor, thereby requesting it to maintain
correct shared memory behavior by extending the hardware directory with software.

Another set of software-extended protocols (termed Dir;SW) were proposed in [34]
and [81]. These protocols use only one hardware pointer, rely on software to broadcast
invalidates, and use hardware to accumulate the acknowledgments. In addition, they
allow the programmer or compiler to insert Check-1n/Check-Out (CICO) directivesinto
programs to minimize the number of software traps.

All software-extended memory systemsrequire abattery of architectural mechanisms
to permit a designer to make the cost versus performance trade-off. First, the shared
memory hardware must be able to invoke extension software on the processor, and the
processor must have compl ete access to the memory and network hardware[16, 47, 81].
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Second, the hardware must guarantee forward progress in the face of protocol thrashing
scenarios and high-availability interrupts [48]. The system must also implement the
processor-side support described in the previous section. Since these mechanisms com-
prise the bulk of the complexity of a software-extended system, it is important to note
that the benefits of these mechanisms extend far beyond the implementation of shared
memory [42, 29]: integrating message passing and shared memory promises to be an
active topic of research in the coming years.

Alternative scalable approaches to implementing shared memory proposed in [61,
69, 77] use hardware mechanisms that allocate directory pointers dynamically. These
schemes do not require some of the mechanismslisted above, but they lack the flexibility
of protocol and application software design. Section 8.2 gives an example of how to
incorporate scalable coherence agorithmsinto a software-extended system.

2.1.3 A Spectrum of Protocols

The number of directory pointers that are implemented in hardware is an important
design decision involved in building a software-extended shared memory system. More
hardware pointers mean fewer situations in which a system must rely on software to
enforce coherence, thereby increasing performance. Having fewer hardware pointers
means alower implementation cost, at the expense of reduced performance. This trade-
off suggests a whole spectrum of protocols, ranging from zero pointers to »n pointers,
where n isthe number of nodes in the system.

Then pointer protocol

The full-map protocol uses n pointers for every block of memory in the system and
requires no software extension. Although this protocol permits an efficient implemen-
tation that uses only one bit for each pointer, the sheer number of pointers makes it
extremely expensive for systems with large numbers of nodes. Even though the cost of
the full-map protocol makesit impractical, it serves as a good performance goal for the
software-extended schemes.

2 < (n — 1) pointer protocols

Thereisarangeof protocolsthat use asoftware-extended coherence schemeto implement
shared memory. Itisthisrange of protocolsthat allowsthe designer to balance hardware
cost and system performance. From the point of view of implementation complexity, the
protocols that implement between 2 and » — 1 pointers in hardware are homogeneous.
Of course, the n — 1 pointer protocol would be even more expensive to implement
than the full-map protocol, but it still requires exactly the same hardware and software
mechanisms as the protocols at the other end of the spectrum.

In aload/store architecture, the softwarefor protocol extension needs to service only
two kinds of messages: read and write requests. It handles read requests by allocating
an extended directory entry (if necessary), emptying al of the hardware pointersinto the
software structure, and recording apointer to the nodethat caused the directory overflow.
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Subsequent requests may be handled by the hardware until the next overflow occurs. For
al of these protocols, the hardware can return the appropriate data to requesting nodes,
the software only needs to record requests that overflow the hardware directory.

To handle write requests after an overflow, the software transmits invalidation mes-
sages to every node with apointer in the hardware directory or in the software directory
extension. The software then returns the hardware directory to a mode that collects one
acknowledgment message for each transmitted invalidation.

Zero-pointer protocols

The zero-pointer LimitLESS scheme, termed a software-only directory architecture,
provides an interesting design point between software and hardware distributed shared
memory. It uses hardware to support the processor-side functions, but implements the
entire memory side in software.

Since the software-only directory has no directory memory, it requires substantially
different softwarethanthe2 < (n—1) rangeof protocols. Thissoftware mustimplement
all coherence protocol state transitions for internode accesses [64].

One-pointer protocols

The one-pointer protocols are a hybrid of the protocols discussed above. Chapter 6
studies the performance of three variations of this class of protocols. All three use the
same software routine to transmit data invalidations sequentially, but they differ in the
way that they collect the messages that acknowledgereceipt of theinvalidations. Thefirst
variation handles the acknowledgments completely in software, requiring atrap fromthe
hardware upon the receipt of each message. During the invalidation/acknowledgment
process, the hardware pointer is unused.

The second protocol handles al but the last of a sequence of acknowledgments in
hardware. If anodetransmits64invalidationsfor amemory block, then the hardwarewill
processthefirst 63 invalidations. Thisvariation usesthe hardware pointer to storeacount
of the number of acknowledgments that are still outstanding. Upon receiving the 64"
acknowledgment, the hardware invokes the software, which takes care of transmitting
datato the requesting node.

Thethird protocol handles all acknowledgment messages in hardware. This protocol
requires storage for two hardware pointers. one pointer to store the requesting node's
identifier and another to count acknowledgments. Although a designer would always
choose to implement a two-pointer protocol over this variation of the one-pointer pro-
tocal, it still provides a useful baseline for measuring the performance of the other two
variations.

A notation for the spectrum

This section introduces a notation that clearly specifies the differences between various
implementationsand facilitatesaprecise cost comparison. The notationisderivedfroma
nomenclaturefor directory-based coherence protocolsintroduced in [5]. In the previous
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notation, aprotocol wasrepresented asDir; X, where: represented the number of explicit
copies tracked, and X was B or NB depending on whether or not the protocol issued
broadcasts. Noticethat this nomenclature does not distinguish between the functionality
implemented in the software and in the hardware. The new notation attemptsto capture
the spectrum of features of software-extended protocols that have evolved over the past
several years, and previoudy termed LimitLESS;, LimitLESS,, and othersin [16], and
Dir;SW, Dir;SW+, and othersin [34, 81].

For both hardware and software, the new notation divides the mechanisms into two
classes: thosethat dictate directory actions upon receipt of processor requests, and those
that dictate directory actions for acknowledgments. Accordingly, the notation specifies
a protocol as. DiriHxSy a, where: is the number of explicit pointers recorded by the
system — in hardware or in software — for a given block of data.

The parameter X isthe number of pointersrecorded in a hardware directory when a
software extension exists. X is NB if the number of hardware pointersis: and no more
than « shared copies are alowed, and is B if the number of hardware pointersis : and
broadcasts are used when morethan  shared copiesexist. Thusthe full-map protocol in
DASH [55] istermed Dir,,H\gS_ .

The parameter Y is NB if the hardware-software combination records : explicit
pointers and allows no more than : copies. Y is B if the software resortsto a broadcast
when more than : copies exist.

The A parameter is ACK if a software trap is invoked on every acknowledgment. A
missing A field implies that the hardware keeps an updated count of acknowledgments
received. Finaly, the A parameter isLACK if asoftwaretrap isinvoked only on the last
acknowledgment.

According to this notation, the LimitLESS; protocol defined in [16] is termed
Dir,,H;S\g, denoting that it records » pointers, of which only one isin hardware. The
hardware handles all acknowledgments and the software issues invalidations to shared
copies when awrite request occurs after an overflow. In the new notation, the three one-
pOi nter pI’OtOCOIS defined above are DirnH]_SqB‘ACK, DirnH]_SqB‘LACK, and DirnH]_SqB,
respectively.

The set of software-extended protocols introduced in [34] and [81] can also be
expressed in terms of the notation. The DirySW protocol maintains one pointer in
hardware, resorts to software broadcasts when more than one copy exists, and counts
acknowledgments in hardware. In addition, the protocol traps into software on the last
acknowledgment [80]. In the notation, this protocol is represented as Dir;HiSs) ack-
This protocol is different from Dir,,H1Sys ack in that DiriH; S5 ack maintains only one
explicit pointer, while Dir,,H; Sy ack maintains one pointer in hardware and extendsthe
directory to n pointersin software. An important consequence of this differenceis that
Dir,H1SsLack potentially interrupts processors on read requests, while DiriH;Ss ) ack
doesnot. Unlike Dir,H1Susack, Dir1H1Ss | ack must issue broadcasts on write requests
to memory blocks that are cached by multiple nodes.

24



2.2 Flexibleand Smart Memory Systems

Virtual memory designers know well the benefits of flexible interfacesin memory sys-
tems. The CMU Mach Operating System uses an interface that separates the machine-
dependent and machine-independent parts of a virtual memory implementation [65].
This pmap interface allows the Mach memory system to run efficiently on a wide range
of architectures. Someof thefeaturesof thisinterfaceareremarkably smilar toAlewife’'s
flexible coherence interface, which separates the hardware and software components of
the software-extended memory system.

Flexible virtual memory systems can implement a number of mechanisms that are
useful to higher-level software[6]. Infact, software distributed shared memory architec-
tures use such mechanismsto implement smart memory systems, which use intelligence
to optimize memory performance. DUnX [53] uses heuristics to place and to migrate
pages of virtual memory on the BBN GP1000. Munin [11] alows programmers to
annotate code with data types and handles each type of data differently. Orca[8] usesa
compiler to analyze access to data objects statically. Based on the analysis, the compiler
selects an appropriate memory for each object.

Similar optimization techniqueswork for software-extended implementationsof dis-
tributed shared memory. Lilja and Yew demonstrate a compiler annotation scheme
for optimizing the performance of protocols that dynamically allocate directory point-
ers[58]. Hill, Wood, and others propose and eval uate a programmer-directed method for
improving the performance of software-extended shared memory [34, 81]. The studies
show that given appropriateannotations, alarge class of applicationscan performwell on
DiriH1Ss ack- Cachier [21] takes this methodology one step further by using dynamic
information about a program’s behavior to produce new annotations, thereby improving
performance. Cachier requires the programmer to label all shared data structuresand to
run the program on a simulator.

The profile-detect-optimize technique implemented for Alewife (in Section 8.4) is
similar to Cachier, except that it runs entirely on areal software-extended system and
requires no smulation. This technique was inspired by the Multiflow trace-scheduling
compiler [22].

The LimitLESS profiler in Section 8.3 and Mtool [30] both attempt to provide in-
formation about shared memory usage. The two systems implementations are very
different, however. Mtool instruments code on the processor side and presents infor-
mation in terms of memory access overhead in procedures. The LimitLESS profiler
instruments the memory side and reports the worker-set behavior of important data
objects.

FLASH [51] and Typhoon [66] explore aternative methods for building flexible
memory systems. These architectures dedicate processors to implement scalable shared
memory. Section 7.4.3 explores the differences in performance between these architec-
tures and Alewife. Hand-crafted protocolsthat can optimize access for specific types of
data have been developed for FLASH and Typhoon [18, 66].
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2.3 Understanding Memory System Perfor mance

A worker set isthe set of processors that access a block of memory between subsequent
modificationsof the block’sdata. The notion of aworker set isloosely based onworking
sets, which specify the portions of memory accessed by a single processor over an
interval of time. In the working-set definition, thetimeinterval is artificially defined for
the sake of measurement. Conversely, worker sets specify the processors that access a
block of data over aninterval of time. The worker-set time interval is defined implicitly
by the reference pattern of each object.

Denning [27] writes that “...the working set is not a model for programs, but for
a class of procedures that measure the memory demands of a program.” This model
predicts the appropriate amount of memory or cache required by each process using a
virtual memory system. Similarly, the worker-set behavior of shared memory programs
specifies the demands on a software-extended system. The worker-set model predicts
the appropriate mix of hardware and software for running a multiprocessor application.

Measuring access patterns in terms of worker setsis certainly not new. The worker-
set invalidation profiles in Figure 7-3 are virtually identical to the ones studied by
Weber in [78]. Simoni and Horowitz used stochastic models to predict smilar in-
validation patterns, cache miss statistics, and transaction latencies for directory-based
protocols [70]. Simoni completed this work with an analysis of scalable hardware di-
rectory schemes [68]. He also presented a smple analysis that translated data sharing
patternsinto processor utilization. Tsal and Agarwal derived sharing patterns and cache
miss ratios directly from parallel agorithms[75].

The inputsto the worker-set model in Chapter 7 are similar to the outputs of the pre-
ceding studies: it predictsthe performance of software-extended systemsfromworker-set
behavior and cache access dtatistics. The model is validated by an empirical study of
Alewife's software-extended memory system and its performance, which is the subject
of the next four chapters.
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Chapter 3

An Architect’s Wor kbench

A primary goal of theresearch on software-extended shared memory wasto build alarge,
working multiprocessor system with a convenient programming interface. This chapter
describes the methodol ogy for achieving this goal and the various tools used during the
life-cycle of the Alewife project.

Thelife-cyclebegan withinitial studiesusing mathematical modelsand simple simu-
lation techniques that determined the basic features of the multiprocessor’sarchitecture.
These studies investigated a wide range of design options, including the programming
model, the practical number of processors, the balance of communication and computa-
tion, cache coherence protocols, and the type of interconnection network.

The tools used during this stage of the project did not model the intricate details of
the architecture, and therefore could be constructed quickly. In practice, the modelsand
simulators either produced their results instantaneously or simulated long executions in
arelatively short amount of time. Dueto thelack of detail, the tools measured quantities
such as component utilization, transaction latency, and system throughput. While these
metrics did not indicate end-to-end performance, they measured the relative benefits of
different design alternatives.

The next stage consisted of a preliminary system design at the functional level. The
Alewife smulator, called ASIM, modeled large system components and their internal
structure at the level of state machines, data repositories, and objects communicated
between components. This simulator took considerable effort to build, because it im-
plemented the cross-product of awide range of design options, at a more detailed level
than the tools of the previous stage. The additional detail supported the development of
the first software for Alewife, including compilers and task schedulers. It also allowed
performance to be measured directly in terms of the number of cycles required to run a
program, and the speedup when using multiple processorsinstead of a sequential system.

While ASIM could still measure utilization, latency, and throughput, these quantities
typically were used only to explain behavior observed with the higher-level metrics.
ASIM simulated about 20,000 cycles per second. Given some patience, this speed
permitted the development of small applications and the investigation of design trade-
offs. The preliminary evaluation of software-extended shared memory took place at this
stage of the project.

The first two stages provided the foundation for the next — and longest — phase of
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development: theimplementation of the architecture, dubbed the A-1000. The design of
Alewife's hardware and software required two complementary ssimulation systems. One
simulator, provided by LSl Logic, directly executed the gate-level specification of the
hardware implementation. Such a simulation was integral to the hardware fabrication
process, but it modeled the system at such a low level of detail that it barely reached
speeds of one clock cycle per second.

The other simulator, called NWO, modeled the system at a high enough level that
it reached speeds of 3,000 clock cycles per second but could till run al of the same
programsasthe A-1000. NWOR, aparallel version of NWO, executed tens of thousands
of cycles per second on the CM-5, aparallel computer built by Thinking Machines. The
dual L SI/NWO simulation approach decoupled Alewife’ s hardware and software efforts,
allowing the development of compilers, operating systems, and applications to advance
in parallel with the physical system’s design, test, layout, and fabrication.

During thisphase of development, the standard metricsusedin previousstageshel ped
refine the design and fine-tune the performance of the system asawhole. At this stage,
the correct operation of the system was just as important as the projected speed. The
rate that hardware bugs were found (and removed) served as a measure of the stability
of the system and gated the decision to fabricate the components.

The devel opment phase al so included the finalization of the hardware-softwareinter-
face and the design of abstractions within the the software system. A qualitative metric
used during this process was the time required to write code for the system. There were
two types of programmers who had to be satisfied: the application programmer, who
works for the multiprocessor’s end-user; and the operating system programmer, who
works closely with architects and compiler writers. The flexible coherence interface
grew out of the need for arich environment that reduced the effort required for operating
system programmersto write modules of the memory-system software.

Fabricating the A-1000 culminated the devel opment phase of the project. While the
simulators from the previous stage remained important, the abstract workbench turned
into a physical one with the real tools required to assemble Alewife machines. The
working machines validated the smulation and modeling techniques used to define
the architecture. Hardware running at millions of cycles per second enabled research
using applications with real data sets and operating systems with a full complement of
functionality.

The final stage of the project reexamined the design space in light of the lessons
learned from designing and implementing thearchitecture. Thetoolsused for theanalysis
were the same as those used in the initial studies. mathematical models quantified the
importance of features of the architecture with utilization, latency, and throughput. It
was somewhat satisfying to use the metrics from the preliminary studies of the Alewife
memory system. The analysis with these metrics closed the research life-cycle by using
the specific implementation to help evaluate a wide range of design options.

The next section describesthe Alewife architecture, ASIM, and the two implementa-
tionsof Alewife: the A-1000 and NWO. Thischapter also describes asynthetic workload
and the benchmarks that drive the performance anaysis.

28



Alewife node

Distributed Shared Memory
Private Memory
<0+ E—
Distributed Directory

Alewife machine

Figure 3-1: Alewife node, with aDir,H,S memory block.

3.1 TheAlewife Architecture

Alewife provides a proof-of-concept for software-extended memory systems and a plat-
form for experimenting with many aspects of multiprocessor design and programming.
The Alewife architecture scales up to 512 processing elements with distributed shared
memory. It uses caches to implement fast memory access, and a software-extended
memory system to enforce sequential consistency.

Figure 3-1 shows an enlarged view of anode in the Alewife machine. The processor
on each node consists of a Sparcle processor [3], which is based on the 32-bit SPARC
architecture[72], and afl oating-point coprocessor. The nodescommunicate viamessages
through adirect network [67] with a mesh topology. Alewife’'s memory system includes
acache, abank of privatememory, aportion of the globally-shared main memory, and the
corresponding portion of the hardware limited directory. A single-chip communications
and memory management (CMMU) on each node holds the cache tags and implements
the memory coherence protocol by synthesizing messages to other nodes.

The 512 node restriction is primarily a function of Sparcle's 32-bit address, which
contains enough space for 22 bits (4 Mbytes) of offset, a 9-bit node identifier (512), and
one bit to differentiate shared addresses from private addresses.

In addition to the standard hardware directory pointers, Alewifeimplementsa special
one-bit pointer for the node that is local to the directory. Several smulations show
that this extra pointer improves performance by only about 2%. Its main benefit lies
in reducing the complexity of the protocol hardware and software by eliminating the
possibility that a node will cause its local hardware directory to overflow.

Alewife adso includes a mechanism that allows a zero-pointer protocol to be opti-
mized. This optimization may be described as follows: the zero-pointer protocol uses

The actual implementation in Alewifeisslightly different.
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oneextrabit per memory block to optimizethe performanceof purely intranode accesses.
The bit indicates whether the associated memory block has been accessed at any time
by a remote node. When the bit is clear (the default value), all memory accesses from
the local processor are serviced without software traps, just as in a uniprocessor. When
an internode request arrives, the bit is set and the extension software flushes the block
from the local cache. Oncethe bit is set, all subsequent accesses — including intranode
requests — are handled by software extension.

All of the performance results in Chapter 6 measure protocol implementations that
use these one-bit optimizations. Sections 7.4.3 and 7.4.5 use the analytical model to
evaluate the contribution of this architectural mechanism to the performance of the
system.

There are two other features of the Alewife architecture that are relevant to the
memory system, the most important of which isintegrated shared memory and message
passing [42, 47]. This mechanism enables software-extended memory by alowing the
processor to transmit and receive any kind of network packet, including the onesthat are
part of the cache coherence protocol. Part of this mechanism is a direct-memory-access
facility. As a result, much of the interprocessor communication — especially in the
operating system, the task scheduler, and the synchronization library — uses message-
passing semantics rather than shared memory. This policy improves performance and
relieves the memory system of the burden of handling data accesses that would be
hindered, rather than helped, by caches.

The Sparcle processor uses the SPARC register windows to implement up to four
hardware contexts, each of which holdsthe state of anindependent thread of computation.
Thisimplementation allowsthe processor to switch quickly between the different threads
of execution, an action which is typically performed upon a remote memory access.
While the context-switching mechanism is intended to help the system tolerate the
latency of remote memory accesses [4, 50, 31], it also accel erates the software-extended
memory system: when the processor receives an interrupt from the CMMU, it can use
theregistersin an empty context to processtheinterrupt, rather than saving and restoring
state. Section 7.4.1 uses the analytical model to determine how thisfast trap mechanism
affects performance.

There are currently two implementations of the Alewife architecture: a working
hardware prototype (A-1000) and a deterministic ssmulator (NWO). Both of these im-
plementations run exactly the same binary code, including all of the operating system?
and application code. In contrast, the simulation system used for preliminary studies
(ASIM) implementsawide range of architectural options but can not run actual Alewife
programs.

3.1.1 ASIM: the Preliminary Simulator

ASIM models each component of the Alewife machine — from the multiprocessor
software to the switches in the interconnection network — at the functional level. This
simulator, which does not represent the final definition of the Alewife architecture,

2NWO does not run afew of the hardware diagnostics.
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Figure 3-2: Diagram of ASIM, the Alewife system simulator.

became operational in 1990. The simulator runs programs that are written in the Mul-
T language [44], optimized by the ORBIT compiler [43], and linked with a runtime
system that implements both static work distribution and dynamic task partitioning
and scheduling. The code generated by this process runs on a ssimulator consisting of
processor, cache/memory, and network modules.

Although the memory accesses in ASIM are usually derived from applications run-
ning on the Sparcle processor, ASIM can alternatively derive itsinput from a dynamic
post-mortem trace scheduler, shown on the right side of Figure 3-2. Post-mortem
scheduling is a technique that generates a parallel trace from a uniprocessor execution
trace with embedded synchronization information [19]. The post-mortem scheduler is
coupled with the memory system simulator and incorporates feedback from the network
in issuing trace requests, as described in [50]. The use of thisinput source isimportant
because it alows the workload set to include large parallel applications written in a
variety of styles. Section 4.2.1 describes four of the benchmarks simulated by ASIM.

The simulation overhead for large machines forces a trade-off between application
size and simulated system size. Programs with enough parallelism to execute well on
a large machine take an inordinate time to smulate. When ASIM is configured with
its full statistics-gathering capability, it runs at about 5,000 processor cycles per second
on an unloaded SPARCserver 330 and about 20,000 on a SPARCstation 10. At 5,000
processor cycles per second, a 64 processor machine runs approximately 80 cycles per
second. Most of the smulations in Chapter 4 ran for roughly one million cycles (a
fraction of a second on the A-1000), and took 3.5 hours to complete.

To evaluate the potential benefits of a hybrid hardware/software design approach,
ASIM models only an approximation of a software-extended memory system. Sec-
tion 4.2 describes this simulation technique, which justified the effort required to build
the A-1000 and NWO implementations of Alewife.
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Figure 3-3: A-1000 node board: 12cm x 22cm

3.1.2 A-1000: the Alewife Machine

A-1000, the hardware implementation of the Alewife architecture, ran itsfirst complete
program in May, 1994. As of August, 1994, a sixteen node A-1000 and a few smaller
machines have been built. Larger machines will come on-line as additional parts are
fabricated.

Figure 3-3 shows an A-1000 node, packaged on a 12cm by 22cm printed circuit
board. The large component in the center of the board is the A-1000 CMMU [46].
The chip on the lower left side of the CMMU is the Sparcle processor, and a SPARC-
compatible floating-point unit is on the upper left corner of Sparcle. The connector on
the right side of the board plugs into a back-plane that wires the nodes together. The
Catech EMRC [28] in the package next to the connector routes messages through a
two-dimensional mesh network.

The two sguare packages on the right side of the CMMU hold SRAM chips that
implement 64 Kbytes of direct-map cache, which holds both instructions and data.
(Sparcle does not have on-board caches.) The bank of DRAM chips on the top of the
board contains 2 Mbytes of private memory, 2 Mbytes of coherence directory memory,
and 4 Mbytes of the global shared memory space. In addition to the 512 x 4 Mbyte
configuration, the A-1000 also implements an option for 128 nodes with 16 Mbytes
each.

LSI Logic fabricatedthe CMMU with ahybrid gate-array process. The chip contains
100,000 memory cells (including the cache tags) and a sea of 90,000 gates of logic.
Critical paths in the CMMU limit the system speed. The A-1000 runs reliably at
20 MHz and may be tuned to run close to 30 MHz.

The CMMU was designed using the LSl Logic Concurrent Modular Design Envi-
ronment (CMD-E). One of the outputs of CMD-E is a network file that specifies the
chip’'s gates and connections. The LS| simulator uses switch-level models to smulate
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the network directly. This switch-level smulator accurately models the operation of the
CMMU at about one clock cycle per second on a SPARCstation 10.

In order to provide a platform for shared memory research, the A-1000 supports
dynamic reconfiguration of coherence protocolson ablock-by-block basis. During both
intranode and internode memory accesses, the unit of data transferred between abank of
memory and acacheis 16 bytes. Thisunit correspondsto the unit of memory coherence,
the cache line size, and the shared-memory block size.

The A-1000 supports Dir,, HoSus ack, Dir,,H2Sys through Dir,,HsSs, DirsHsSg, and
a variety of other protocols. The node diagram in Figure 3-1 illustrates a memory
block with two hardware pointers and an associated software-extended directory struc-
ture (Dir,H,Sws). The current default boot sequence configures every block of shared
memory with aDir,,HsSys protocol, which uses all of the available hardware pointers.

3.1.3 NWO: the Alewife Smulator

While the machine supports an interesting range of protocols, it does not implement
a full spectrum of software-extended schemes. Only a simulation system can provide
the range of protocols, the deterministic behavior, and the non-intrusive observation
functionsthat are required for analyzing the spectrum of software-extended protocols.

NWO [15] isamulti-purpose simulator that provides a deterministic debugging and
test environment for the Alewife machine®. It ran itsfirst complete programinthe Spring
of 1992. The simulator performsa cycle-by-cycle simulation of all of the componentsin
Alewife. NWO is binary compatible with the A-1000: programsthat run on the A-1000
run on the ssmulator without recompilation. In addition, NWO supports an entire range
of software-extended protocols, from Dir,,HoSys ack t0 Dir,,HnsgS. .

Furthermore, NWO can simulate an entire Alewife machine with up to 512 pro-
cessing nodes. This performance — combined with full implementation of the Alewife
architecture — alows NWO to be used to develop the software for Alewife, including
paralel C and Mul-T compilers, the host interface, the runtime system, and benchmark
applications. NWO provides anumber of debugging and statistics functionsthat aid the
analysis of programs and their performance on Alewife.

The first implementation of NWO runs on SPARC and MIPS-based workstations.
The system simulates 3,000 Alewife clock cycles per second on a SPARCstation 10/30
and 4,700 on a SPARCstation 10/51. Each sequential run of the benchmarks in Sec-
tion 3.2.2 took several hours to complete. The raw performance must be divided by
the number of simulated nodes to get the actual number of simulated cycles per second.
Simulating machines with large numbers of nodes (> 64) exceeds the physical memory
on most workstations, and performance sows to a crawl due to paging.

To permit the ssimulation of large Alewife machines in a reasonable amount of time,
NWO has been ported to Thinking Machine's CM-5 [74]. Determinism is preserved
in the CM-5 implementation by executing a barrier after every ssimulated clock cycle.
NWOP, the parallel version of NWO, has proved invaluable, especially for running

SNWO stands for new world order, thereby differentiating it from ASIM, the simulator that NWO
replaces.
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Figure 3-4: The hybrid simulation technique.

simulations of 64 and 256 node Alewife systems. The paralel smulator runs at about
15 Kcycles per second on 32 CM-5 nodes, 27 Kcycles on 64 nodes, and 48 Kcycles on
128 nodes. In addition, the large amount of memory in a CM-5 prevents the need for
paging. NWOP generated most of the ssmulation results in Chapters 6 and 8. Many of
the simulations required less than 90 minutes to run on NWORP.

Inadditiontoitsroleasavaluableresearch and devel opment tool, NWO performed an
essential service during the design and test phases of the A-1000 devel opment. Although
NWO'’sfunctional model of the CMMU is not nearly as accurate asthe LS| switch-level
model, the architecture of the NWO CMMU is very similar to the architecture of the A-
1000 CMMU. Infact, severad finite state machine transition tables that are implemented
in LSI’s synthesis language are automatically compiled so that NWO can execute them
directly. Thus, the internal architecture of NWO is close enough to the hardware so that
the functional simulator may be used to drive the tests of the CMMU chip.

To this end, a UNIX socket interface was developed to connect the NWO and LSI
simulators. This interface alows the functional smulator to model a complete Alewife
machine, except for a small number of nodes, which are modeled by the switch-level
simulator. Figure 3-4 illustrates this hybrid simulation technique: one workstation runs
the functional smulator of the Alewife machine. The socket interface allows the same
workstation or other workstations to smulate some of the Alewife nodes at the switch
level. The LSl smulator can be configured to model just the CMMU or a complete
Alewife node.

This hybrid ssimulation system alows a programmer to develop an application at
the speed of the functional simulator and then to run the working application on the
switch-level smulator or on the A-1000 itself. NWO remains a useful tool, even though
it runsfive orders of magnitude slower than the A-1000. It is still much faster (and far
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less expensive) to construct NWO nodes than A-1000 nodes. For this reason, a number
of researchers are still using NWO and NWOP to simulate large Alewife systems.
In addition, the deterministic property of the ssmulator and the ease of examining its
state facilitate low-level code devel opment, debugging, and research on mechanisms not
implemented in the A-1000.

3.1.4 Comparing the Implementations

The NWO implementation of Alewife generated most of the experimental results in
the following chapters. There are several reasons for focusing on the ssimulator, rather
than the working hardware. First, NWO ran its first program two years before the A-
1000. Running non-trivial applications on the ssimulator validated the architecture and
stabilized the software environment in parallel with the hardware development. Second,
NWO implements the whole spectrum of hybrid memory systems while the A-1000
does not. Some of the experiments critical to understanding the software-extension
approach could not have been performed on the hardware. Finally, the A-1000 CMMU
was primarily the work of John Kubiatowicz. Itishis prerogativeto experiment with the
A-1000 and to report on its performance.

Nevertheless, the existence of the A-1000 validates the NWO simulation strategy.
Both systems implement the Alewife architecture, and they share much of the same
functional structure. The bulk of the software developed for Alewife on NWO —
including the entire software-extended memory system — runs error-free on the A-
1000.

There are, however, two significant differences between the Alewife implementa-
tions. First, NWO does not model the Sparcle or floating-point unit pipelines, even
though it does model many of the pipelined data paths within the CMMU. Second,
NWO models communication contention at the CMMU network transmit and receive
gueues, but does not model contention within the network switches.

Table 3.1 compares the performance of six benchmarks running on a real A-1000
node and on a simulated NWO node. (Section 3.2.2 describes these multiprocessor
workloads.) The table shows the time required to run the sequential version of each
benchmark, in millions of processor cycles. The NWO simulations were performed
several months before the A-1000 ran its first program, so the program object codes are
dightly different.

The different NWO and A-1000 floating-point implementations cause all of the dif-
ference between the running times of NWO and the A-1000. Two of the benchmarks,
TSP and SMGRID, do not use any floating-point operations. Both implementations of
Alewife exhibit the same running times for these two programs. Floating-point oper-
ations comprise a significant part of the AQ, EVOLVE, MP3D, and Water executions.
These benchmarks run dower on the A-1000 than on NWO (in terms of Alewife cy-
cles), because NWO models one simulated cycle per floating-point operation, while the
hardware requiresbetween two and forty-five cyclesto execute fl oating-point operations.

The experimenta error induced by NWO's single-cycle floating-point operations
biases the results towards a higher communication to computation ratio. Such a bias
lowers estimates of shared memory performance, because the high communication
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Name NWO Time | A-1000 Time
TSP 37 Mcycles | 37 Mcycles
AQ 30 Mcycles | 53 Mcycles

SMGRID | 100 Mcycles | 107 Mcycles
EVOLVE | 44 Mcycles | 63 Mcycles
MP3D 20 Mcycles | 26 Mcycles
Water 16 Mcycles | 23 Mcycles

Table 3.1: Sequentia time required to run six benchmarks on NWO and the A-1000.

ratio increases the demand on the memory system. If anything, NWO's results for
software-extended shared memory are pessmistic. On the other hand, some of the
functions in Alewife's mathematics code libraries are extremely inefficient. Since this
inefficiency cancel sthe benefit of fast floating-point operations, NWO may well represent
the performance of a production version of the architecture with commercial-grade
floating-point code.

Section 6.4 continues this discussion of the differences between NWO and the
A-1000 by presenting performance measurements for the A-1000 software-extended
memory system. To summarize the results of this study and the experience of other
members of the Alewife group, qualitative conclusions derived from NWO agree with
those from the A-1000.

3.2 Applications

Two kinds of workloads drive the performance analysis of software-extended memory
systems. The first workload is a microbenchmark, called WORKER, that generates a
synthetic memory access pattern. The synthetic access pattern allows experimentation
with a cross-product of application behavior and memory-system design.

Six other benchmarks comprise the second type of workload, which is intended to
test a system’s performance on more typical multiprocessor programs. The benchmarks
include two graph search algorithms, two solutions to numerical problems, and two
physical system simulations. Of course, thissmall set of applications can only represent
asmall fraction of parallel applications. The increasing stability, size, and speed of the
A-1000will allow thesmall existing set of benchmarksto expand to amorerepresentative
suite of programs.

3.2.1 WORKER: a Synthetic Workload

The synthetic workload generates an arbitrary number of memory accesses that are
typical of a single-program, multiple-data (SPMD) style of parallelism: the processors
all run ssimilar sequences of code, and each block of dataisread by itsworker set and is
written by exactly one processor.
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Figure 3-5: The circular worker-set data structure for 8 nodes.

The purpose of the applicationisto create adeterministic memory access pattern with
a configurable number of processors accessing each memory block. WORKER uses a
worker-set data structure to perform thistask. The program consists of an initialization
phase that buildsthe structure and anumber of iterationsthat perform repeated memory
accesses to it. The properties of the data structure allow a series of experiments with
different worker-set sizes, but a constant number of reads per iteration.

Figure 3-5 illustrates the configuration of this structure when WORKER runs on
a system with eight nodes. The basic unit is a circular set of n dots, where n is the
number of nodes in the system and each dot is the size of exactly one memory block.
WORKER constructs each dot’s address from a single template, varying only the 9-bit
node identifier within the 32-bit address. In the figure, the dots under each number are
physically located in the shared-memory of the node with the corresponding identifier:
node identifiers and slot numbers are synonymous. In order to control the total number
of reads per iteration, the basic unit is replicated 6 times, so the total number of memory
blocksinthe structureisn x b. The depth of the two structuresin the figure corresponds
toh.

The processors begin each iteration by reading the appropriate slots in each basic
unit of the worker-set structure. A read offset and a worker-set size (w) determine how
each processor accesses the structure. The read offset determines whether a processor
reads from its local memory or not, by indicating the slot where each processor begins
reading. The worker-set size corresponds to the number of dots that each processor
must read. For example, the read pointersin Figure 3-5 indicate the dots that processor
Oreads. In Figure 3-5(a), the read offset is 7 and the worker-set size is 1; so, processor
0 reads dot 7; processor 1 reads dot O; etc. In Figure 3-5(b), the read offset is 3 and
the worker-set size is 2; so, processor O reads dots 3 and 4; processor 1 reads sots 4
and 5; etc. The important property of the structureis that « corresponds to the number
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Name | Language Size Sequential
TSP Mul-T 10 city tour 11sec
AQ Semi-C See text 0.9 sec

SMGRID | Mul-T 129 x 129 3.0sec
EVOLVE | Mul-T 12 dimensions 1.3 sec

MP3D C 10,000 particles | 0.6 sec
WATER C 64 molecules 2.6 sec

Table 3.2: Characteristics of applicationsrun on NWO. Sequential time assumes a clock
speed of 33 MHz.

of processors that share each memory block. Given this structure, the total number of
readsisn x b x w; thus, the number of reads for both structures (a) and (b) is 64 even
though the worker set sizes of the structures are different.

After the reads, the processors execute a barrier and then each performs a single
write to one dot in every basic unit of the structure. A write offset indicates the dot
that each processor writes, and therefore determines whether or not the write modifies
alocal or remote memory block. Both of the worker-set structuresin Figure 3-5 have a
write offset of 5; so, processor 0 always writesto blocks in the memory of processor 5.
The total number of writesto the structure during this phaseisn x b.

Finally, the processors execute a barrier and continue with the next iteration. Every
read request causes a cache miss and every write request causes the directory protocol
to send exactly one invalidation message to each reader. This memory access pattern
provides a controlled experiment for comparing the performance of different protocols.

3.2.2 NWO/A-1000 Benchmarks

Table 3.2 lists the names and characteristics of the applications in the benchmark suite.
They are written in C, Mul-T [44] (a parallel dialect of LISP), and Semi-C [38] (a
language akin to C with support for fine-grain paralelism). The table specifies the
sequential running time derived from ssmulation on NWO and scaled to real time using
ahypothetical clock speed of 33 MHZ*.

Each application (except MP3D) isstudied with aproblem sizethat realizesmorethan
50% processor utilization on asimulated 64 node machinewith afull-map directory. The
problem set sizes chosen for the applications permit the NWO simulations to complete
in areasonable amount of time, but represent much smaller data sets than would be used
in practice. Since the problem set sizes are relatively small, the following chapters use
only the parallel sectionsto measure speedups. Now that a 16-node A-1000 exists, work
is underway to increase the number of benchmarks and to run them with more typical
problem sizes.

4The running times for Water in Table 3.2 and Table 3.1 differ, due to a change in the compiler during
the months between the two experiments.
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Traveling Salesman Problem TSP solves the traveling salesman problem using a
branch-and-bound graph search. The application is written in Mul-T and uses the
f ut ur e construct to specify parallelism. In order to ensure that the amount of work
performed by the application is deterministic, the experiments seed the best path value
with the optimal path. This program is by no means an optimal implementation of the
traveling salesman problem: the study uses it to represent the memory access pattern of
simple, parallel, graph search algorithms.

AdaptiveQuadrature AQ performsnumerical integration of bivariatefunctionsusing
adaptive quadrature. Thecoreof thealgorithmisafunctionthat integratestherangeunder
acurveby recursively callingitself to integrate sub-ranges of that range. Thisapplication
also uses the f ut ur e construct to specify parallelism, and it exhibits predominantly
producer-consumer communication between pairs of nodes. The function used for this
study is z%y*, which isintegrated over the square ((0, 0), (2, 2)) with an error tolerance
of 0.005.

Static Multigrid SMGRID uses the multigrid method to solve elliptical partia dif-
ferential equations [32]. The agorithm consists of performing a series of Jacobi-style
iterations on multiple grids of varying sizes. Instead of using the default Mul-T task
scheduler, this application specifies its own static task-to-processor mapping.

Genome Evolution EVOLVE isagraph traversal algorithm for smulating the evolu-
tion of genomes, which is reduced to the problem of traversing a hypercube and finding
local and global maxima. The application searchesfor a path from theinitial conditions
to alocal fitness maximum. The program is rather small, but the graph traversal causes
it to have an interesting shared-memory access pattern. In order to eliminate startup
effects from the measurements, the algorithm is run twice: speedups are measured only
for the second iteration. Experiments show that speedups for the entire run are only
dightly lower than just for the second iteration.

MP3D The MP3D application is part of the SPLASH parallel benchmark suite. Ac-
cording to the SPLASH documentation [71],

MP3D solves a problem in rarefied fluid flow smulation. Rarefied flow
problems are of interest to aerospace researchers who study the forces ex-
erted on space vehicles as they pass through the upper atmosphere at hyper-
sonic speeds. Such problems also arise in integrated circuit manufacturing
simulation and other situationsinvolving flow at extremely low density.

MP3D is commonly known as a difficult multiprocessor workload. It has a high com-
munication to computation ratio, and achieves only modest speedups on most parallel
architectures. The ssmulationsin Chapter 6 use a problem size of 10,000 particles, turn
the locking option off, and augment the standard p4 macros with Alewife’'s parallel C
library [59]. The smulations run five time steps of the application.
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Water The Water application, also from the SPLASH application suite, isrun for one
time step with 64 molecules. The documentation describes Water as follows:

This N-body molecular dynamicsapplication evaluatesforcesand potentials
in a system of water molecules in the liquid state. The computation is
performed over a user-specified number of time-steps... Every time-step
involves setting up and solving the Newtonian equations of motion for water
moleculesin acubical box with periodic boundary conditions. . .

In addition to the p4 macros, thisversion of Water uses Alewife’sparallel C library with
barriers and reductions, rather than the naive locks used in the standard version.
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Chapter 4

Cache Coherencein Alewife

Thiswork on the foundation of the Alewife architecture investigates a range of alterna-
tives for designing cache coherence protocols. The results of this study indicate that no
simple, purely-hardware scheme achieves both scalable performance and cost efficiency.
Consequently, this chapter proposes the software-extension approach for implementing
LimitLESS cache coherence in Alewife. Evaluation of the approach provides the first
evidence that supports the concept of a software-extended coherent shared memory.
ASIM, the Alewife ssimulator, generates this evidence by approximating the effects of
software-extension without actually implementing the details of the architecture.

4.1 Implementing Directory Protocols

The main thrust of the original memory system experimentation involves the simulation
and measurement of several different directory-based protocols, including full-map,
limited, and chained varieties. This analysis helps determine the relationship between
the implementation of a protocol’s directory structure and the performance of a shared-
memory system.

The most dramatic differences in performance between protocols is caused by the
structure of the directory. For applications that use variables with small worker sets,
all of the protocols perform similarly. On the other hand, applications with variables
that are shared by many processors exhibit behavior that correlates with the type of
directory used by the protocol. Except in anomalous situations, the full-map directory
(Dir,,HngS.) performs better than any other directory-based protocol. This observation
should not be surprising, since the full-map protocol is aso not scalable in terms of
memory overhead. By committing overwhelming resources to cache coherence, it is
always possible to achieve good performance.

Simulations show that limited directory protocols can perform as well as full-map
directory protocols, subject to optimization of the software running on a system [14].
Although thisresult testifies to the fact that scalable cache coherenceispossible, limited
directoriesareextremely sensitiveto theworker setsof aprogram’svariables. Section4.2
examines a case-study of a multiprocessor application that — when properly modified
— runs approximately as fast with a limited directory as with a full-map directory.
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However, when one variable in the programiswidely shared, limited directory protocols
cause more than a 100% increase in time needed to finish executing the application.
This sensitivity to worker-set sizes varies with the program running on the system; but
in general, the more variables that are shared among many processors, the worse limited
directories perform.

4.1.1 LimitLESS Cache Coherence

Alewife’'s LimitLESS directory protocol uses the software-extension approach to solve
the problem of implementing scalable cache coherence. As do limited directory pro-
tocols, the LimitLESS directory scheme capitalizes on the observation that only a few
shared memory datatypesare widely shared among processors. Many shared data struc-
tures have a small worker set, which is the set of processors that concurrently read a
memory location. Theworker set of amemory block correspondsto the number of active
pointersit would have in afull-map directory entry. When running properly optimized
software, a directory entry overflow is an exceptional condition in the memory system.
The LimitLESS protocol handles such “protocol exceptions’ in software. Thisis the
integrated systems approach — handling common cases in hardware and exceptional
cases in software.

The LimitLESS scheme implements a small number of hardware pointers for each
directory entry. If these pointers are not sufficient to store the locations of all of
the cached copies of a given block of memory, then the state machine that handles
the directory interrupts the local processor. The processor then emulates a full-map
directory (or possibly a more intelligent protocol) for the block of memory that caused
theinterrupt. The structure of the Alewife machine supports an efficient implementation
of this memory system extension. Since each processing node in Alewife contains
both a communications and memory management unit (CMMU) and a processor, it is
a reasonable modification of the architecture to couple the responsibilities of these two
units. This schemeis called LimitLESS, to indicate that it employs a Limited directory
that is Locally Extended through Software Support. Figure 3-1, an enlarged view of a
nodeinthe Alewife machine, depictsaset of directory pointersthat correspond to shared
data block X, copies of which exist in several caches. In the figure, the software has
extended the directory pointer array (which is shaded) into private memory.

Since Alewife's Sparcle processor is designed with a fast trap mechanism, the over-
head of the LimitLESSinterrupt isnot prohibitive. The emulation of afull-map directory
in software prevents the LimitLESS protocol from exhibiting the sensitivity to software
optimizationthat isexhibited by limited directory schemes. But given current technol ogy,
the delay needed to emulate a full-map directory completely in software is significant.
Consequently, the LimitLESS protocol supports small worker sets of processors in its
limited directory entries, implemented in hardware.

4.1.2 A Smple Model of the LimitL ESS Protocol

Beforediscussing the detail s of the software-extended coherence scheme, it isinstructive
to examine a ssmple model of the relationship between the performance of a full-map
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directory and the LimitLESS directory scheme. Let T, be the average remote memory
access latency for aDir,H\gS_ (hardware) directory protocol. 7}, encapsul ates factors
such asthe delay in the CMMU, invalidation latencies, and network latency. Given the
hardware protocol latency, T:n, it is possible to estimate the average remote memory
access latency for the LimitLESS protocol with the formula: 7t + s7%, where T (the
software latency) is the average delay for the full-map directory emulation interrupt,
and s isthe fraction of remote memory accesses that overflow the small set of pointers
implemented in hardware.

For example, ASIM simulations of a Weather Forecasting program running on 64
node system (see Section 4.2) indicate that 71, ~ 35 cycles. If T, = 100 cycles, then
remote accesses with the LimitLESS scheme will be 10% slower (on average) than with
the full-map protocol when s ~ 3%. Since the Weather program is, in fact, optimized
such that 97% of accessesto remote datalocations*hit” in thelimited directory, thefull-
map emulationwill causeal0% delay in servicing requestsfor data. Chapter 7 elaborates
this model, and uses it to investigate a range of options in designing software-extended
systems.

4.1.3 Background: Implementing a Full-Map Directory

Since the LimitLESS coherence scheme is a hybrid of the full-map and limited direc-
tory protocols, this new cache coherence scheme may be studied in the context of its
predecessors. In the case of a full-map directory, one pointer for every cache in the
multiprocessor isstored, along with the state of the associated memory block, inasingle
directory entry. The directory entry, illustrated in Figure 4-1, is physically located in
the same node as the associated data. Since there is a one-to-one mapping between the
caches and the pointers, the full-map protocol optimizes the size of the pointer array by
storing just one bit per cache. A pointer-bit indicates whether or not the corresponding
cache hasacopy of thedata. The ASIM implementation of the protocol alowsamemory
block to be in one of four states, which arelisted in Table 4.1.

These states are mirrored by the state of the block in the caches, aso listed in
Table 4.1. It isthe responsibility of the protocol to keep the states of the memory and
cache blocks coherent. For example, ablock in the Read-Only state may be shared by
anumber of caches (asindicated by the pointer array). Each of these cached copies are
marked with the Read-Only cache state to indicate that the local processor may only
read the datain the block.

Before any processor modifiesablock in an Invalid or Read-Only cache state, it first
requests permission from the CMMU that manages the data. At this point, the CMMU
sends invalidations to each of the cached copies. The caches then invalidate the copy
(change the block’s state from Read-Only to Invalid), and send an acknowledgment
message back to the memory. The CMMU uses the Write-Transaction state to indicate
that a memory location is awaiting acknowledgments, and sets a pointer to designate
the cache that initiated the request. A CMMU mechanism for counting the number
of invalidations sent and the number of acknowledgments received allows invalidations
and acknowledgmentsto travel through the system’ sinterconnection network in parallel.
When the CMMU receives the appropriate number of acknowledgments, it changes the
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State 1 2 3 4 N

Read-Only X | X X

Full-Map Directory Entry

State Node ID NodelD NodelD NodelD

Read-Only 12 10 09 15

Limited Directory Entry

Figure 4-1: Full-map and limited directory entries. The full-map pointer array is
optimized as a bit-vector. The limited directory entry has four pointers.

Component Name Meaning
Memory Read-Only Caches have read-only copies of the data.
Read-Write One cache has aread-write copy of the data

Read-Transaction | Holding read request, update isin progress.
Write-Transaction | Holding write request, invalidation isin progress.

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written.

Table 4.1: Directory states.

state of the block to Read-Write and sends a write permission message to the cache that
originated the transaction. In a sense, the cache “owns’ the block until another cache
requests access to the data.

Changing ablock from the Read-Write to the Read-Only state invol ves an analogous
(but dlightly simpler) transaction. When a cache requeststo read ablock that is currently
in the Read-Write state, the CMMU sends an update request to the cache that owns the
data. The CMMU marksablock that iswaiting for data with the Read- Transaction state.
Asin the Write-Transaction state, a pointer is set to indicate the cache that initiated the
read transaction. When a cache receives an update request, it invalidates its copy of the
data, and replies to memory with an update message that contains the modified data, so
that the original read request can be satisfied.

The protocol might be modified so that acache changes ablock from the Read-Write
to the Read-Only (instead of the Invalid) state upon receiving an update request. Such a
maodification assumes that datathat is written by one processor and then read by another
will be read by both processors after the write. While this modification optimizes the
protocol for frequently-written and widely-shared variables, it increases the latency of
access to migratory or producer-consumer datatypes.

The dilemma of choosing between these two types of data raises an important
guestion: Should acache coherence protocol optimizefor frequently-writtenand widely-
shared data? This type of data requires excessive bandwidth from a multiprocessor’'s
interconnection network, whether or not the system empl oyscachesto reducetheaverage
memory accesslatency. Sincetheproblemsof frequently-writtenand widely-shared data
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are independent of the coherence scheme, it seems futile to try to optimize accesses to
this type of data, when the accesses to other data types can be expedited. This decision
forcesthe onus of eliminating the troublesome data type on the multiprocessor software
designer. However, the decision seems reasonable in light of the physical limitations of
communication networks. Thus, Alewife alwaysinvalidates datawhen changing ablock
from Read-Write to Read-Only.

Since this study, two independent groups of researchers have found an answer to
the dilemma [63, 25]. Instead of binding either an update or an invalidate policy into
hardware, they propose cache coherence schemes that adapt between invalidate and
update policies. These schemes require extra bits to implement the directory state, and
achieve dightly better performance than either static scheme.

The basic protocol that is described above is somewhat complicated by the associa-
tivity of cache lines. In a cache, more than one memory block can map to asingle block
of storage, caled aline. Depending on the memory access pattern of its processor, a
cache may need to replace a block of memory with another block of memory that must
be stored in the same cache line. While the protocol must account for the effect of re-
placements to ensure a coherent model of shared memory, in systems with large caches,
replacements are rare events except in pathological memory access patterns. Severd
options for handling the replacement problem in various coherence protocols have been
explored.

Simulations show that the differences between these options do not contribute sig-
nificantly to the bottom-line performance of the coherence schemes, so the fina choice
of replacement handling for the Alewife machine optimizes for the simplicity of the
protocol (in terms of cache states, memory states, and the number of messages): when
a cache replaces a block in the Read-Only state, it does not notify the block’s home
location; when a cache replaces a block in the Read-Write state, it transmits the dirty
data back to the home node.

4.1.4 Specification of the LimitL ESS Scheme

The model in Section 4.1.2 assumes that the hardware latency (1) IS approximately
equal for the full-map and the LimitLESS directories, because the LimitLESS protocol
has the same state transition diagram as the full-map protocol. The memory side
of this protocol is illustrated in Figure 4-2, which contains the memory states listed
in Table 4.1. Both the full-map and the LimitLESS protocols enforce coherence by
transmitting messages (listed in Table 4.3') between the CMMUSs. Every message
contains the address of a memory block, to indicate which directory entry should be
used when processing the message. Table 4.3 also indicates whether a message contains
the data associated with a memory block.

The state transition diagram in Figure 4-2 specifies the states, the composition of
the pointer set (P), and the transitions between the states. This diagram specifies
a smplified version of the protocol implemented in Alewife. For the purposes of

1Thistablelists (and the rest of this section discusses) the messages in the current Alewife implemen-
tation, rather than in ASIM.
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describing the implementation of directory protocols, Figure 4-2 includes only the core
of the full-map and LimitLESS protocols. Unessential optimizations and other types
of coherence schemes have been omitted to emphasize the important features of the
coherence schemes. See[46, 49] for more details about Alewife's protocols.

Each transition in the diagram is label ed with a number that refersto its specification
in Table 4.2. This table annotates the transitions with the following information: 1. The
input message from a cache that initiates the transaction and the identifier of the cache
that sendsit. 2. A precondition (if any) for executing the transition. 3. Any directory
entry change that the transition may require. 4. The output message or messages that
are sent in response to the input message. Note that certain transitions require the use
of an acknowledgment counter (AckCtr), which is used to ensure that cached copies are
invalidated before allowing a write transaction to be completed. The Alewife CMMU
stores this counter in the second pointer of the appropriate directory entry.

For example, Transition 2 from the Read-Only state to the Read-Write state is taken
when cachei requests write permission (WREQ) and the pointer set isempty or contains
just cachei (P = {} or P = {¢}). Inthis case, the pointer set is modified to contain i
(if necessary) and the CMMU issues a message containing the data of the block to be
written (WDATA).

Following the notation in Section 2.1.3, both full-map and LimitLESS are members
of the Dir,,H x Sya class of cache coherence protocols. Therefore, from the point of view
of the protocol specification, the LimitLESS scheme does not differ substantially from
the full-map protocol. In fact, the LimitLESS protocol is aso specified by Figure 4-2.
The extranotation onthe Read-Only ellipse (S : n > p) indicatesthat the state ishandled
in software when the size of the pointer set (n) exceeds the size of the limited directory
entry (p). Inthissituation, thetransitionswith the shaded labels (1, 2, and 3) are executed
by theinterrupt handler on the processor that islocal to the overflowing directory. When
the protocol changes from a software-handled state to a hardware-handled state, the
processor must modify the directory state so that the CMMU can resume responsibility
for the protocol transitions.

The hardware mechanisms that are required to implement the software-extended
protocols are as follows:

1. A fast interrupt mechanism: A processor must be able to interrupt application
code and switch to software-extension rapidly. This ability makesthe overhead of
emulating afull-map directory (7)) small, and thus makes the LimitLESS scheme
competitive with schemes that are implemented completely in hardware.

2. Processor to network interface: 1norder to emulatethe protocol functionsnormally
performed by the hardware directory, the processor must be able to send and to
receive messages from the interconnection network.

3. Extradirectory state: Each directory entry must hold the extra state necessary to
indicate whether the processor is holding overflow pointers.

In Alewife, none of these mechanisms exist exclusively to support the LimitLESS
protocol. The Sparcle processor uses the same mechanism to execute an interrupt
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Figure4-2: Directory statetransition diagramfor thefull-map and LimitL ESS coherence

schemes.
Input Directory Entry Output

# Message Precondition Change Message(s)
1 i — RREQ — P =PuU{i} RDATA — i
2 i — WREQ P =i} — WDATA — i

i — WREQ rP={} P =i} WDATA — i
3 i—WREQ | P=1{k1,....kotAig P | P={i},AckCtr=n -1 Vk; INVR — &;

i—=WREQ | P={ky,...., kot Ai€P | P={i},AckCtr=n—2 | Vk; ZiINVR— k;
4 | j —WREQ P =i} P={j} INVW — ¢
5 J — RREQ P =i} P=1{j} INVW — ¢
6 | ¢ — UPDATE P =i} P={} —
7 J — RREQ — — BUSY — j

J — WREQ — — BUSY — j

j — ACKC AckCtr £ 0 AckCtr = AckCtr — 1 —
8 j — ACKC AckCtr =0, P = {i} — WDATA — i

Jj — UPDATE P =i} — WDATA — i

9 J — RREQ — — BUSY — j

J — WREQ — — BUSY — j
10| j — ACKC P =i} — RDATA — i

Jj — UPDATE P =i} — RDATA — i

Table 4.2: Annotation of the state transition diagram.
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Type Symbol Name Data?
Cacheto Memory | RREQ Read Request
WREQ Write Request
UPDATE | Update vV
ACKC Acknowledge Invalidate

Memory to Cache | RDATA | Read Data Vv
WDATA | Write Data Vv
INVR Invalidate Read Data
INVW Invalidate Write Data
BUSY Busy Signal
Table 4.3: Cache coherence protocol messages.
Type Symbol Name Data?

Cacheto Memory | MREQ | Modify Request
REPU | Replace Unmodified
Memory to Cache | MODG | Modify Granted

Table 4.4: Optional protocol messages.

quickly asit usesto provide afast context-switch. The processor to network interfaceis
implemented through the interprocessor interrupt (1Pl) mechanism, which isdesigned to
increase Alewife' s1/0 performance and to provide a generic message-passing primitive.
A small extension to the extradirectory state required for the LimitLESS protocol alows
experimentation with arange of memory systems, including the software-only directories
(Dir,,HoS\s ack) and the smart memory systems in Chapter 8.

415 Second-Order Considerations

In addition to the protocol features that have a primary impact on the performance of a
cache coherence scheme, there are a number of secondary implementation details that
also contribute to the speed of the memory system. Examples of such details include
severa protocol messages that are not essential for ensuring a memory model. While
these features may be interesting from the point of view of protocol design, they have
only asmall (but not insignificant) effect on the system as a whole.

The messages that are used by the hardware coherence protocols to keep the cache
and the memory states consistent are listed in Table 4.3. The Data? column indicates
the three messages that contain the data of the shared memory block. Table 4.4 lists
three optional messages that are not essential to ensure cache coherence. Although
the messages have mnemonic names, it is worth explaining their meaning: The RREQ
message is sent when a processor requeststo read ablock of datathat isnot containedin
its cache. The RDATA message is the response to RREQ, and contains the data needed
by the processor. The WREQ and WDATA messages are the request/response pair for
processor write requests. Since more than one memory word is stored in a cache line,
the WDATA message contains a copy of the datain memory.

The MREQ and MODG messages are used to service processor write requests when
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the cache contains a Read-Only copy of the datato bewritten. Inthis case, the processor
doesnot need acopy of thedata, so the M ODG message does not contain the bl ock of data.
MREQ and MODG are redlly just an optimization of the WREQ and WDATA message
combination for the limited directory protocol. This message pair is not essential to a
protocol, because it is always correct to send a WDATA instead of aMODG message.

It is not obvious that the extra complications needed to implement the MODG
message arejustified by its performance benefits. The modify request and grant message
pair optimizes for data locations that are read by a processor and then immediately
written. This optimization is especialy important during cold-start periods when an
application’s working set does not reside in its cache. However, if the protocol needs
to send an invalidation message to a cache before compl eting the write transaction, it is
necessary for the directory to store a bit of state that indicates whether theinitial request
was a WREQ or a MREQ. Due to the complications caused by these messages, they
are not included in the transition state diagram, even though they are implemented in
Alewife.

The INVR and ACKC message combination is used to purge Read-Only copies of
cached data. Inthelimited directory scheme, when a Read-Only memory block receives
aWREQ message, the CMMU sends one INV R message to each cache with apointer in
the directory. When a cache receives the INVR message, it invalidates the appropriate
cacheline(if the cache tag matchesthe message’s address), and respondswith an ACKC.
In the full-map and limited protocols, the CMMU may send one INV R message on each
cycle, so severa INVR messages with the same address may be working their way
through the network at the same time.

The CMMU increments the acknowledgment counter when it transmits an INVR
message and decrements the counter when it receives an ACKC message. Thus, the
counter remembersthe total number of ACKC messages that it expects to receive. The
counter waits for the acknowledgment counter to reach zero before responding to the
initial WREQ message to ensure sequential consistency. To limit the amount of state that
must be stored during a write transaction, the CMMU responds with aBUSY signal to
any RREQ or WREQ messages to the memory block whileinvalidations are in progress
for amemory block. If aCMMU accepts aRREQ or WREQ message, then the protocol
guaranteesto satisfy the request eventually. However, if anode receivesaBUSY signal,
then it must retry the request.

The INVW and UPDATE messages are used to return modified data to memory.
If a CMMU receives a RREQ message for a data block in the Read-Write state, the
CMMU sends an INVW message to the node that currently has permission to write the
data block. When this node receives the INVW message, it responds with an UPDATE
message containing the modified data, rather than with an ACKC message, because the
cached block isin the Read-Write state. At the same time, the cache invalidatesthe line
that contains the data.

Since multiple addresses map to each cache line, a cache sometimes needstoreplace
one cached block of datawith another. If areplaced block isinthe Read-Write state, then
the UPDATE message is used to send the modified data back to memory. Otherwise,
the datais unmodified, and the REPU message is used to notify the directory about the
replacement.
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The REPU message is optional in the limited and full-map protocols. If a cache
replaces aRead-Only copy of data but does not notify the directory, thenit may receivea
spurious INV R message for the block at some point in the future. However, the address
in the INVR will not match the tag in the cache, so the node may acknowledge the
spuriousinvalidation without invalidating the currently cached data. On the other side of
the memory system, if a directory receives a RREQ message from a cache that already
has apointer, then it respondswith aRDATA message. So, the REPU message may save
an INVR message, or it may create unnecessary network traffic. In order to examinethe
effects of the REPU message, ASIM has been instrumented with an option that selects
whether or not the current coherence protocol uses the message.

4.1.6 Evaluation of Secondary Protocol Features

None of the protocol features discussed in this section exhibit more than a ten percent
variation in execution timeon ASIM. This behavior is expected, because the unessential
components of protocolstend to interact with relatively infrequent events, such as cache
line replacement or cold-start data accesses. Such low performance returns suggest
that issues of complexity and cost can be used to decide whether or not to implement
unessential protocol messages. Certain protocol messages may be rejected out-of-hand.
For exampl e, the replace unmodified (REPU) message sometimes degrades performance
dueto an increase in network traffic. Thus, Alewife does not implement REPU, thereby
saving the extra complexity and cost of this message.

On the other hand, the modify request/grant (MREQ/MODG) message pair can
increase performance by over five percent. While this performance gain does not justify
the extra directory state needed to store the modify request during invalidations, it
does imply that a simplified version of the feature would be appropriate. Accordingly,
the Alewife CMMU responds to a MREQ with a MODG only when no invalidations
need to be sent. This simplification eliminates most of the extra cost of the modify
grant optimization, while retaining the benefits of reduced latency for ssimple memory
transactions that consist of aread request followed by awrite request.

4.2 Preliminary Evaluation

This section documentsthe preliminary evidencethat justified the effort requiredto build
a complete software-extended system. The study demonstrates only the plausibility of
the software-extens on approach, leaving the implementation and eval uation of an actual
system for the following chapters.

For the purpose of estimating the performance of LimitLESS directories, an ap-
proximation of the protocol was implemented in ASIM. The technique assumes that
the overhead of the LimitLESS full-map emulation interrupt is approximately the same
for al memory requests that overflow a directory entry’s pointer array. This overhead
isthe T, parameter described in Section 4.1.2. During the smulations, ASIM models
an ordinary full-map protocol (Dir,,HnsS_). When the smulator encounters a pointer
array overflow, it stalls both the CMMU and the processor that would handle the Lim-
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itLESS interrupt for 7, cycles. While this evaluation technigue only approximates the
actual behavior of afully-operational LimitLESS scheme, it is a reasonable method for
determining whether to expend the greater effort needed to implement the complete
protocol.

For applications that perform as well with a limited directory as with a full-map
directory, the LimitLESS directory causes little degradation in performance. When
limited directories perform significantly worse than afull-map directory, the LimitLESS
scheme tendsto perform about as well as full-map, depending on the number of widely-
shared variables. If aprogram has just one or two widely-shared variables, aLimitLESS
protocol avoids hot-spot contention that tends to destroy the performance of limited
directories. On the other hand, the performance of the LimitLESS protocol degrades
when aprogram utilizesvariablesthat are both widely-shared and frequently written. But
as discussed in previous sections, these types of variables tend to exhaust the bandwidth
of the interconnection network, no matter what coherence schemeisused by the memory
system.

In general, the ASIM results indicate that the LimitLESS scheme approaches the
performance of afull-mapped directory protocol with the memory efficiency of alimited
directory protocol. The success of this new coherence protocol emphasizes two key
principles. first, the software-extension approach can successfully be applied to the
design of ashared-memory system. Second, theimplementation of aprotocol’sdirectory
structure correlates closely with the performance of the memory system as awhole.

421 Resaults

Table 4.5 shows the simulated performance of four applications, using a four-pointer
limited protocol (DirsHngS.), a full-map protocol (Dir,HnsgS.), and a LimitLESS
(Dir,,HsS\g) scheme with T, = 50. The table presents the performance of each applica-
tion/protocol combination in terms of the time needed to run the program, in millions of
processor cycles. All of the runs smulate a 64-node Alewife machine.

Multigrid is an early version of the program described in Section 3.2.2, Weather
forecaststhe state of the atmosphere given an initia state, SIMPLE simul ates the hydro-
dynamic and thermal behavior of fluids, and Matexpr performs several multiplications
and additions of various sized matrices. The computations in Matexpr are partitioned
and scheduled by a compiler. The Weather and SIMPLE applications are measured
using dynamic post-mortem scheduling of traces, while Multigrid and Matexpr are run
on complete-machine smulations.

Since the LimitLESS scheme implements a full-fledged limited directory in hard-
ware, applications that perform well using a limited scheme also perform well using
LimitLESS. Multigrid issuch an application. All of the protocols require approximately
the same time to compl ete the computation phase. This evidence confirms the assump-
tion that for applications with small worker sets, such as Multigrid, the limited (and
therefore the LimitLESS) directory protocols perform almost as well as the full-map
protocol. [14] has more evidence of the general success of limited directory protocols.

The SIMPLE application indicates the performance of LimitLESS under extreme
conditions: thisversion of the applications uses a barrier synchronization implemented
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Application || DirgH\gS. | Dir,HsSs | Dir,HneSe
Multigrid 0.729 0.704 0.665
SIMPLE 3.579 2.902 2.553
Matexpr 1.296 0.317 0.171
Westher 1.356 0.654 0.621

Table 4.5: Performance for three coherence schemes running on 64 ASIM nodes, in
terms of millions of cycles.

using a single lock (rather than a software combining tree). Although the worker sets
in SIMPLE are small for the most part, the globally shared barrier structure causes the
performance of the limited directory protocol to suffer. In contrast, the LimitLESS
scheme performsamost aswell as the full-map directory protocol, because LimitLESS
is able to distribute the barrier structure to as many processors as necessary.

The Matexpr application uses several variables that have worker sets of up to 16
processors. Due to these large worker sets, the processing time with the LimitLESS
schemeis amost double that with the full-map protocol. The limited protocol, however,
exhibits a much higher sengitivity to the large worker sets.

Weather provides a case-study of an application that has not been completely opti-
mized for limited directory protocols. Although the ssmulated application uses software
combining treesto distributeits barrier synchronization variables, Weather has one vari-
ableinitialized by one processor and then read by all of the other processors. Additional
ASIM simulations show that if this variable is flagged as read-only data, then alimited
directory performsjust as well for Weather as afull-map directory.

However, it is easy for a programmer to forget to perform such optimizations, and
there are some situationswhereit isvery difficult to avoid thistype of sharing. Figure4-3
gives the execution times for Weather when this variable is not optimized. The vertical
axis on the graph displays severa coherence schemes, and the horizontal axis shows
the program’stotal execution time (in millions of cycles). The results show that when
the worker set of a single location in memory is much larger than the size of a limited
directory, the whole system suffers from hot-spot access to this location. So, limited
directory protocols are extremely sensitive to the size of a heavily-shared data block’s
worker set.

The effect of the unoptimized variable in Weather was not evident in the initial
evaluations of directory-based cache coherence for Alewife [14], because the network
model did not account for hot-spot behavior. Since the program can be optimized to
eliminate the hot-spot, the new results do not contradict the conclusion of [14] that
system-level enhancements make large-scale cache-coherent multiprocessors viable.
Nevertheless, the experience with the Weather application reinforces the belief that
complete-machine ssimulations are necessary to evaluate the implementation of cache
coherence.

As shown in Figure 4-4, the LimitLESS protocol avoids the sensitivity displayed
by limited directories. This figure compares the performance of a full-map directory, a
four-pointer l[imited directory (DirsHngS. ), and thefour-pointer LimitLESS (Dir,HsSg)
protocol with several valuesfor the additional latency required by the LimitL ESS proto-
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Figure4-3: Limited and full-map directories, 64 ASIM nodes.
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Figure 4-4: LimitLESS Dir,,HsSys, 25 to 150 cycle emulation latencies,

col’ssoftware (7', = 25, 50, 100, and 150). Theexecution timesshow that theLimitLESS
protocol performs about as well as the full-map directory protocol, even in a situation
where alimited directory protocol does not perform well. Furthermore, while the Lim-
itLESS protocol’s software should be as efficient as possible, the performance of the
LimitLESS protocol is not strongly dependent on the latency of the full-map directory
emulation.

Section 6.1 shows that a softwareread request handler implemented with theflexible
coherence interface requires 400 cycles of processing. Amortized over 4 directory
pointers, this processing time (75) is 100 cycles per request. A hand-tuned, assembly
language implementation of the software requires about 150 cycles of processing, or less
than 40 cycles per request.

It is interesting to note that the LimitLESS protocol, with a 25 cycle emulation
latency, actually performs better than the full-map directory. This anomalous result is
caused by the participation of the processor in the coherence scheme. By interrupting
and slowing down certain processors, the LimitLESS protocol produces adlight back-off
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Figure4-5: LimitLESS with 1, 2, and 4 hardware pointers.

effect that reduces contention.

The number of pointersthat a LimitLESS protocol implementsin hardwareinteracts
with the worker-set size of data structures. Figure 4-5 compares the performance of
Weather with a full-map directory, alimited directory, and LimitLESS directories with
50 cycleemulation latency and one (Dir,,H;S\g), two (Dir,,H,Sg), and four (Dir,,HsS\g)
hardware pointers. The performance of the LimitLESS protocol degrades gracefully as
the number of hardware pointers is reduced. The one-pointer LimitLESS protocol is
especially bad, because some of Weather’s variables have a worker set that consists of
two processors.

This behavior indicates that multiprocessor software running on a system with a
LimitLESS protocol will require some of the optimizations that would be needed on a
system with a limited directory protocol. However, the LimitLESS protocol is much
less sensitive to programs that are not perfectly optimized. Moreover, the software
optimizations used with a LimitLESS protocol should not be viewed as extra overhead
caused by the protocol itself. Rather, these optimizations might be employed, regardless
of the cache coherence mechanism, since they tend to reduce hot-spot contention and to
increase communication locality.

4.2.2 Conclusion

The preliminary investigation of the Alewife memory system indicates the viability of
the software-extension approach. Although the experiments evaluate only the hardware
side of software-extended shared memory, they demonstrate enough evidence to justify
the time and expense of building an actual machine. The next two chapters complete the
design and evaluation of the Alewife memory system: Chapter 5 describes the design of
the software part of cache coherence protocols, and Chapter 6 evaluatesthe performance
of the system asawhole.



Chapter 5

Flexible Coherence I nterface

There are two goals that define flexibility and drive abstraction in a software-extended
memory system. The first goal — the one that motivated the devel opment of the flexible
coherenceinterface— isthe ability to implement avariety of different memory systems
that all work on one hardware base. This ability facilitated the experiments that helped
evaluate the trade-offs involved in designing software-extended shared memory. The
interface a so enabl esthe devel opment of smart memory systems, which requiredynamic
changes in the mapping between memory blocks and coherence protocols.

The second goal is the ability to write a single set of modules that implement a
memory system for a number of different hardware platforms. This goa motivated
the pmap abstraction in the Mach operating system [65]. pmaps allow Mach’s virtual
memory system to run efficiently on awide range of different architectures.

Although a good abstraction between the hardware and software parts of a memory
system should achieve both goal s, the system designer usually hasoneor the other in mind
when building a system. The initial version of the flexible coherence interface ignored
the problem of multiple hardware bases, because — at the timethat it was devel oped —
Alewifewasthe only architecture with a software-extended memory system. Therest of
this section concentrates on the goal of implementing many memory systemsonasingle
hardware base, leaving speculation about the other side of the interface for Section 8.5.

5.1 Challengesand Solutions

Alewife's flexible memory system grew out of severa previous software-extended sys-
tems that use the rawv CMMU interface directly. The software protocol handlers of the
older systems are written in Sparcle assembly code and are carefully tuned to take full
advantage of the features of the Alewife architecture. Such implementationstake along
time to construct: for example, John Piscitello (a graduate student with the Alewife
project) spent most of a semester writing a software-only directory protocol [64].

These systemstake along timeto write, because programming the memory hardware
directly isdifficult for several reasons:

1. Similar events have different possible representations, depending on whether they
areinitiated by local or remote nodes.
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Figure 5-1: Hardware, interface, and software layers of amemory system.

2. Theparallelism between hardware and software makes atomic protocol transitions
problematic.

3. The memory system can starve the processor and livelock the system.
4. Limited network buffering can cause the system to deadl ock.

The flexible coherence interface relieves the operating system programmer of the
burden of solving these problems and provides a convenient abstraction for writing
software-extended systems. Memory events that are handled in software generate calls
to procedures written in C and linked into the operating system kernel. These event-
handling procedures have message-passing semantics and do not use the shared memory
model. Sincethe proceduresrun in supervisor mode, they must be written carefully; but
aslong as a handler follows the conventions of the interface, it executes atomically and
does not cause the system to deadlock or livelock.

The interface provides an abstraction for directory entries, protocol messages, and
the chunks of data stored in shared memory. The abstraction attemptsto hide Alewife's
encoding of these structures in order to make the software easier to write and to un-
derstand. Despite this indirection, the interface’s implementation is efficient because
it represents the structures in processor registers with the same encoding used by the
A-1000 CMMU [46].

There are three ways to specify the mapping between an memory event and its
software handler. First, the kernel contains a default set of event handlersand adispatch
table. When Alewife is booted normally, these handlers process events for all blocks
in shared memory. The default proceduresimplement Dir,,HsSys. Second, the Alewife
host interface has an option that allows the user to choose an alternate default handler.
The aternate handler processes events for all blocks in shared memory instead of the
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default handlerst, and must accept all memory events, performing its own dispatch if
necessary. This option alows the user to configure the system with a specia protocol
such as Dir,,HoSys ack- Finally, while the system is running, the interface allows the
software to set the handler for any individual memory block. (See Section 5.1.2 for the
syntax and implementation of thiscall-back functionality.) Thisfeature enables efficient
implementations of protocol state machines and allows each memory block to have its
own semantics.

Figure5-1illustratesthe hierarchy of the system. Thelowest level of the architecture
is the memory-system hardware. Finite-state machines in the hardware control the
operation of thislevel, and the coherence state is stored in registers, limited directories,
and network buffers. The flexible coherence interface is implemented as a layer of
software on top of the hardware. It consists mostly of assembly-language trap handlers
that field hardware-generated exceptions. Theinterfacetrap handlerscall the procedures
of the software-extended memory system that implement the cache coherence protocol.
These procedures can then call the interface functions described in the next few sections.
In addition, a library of useful routines that facilitate code development accompanies
the interface. The library implements hash-table manipulation, a free-listing memory
manager, and an active message [ 76] interface.

5.1.1 Representations

In the Alewife architecture, internode memory accesses invoke software via an asyn-
chronous interrupt, while intranode accesses cause a synchronous trap — an exception
that the processor must handle before a pending load or store can complete. In the
former case, a network packet carries information about the transaction. In the latter
case, information about the transaction is stored in CMMU registers. In order to mask
this complexity, the interface transforms all memory-system eventsinto procedure calls,
with a message-passing abstraction that hides the details of the mechanismsinvolved in
transmitting and receiving packets.

Figure 5-2 shows an example of a procedure that rides on top of the interface. The
coherence protocol software in the figure handles an event caused by a read request
that exceeds the number hardware directory pointers. All of the information required to
process the associated memory system event — roughly the same information as in a
network protocol packet [46] — is passed as argumentsto this procedure. By the time
that the interface callsthe procedure, theinterface has already disposed of the packet and
freed the space in the appropriate CMMU network buffer. That is, if such a packet ever
existed! Instead, the interface may have gathered the information from various CMMU
registers, thereby simplifying the task of the handler.

The argumentsto the procedure have the followingmeaning: Maj or Qo corresponds
to the specific type of coherence protocol message. Some software handlers use this
valueto dispatch to subroutines. Packet Hdr contains additional information about the
memory transaction, including the identifiers of the requesting and responding nodes.

11t would be easy to change this option to configure different handlers for arbitrary subdivisions of
shared memory.

57



voi d Protocol Handl er (unsi gned Mj or Op,
PACKETHDR Packet Hdr, PKTADDR Pr ot Addr,
DATA ARG I nData), DIR AR InDir),
PROTADDR Li neAddr)

/* Upon Entry, hardware directory is |ocked and
networ k packet disposed (if it ever existed!) */

unsigned NunDirPtrs = DIR PTRS_IN USE(InDir);
PDI RSTRUCT pDirStruct;

/* set the directory back to hardware-handl ed state */
DIR CLR PTRS IN USE(InDir), DI R WR TEUNLOCK(Li neAddr, InDir);

/* put source and directory pointers into the dirstruct */
phirStruct = (PD RSTRUCT) HashLookup(Li neAddr) ;
EnterDirPtr(pD rStruct, PKTHDR SRC(PacketHdr));
EnterDirPtrs(pDirStruct, DIR VALUE(INDir), NunD rPtrs);

/* nornmal C function return */

Figure 5-2: Sample protocol message handler.
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Operation Action
HashLookup( PROTADDR) look up an addressin a hash table
Hashl nser t ( PROTADDR, PO NTER) insert an address into a hash table
HashRepl ace( PROTADDR, PO NTER) replace an address in a hash table
HashDel et e( PROTADDR) remove an address from a hash table
| ocal _mal | oc( Sl ZE) free-listing memory allocation
| ocal _-free( PO NTER) free-listing memory release
ker nel _.do_on( NODE, FUNCTI QN . . .) active message
ker nel _.do_on_drma( NODE, FUNCTI ON, . . .) | ” withdirect memory access

Table 5.1: Functionality related to FCI.

Pr ot Addr contains the shared memory address plus synchronization information, and
is accessed through the flexible coherence interface. Depending on Maj or Qp, | nDat a
may contain data associated with the memory event. | nDi r contains the current state
of the hardwaredirectory. Li neAddr isacopy of the shared memory address that can
be used as a key for hash table functions and for accessing hardware state.

Some of the symbols in Figure 5-2 are specific to the protocol, rather than part of
the interface: the EnterDirPtr and Ent er Di r Pt r s subroutines store pointersinto
a directory structure of type PDI RSTRUCT. When the handler finishes processing the
memory event, it Ssmply returns, and the interface takes care of returning the processor
back to the application.

The HashLookup function is part of the library that is not formally part of the
interface, but is provided with it. Table 5.1 lists this function and some of the othersin
the library: the first four implement hash tables that key off of protocol addresses; the
next two access afree-listing memory manager; and the last two provide active message
functionality.

Table 5.2 lists the operations that provide an abstraction for data. Note that the
coherence protocol software never needs to know the actual size of the unit of data
transfer, nor doesthe size haveto befixed. Thefirst three macrosprovidethedeclarations
required to implement the data abstraction on top of the C compiler’s type system.
W iteBackData and RetrieveData provide access to the DRAM storage for the
data. The last two operations manipulate the state of the data in the local processor’s
cache.

The set of macros in Table 5.3 complete the message-passing abstraction. The first
two sets of operations read and write the PKTHDR and PKTADDR components of a
message. The last three macros in the table allow the software to transmit messages in
response to the original memory event.

5.1.2 Atomicity

The atomicity problem arises from paralelism in the system: since both hardware
and software can process transactions for a single memory block, the software must
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Operation Action
DATA_ARG LABEL) specifies data as function argument
DATA_TYPE( LABEL) definition for data as variable
DATA_VALUE( LABEL) specifies data as function call value

Wi t eBackDat a( PROTADDR, LABEL)
Ret ri eveDat a( PROTADDR, LABEL)

write datato memory
read data from memory

Prot ocol I nval i dat e( PROTADDR)
FI ushExcl usi ve( PROTADDR, LABEL)

transmit local invalidation
force cached datato memory

Table 5.2: FCI operations for manipulating local data state.

Operation Action
PKTHDR_SRC( PKTHDR) get source field of packet header
PKTHDR_DST( PKTHDR) get destination field of header
PKTHDR_FORNMAT( MSG, TO, FROV) format a packet header

ADD_PKTHDR_DST( PKTHDR, AMOUNT)

add amount to destination field

PKTADDR_PROTADDR( PKTADDR)
PKTADDR_CLR FE( PKTADDR)
PKTADDR_SET_FE( PKTADDR, NEWFE)
PKTADDR_FE( PKTADDR)

get line address field of address
clear full/empty field of address
set full/empty field of address
get full/empty field of address

TRANSM TREQUEST( MAJOP, PKTADDR, TO, FROM)
TRANSM TDATA( MAJOP, PKTADDR, TO, FROM)
TRANSM TDOUBLE( PKTHDR, PKTADDR)

transmit protocol request packet
transmit protocol data packet
transmit two-word packet

Table 5.3: FCI operations for transmitting and receiving packets.
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orchestrate state transitions carefully. Accesses to hardware directory entries provide
an example of this problem. Since both the CMMU hardware and the Sparcle software
may attempt to modify directory entries, the interface needs to provide amechanism that
permits atomic transitions in directory state.

Table5.4liststherelevant macrosimplementedintheinterface. Thefirst threemacros
areanalogoustothe DATAmacrosin Table5.2. DI R READLOCK and DI R WRI TEUNLOCK
provide an interface to the CMMU mutual exclusion lock for directory entries, thereby
allowing a software protocol handler to modify directory state atomically. The rest of
the operationsin Table 5.4 access and modify fieldsin the abstract directory entry.

Flexible, directory-based architectures should provide some level of hardware sup-
port for specifying protocolson a block-by-block basis. Thetwo DI R HANDLER macros
in Table 5.4 provide this call-back functionality. In the current version of the flexible
coherence interface, these macros store an entire program counter in a directory entry.
This encoding is convenient, but inefficient. 1t would be easy to change the software to
use a table lookup, rather than a direct jump to each handler. Such a scheme would use
far fewer bitsin each directory entry, enabling low-cost hardware support.

Since typical protocol handlers modify directory state, the interface automatically
locks the appropriate directory entry before calling any handler. Figure 5-2 shows
an atomic state transition: the handler retrieves a field of the directory entry with
DI R.PTRS_I NLUSE, clears the same field with DI R CLR_.PTRS_I N_USE, and then uses
DI R VWRI TEUNLOCK to commit the modification and release the mutual exclusion lock.

Directory modification is only a simple instance of an atomicity problem: the in-
terface’s solution consists of little more than convenient macros for using features of
the CMMU. Other atomicity problems pose more serious difficulties. For example,
the CMMU may transmit datain response to a remote (asynchronous) read request, but
relay the message to the processor for additional software handling. Before the memory-
system software fields the associated memory event, alocal (synchronous) write to the
memory block might intervene. In order to ensure the atomicity of the read request,
the interface must guarantee the proper order of the actions. the higher-level software
must process the partia asynchronous event before handling the synchronous event.
Again, the coherence protocol sees normal message-passing passing semantics, while
the flexible interface takes care of such details.

5.1.3 Livelock and Deadlock

Thereare alsoissues of livelock and deadlock involved inwriting the coherence protocol
software. Livelock situations can occur when software-extension interrupts occur so
frequently that user code cannot make forward progress[64]. The framework solvesthis
problem by using atimer interrupt to implement awatchdog that detects possiblelivel ock,
temporarily shuts off asynchronous events, and allows the user code to run unmolested.
In practice, such conditions happen only for Dir,,HoSwsack and Dir,,H; S ack, When
they handle acknowledgments in software. The ti ner _bl ock_net wor k function in
Table 5.5 provides an interface that allows these protocols to invoke the watchdog
directly.

The possibility of deadlock arises from limited buffer space in the interconnection
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Operation

Action

DI RARG( LABEL)
DI R TYPE( LABEL)
DI R VALUE( LABEL)

specifies entry as function argument
definition for entry asvariable
specifies entry as function call value

DI R READL OCK( PROTADDR, LABEL)
DI RVRI TEUNL OCK( PROTADDR, LABEL)

atomically read and lock directory
atomically write and unlock directory

DI R HANDLER( LABEL)
DI R SET_HANDLER( LABEL, HANDLER)

get protocol handler
set protocol handler

DI R SET_EMPTY( LABEL)
DI R COPY( FROM TO)

clear directory state
copy one directory to another

DI R PTRN( LABEL)

DI R SET_PTRN( LABEL, NEWPTR)
DI R CLR_PTRN( LABEL)

DI R SET_LOCAL _BI T( LABEL)

DI R CLR LOCAL _BI T( LABEL)

get pointer N

set pointer N

clear pointer N

set special local pointer
clear special local pointer

DI RPTRS_I N.USE( LABEL)

DI RCLR.PTRS_I NLUSE( LABEL)

DI RSET_PTRS_I N.USE( LABEL, NEWPI U)
DI R SET_PTRS_AVAI L( LABEL, NEWPA)

number of valid pointers

set number of valid pointers to zero
set number of valid pointers

set number of pointersavailable

DI R STATE( LABEL)

DI R CLR STATE( LABEL)

DI R SET_STATE( LABEL, NEWSTATE)
DI R.UDB( LABEL)

DI R SET_UDB( LABEL, NEWUDB)

DI R FE( LABEL)

DI R CLR FE( LABEL)

DI R SET_FE( LABEL, NEWFE)

get directory state field

clear directory statefield

set directory statefield

get directory user defined bits
set directory user defined bits
get directory full/empty state
clear directory full/empty state
set directory full/empty state

Table 5.4: FCI operations for manipulating hardware directory entries.

Operation Action
ti mer _bl ock_net wor k() temporarily block the network
info = launch_fromtrap_prol ogue() | setup statefor transmit
[ aunch_fromtrap_epi | ogue(i nfo) restore state after transmit

Table 5.5: FCI operations for livelock and deadlock avoidance.
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network: if two different processors simultaneously attempt to transmit large numbers
of packets, there is a chance that the network buffers between the nodes will fill to
capacity. If both of the processors continue to try to transmit, the buffers will remain
clogged forever. Such scenariosrarely happen during normal Alewifeoperation, but they
have the potential to lock up the entire system when they occur. The CMMU provides
a mechanism that detects such scenarios and interrupts the local processor when they
occur. Upon receiving the interrupt, the processor empties the packets in the CMMU'’s
network buffers and retransmits them when the deadlock subsides.

For performance reasons, the flexible coherence interface normally disables al in-
terrupts, including the one that prevents deadlocks. This policy allows protocol handlers
that do not use the network to run efficiently. The last two operations in Table 5.5
alow the memory system to invoke the deadlock solution: as long as the programmer
places callsto | aunch_fromtrap_prol ogue and | aunch_fromtrap_epi | ogue
around portions of code that transmit messages, the interface makes sure that deadlock
does not occur. These semantics allow the interface to save the state of the user code’s
transmissions only when necessary.

5.2 EXxperience with the Interface

During the course of the research on software-extended memory systems, the flexible
coherenceinterface proved to be an indispensabletool for rapidly prototypingacomplete
spectrum of protocols. A single set of routines use the interface to implement all of the
protocols from Dir,,H,Sys to Dir,,HngS.. Other modules linked into the same kernel
support DirnHQSqB‘ACK, DirnH]_SqB‘LACK, and DirnH]_SqB‘ACK. The smart memory system
software described in Chapter 8 also uses the interface.

Anecdotal evidence supportstheclaimthat theinterface accel eratesprotocol software
development. With the interface, the software-only directory (Dir,,HoSusack) required
only about one week to implement, compared to the months of work in the previous
iteration. TheDir,,H;Sys ack protocol reused much of the codewritten for other protocols
and required less than one day to write and to test on NWO.

Interestingly enough, the CMU paper on virtual memory reportsthat astaff program-
mer took approximately three weeks to implement a pmap model. Similarly, Donald
Yeung (a graduate student with the Alewife project) recently took about three weeks
to implement a coherence protocol on top of the flexible coherence interface. The two
programming tasks are not directly comparable, because the CMU staff member imple-
mented hardware-dependent code and Don wrote high-level code; however, the anal ogy
is compelling.

5.3 ThePriceof Flexibility

Unfortunately, flexibility comes at the price of lower performance. All of theinterface’s
mechanisms that protect the memory-system designer from the details of the Alewife
architecture increase the time that it takes to handle protocol requests in software.
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This observation does not imply that the implementation of the interface is inefficient:
it passes values to protocol handlers in registers, leaves interrupts disabled as often
as possible, usually exports macros instead of functions, and uses assembly code for
critical prologue and epilogue code. Yet, any layer of abstraction that enables flexibility
lowers performance, because handling general-case behavior almost always requires
more computation than handling the behavior of a specific application.

The next chapter investigates the performance of software-extended shared memory
and begins with an assessment of the trade-off between flexibility and performance.
Chapter 7 usesan analytical model to investigatetherel ationship between the speed of the
software part of amemory system and the end-to-end performance of a multiprocessor.



Chapter 6

Cost, Flexibility, and Performance

The implementations of the Alewife architecture provide a proof-of-concept for the
software-extension approach. The following empirical study uses the tools described in
the previous chapter to show that this approach leads to memory systems that achieve
high performance without prohibitive cost. NWO allows the investigation of a wide
range of architectural parameters on large numbers of nodes [13]; the A-1000 demon-
strates a real, working system. While the study does provide detailed measurements of
software-extended systems, it focuses on their most important characteristics by using
two metrics: the size of a system’s hardware directory and the speedup that a parallel
system achieves over a sequential one. The former metric indicates cost and the latter
measures performance.

Rather than advocating a specific machine configuration, this chapter seeks to exam-
ine the performance versus cost trade-offsinherent in implementing software-extended
shared memory. It begins by measuring the performance of two different implementa-
tions of Alewife'smemory system software, in order to evaluate the impact of flexibility
on performance. The study then uses a synthetic workload to investigate the relation-
ship between application behavior and the performance of a software-extended system.
The chapter concludes by presenting six case studies that examine how application
performance varies over the spectrum of software-extended protocols.

6.1 Flexibility and Performance

Flexibleand inflexibleversions of Dir,,HsSys have been writtenfor Alewife. Comparing
the performance of these two implementations demonstrates the price of flexibility in a
software-extended system.

One version of the software is written in the C programming language and uses
the flexible coherence interface. It implements the entire range of protocols from
Dir,HoSusack to Dir,HygS. and the smart memory systems in Chapter 8. The other
version of the software is written in Sparcle assembly language and uses the CMMU
interface directly. The code for this optimized version is hand-tuned to keep instruction
counts to a minimum. To reduce memory management time, it uses a special free-list
of extended directory structures that are initialized when the kernel boots the machine.
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Readers C Assembly C Assembly
Per Read Read Write Write
Block | Request | Request || Request | Request

8 436 162 726 375
12 397 141 714 393
16 386 138 797 420

Table 6.1: Average software-extension latencies for C and for assembly language, in
simulated execution cycles.

C Assembly C Assembly
Activity Read Read Write Write
Request | Request || Request | Request

trap dispatch 11 11 9 11
system message dispatch 14 15 14 15
protocol-specific dispatch 10 N/A 10 N/A
decode and modify hardware directory 22 17 52 40
save state for function calls 24 N/A 17 N/A
memory management 60 65 28 11
hash table administration 80 N/A 74 N/A
store pointersinto extended directory 235 74 99 45
invalidation lookup and transmit N/A N/A 419 251
support for non-Alewife protocols 10 N/A 6 N/A
trap return 14 11 9 11
total (median latency) 480 193 737 384

Table 6.2: Breakdown of simulated execution cycles measured from median-latency
read and write requests. Each memory block has 8 readersand 1 writer. N/A stands for
not applicable.

The assembly-language version al so takes advantage of afeature of Alewife' s directory
that eliminates the need for a hash table lookup. Since this approach requires a large
programming effort, this version only implements Dir,,HsSys.

The measurable difference between the performance of the two implementations of
the protocol extension software is the amount of time that it takes to process a protocol
request. Table 6.1 givestheaverage number of cyclesrequiredto processDir,, HsSyg read
and write requests for both of the implementations. These software handling latencies
were measured by running the WORKER benchmark (described in Section 3.2.1) on
a smulated 16-node system. The latencies are relatively independent of the number
of nodes that read each memory block. In most cases, the hand-tuned version of the
software reduces the latency of protocol request handlers by about a factor of two or
three.

These latencies may be understood better by analyzing the number of cycles spent on
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each activity required to extend a protocol in software. Table 6.2 accounts for all of the
cycles spent in read and writerequests for both versions of the protocol software. These
counts come from cycle-by-cycle traces of read and write requests with eight readers
and one writer per memory block. The table uses the median request of each type to
investigate the behavior of a representative individual. (Table 6.1 uses the average to
summarize aggregate behavior.)

The dispatch and trap return activities are standard sequences of code that invoke
hardware exception and interrupt handlers and allow them to return to user code, respec-
tively. (The dispatch activity does not include the three cycles that Sparcle takesto flush
itspipelineand to load thefirst trap instruction.) Inthe assembly-languageversion, these
sequences are streamlined to invoke the protocol software as quickly as possible. The C
implementation of the software requires an extra protocol -specific dispatch in order to
set up the C environment and hide the details of the Alewife hardware. For the types of
protocol requeststhat occur when running the WORK ER benchmark, thisextraoverhead
does not significantly affect performance. The extracode in the C version that branches
to the protocols supported only by NWO also impacted performance minimally.

The assembly code usesthe CMMU mechanisms to decode and modify the hardware
directory, while the C code uses the flexible coherence interface operationsin Table 5.4.
The C code was generated by Alewife's normal compiler, so it saves state on the stack
before making function calls; the hand-tuned assembly code uses perfect interprocedural
anaysis, thereby avoiding the need to save any state.

The primary difference between the performance of the C and assembly-language
protocol handlersliesintheflexibility of the C interface. The assembly-languageversion
avoided most of the expense of memory management and hash table administration by
implementing a special-purpose solution to the directory structure allocation and lookup
problem. Thissolution reliesheavily ontheformat of Alewife'scoherencedirectory and
isnot robust in the context of a system that runs alarge number of different applications
over along period of time. However, it does place aminimum bound on thetimerequired
to perform these tasks. The flexible code uses the more general functionsin Table 5.1,
which integrate the memory-system software with the rest of the kernel.

Both the flexible and inflexible versions of the read request code store exactly five
pointersfromthe hardwaredirectory and one pointer that correspondsto the source of the
request. Thus, read request software processing is amortized over six remote requests.
The assembly code takes only about 12 cycles to store each pointer into the extended
directory, which is close to the minimum possible number on Sparcle. The C code uses
a pointer-storing function. While this function is less efficient by more than a factor
of three, it is a better abstraction: the same function is used by all of the Dir,Hx Sya
protocols.

The write request code stores two additional pointers (raising the total to eight, the
worker-set size) before transmitting invalidations. Again, the assembly code performs
these functions much more efficiently than the C code, but the C code uses a better
abstraction for building a number of different protocols. The appropriate balance of
flexibility and performance lies somewhere between the two extremes described above.
Asthe Alewife system evolves, critical pieces of the protocol extension softwarewill be
hand-tuned to realize the best of both worlds.
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Figure 6-1. Synthetic workload shows the relationship between protocol performance
and worker-set size on a simulated 16-node machine.

Section 7.4.2 uses an analytical model to trand ate the information about the relative
performance of protocol handlers into predictions about overall system behavior. The
model indicates that the factors of 2 or 3 in handler running times (as in Table 6.1)
generally do not cause significant differences in aggregate system performance.

6.2 Worker Sets and Performance

Section 2.3 definesaworker set asthe set of nodesthat access aunit of databetween sub-
sequent modifications of the data block. The software-extension approach is predicated
on the observation that, for alarge class of applications, most worker sets are relatively
small. Small worker sets are handled in hardware by alimited directory structure. Mem-
ory blocks with large worker sets must be handled in software, at the expense of longer
memory access latency and processor cycles that are spent on protocol handlers rather
than on user code.

This section uses the WORKER synthetic benchmark to investigate the relationship
between an application’s worker sets and the performance of software-extended coher-
ence protocols. Simulations of WORKER running on a range of protocols show the
relationship between worker-set sizes and the performance of software-extended shared
memory. The simulations are restricted to arelatively small system because the bench-
mark isboth regular and completely distributed, so the resultswould not be qualitatively
different for alarger number of nodes.

Figure6-1 presentstheresults of aseriesof 16-nodesimulations. The horizontal axis
givesthe size of the worker sets generated by the benchmark. The vertical axis measures
theratio of the execution time of afull-map protocol (Dir,,H\gS. ) to the execution time
of each protocol running the same benchmark configuration.

68



The solid curvesin Figure 6-1 indicate the performance of some of the protocolsthat
are implemented in the A-1000. As expected, the more hardware pointers, the better
the performance of the software-extended system. The performance of Dir,HsSs is
particularly easy tointerpret: itsperformanceisexactly the same asthefull-map protocol
up to a worker-set size of 4, because the worker sets fit entirely within the hardware
directory. For small worker-set sizes, software is never invoked. The performance of
Dir,,HsSys dropsfor larger worker sets, dueto the expense of handling memory requests
in software.

At the other end of the performance scale, the Dir,,HoSws ack protocol performs
significantly worse than the other protocols, for al worker-set sizes. Since WORKER
is a shared memory stress test and exaggerates the differences between the protocols,
Figure 6-1 shows the worst possible performance of the software-only directory. The
measurements in the next section, which experiment with more realistic applications,
yield a more optimistic outlook for the zero and one-pointer protocols.

The dashed curves correspond to one-pointer protocols that run only on NWO.
These three protocols differ only in the way that they handle acknowledgment messages
(see Section 2.1.3). For all non-trivial worker-set sizes, the protocol that traps on
every acknowledgment message (Dir,,H;Sws ack) performs significantly worse than the
protocols that can count acknowledgmentsin hardware. Dir,,H1Syg, which never traps
on acknowledgment messages, has very similar performanceto the Dir,,H,Sys protocol,
except when running with size 2 worker sets. Since this version of Dir,,H,Sys requires
the same amount of directory storage as Dir,,H,Sg, the similarity in performanceis not
surprising.

Of the three different one-pointer protocols, the protocol that traps only on the last
acknowledgment message in a sequence (Dir,,H; Sus L ack) makes the most cost-efficient
use of the hardware pointers. This efficiency comes at a dight performance cost. For
the WORKER benchmark, this protocol performs between 0% and 50% worse than
Dir,H1S. When the worker-set size is 4 nodes, Dir,HiSsack performs dightly
better than Dir,H1S. This anomaly is due to a memory-usage optimization that
attempts to reduce the size of the software-extended directory when handling small
worker sets. The optimization, implemented in the Dir,,H1 S ack, Dir,,HiSus ack and
Dir,HoSusack protocols, improves the run-time performance of al three protocols for
worker-set sizes of 4 or less.

6.3 Application Case Studies

This section presents more practical case-studies of several programs and investigates
how the performance of applications depends on memory access patterns, the coherence
protocol, and other machine parameters.

Figure 6-2 presents the basic performance data for the six benchmarks described in
Section 3.2.2, running on 64 ssimulated nodes. The horizontal axis shows the number of
directory pointers implemented in hardware, thereby measuring the cost of the system.
The vertical axis showsthe speedup of the multiprocessor execution over asequential run
without multiprocessor overhead. The software-only directory is always on the left and

69



= 64 = 64
S 56 S 56
] ]
o o
3 48 f 3 48 f
g 40l S 40f
S 321 S 321
2 24 2 24
16} 16}
8 8
0 0
0 1 2 5 64 0 1 2 5 64
Number of Hardware Pointers Number of Hardware Pointers
(a) Traveling Salesman Problem (TSP) (b) Adaptive Quadrature (AQ)
= 64 = 64
S 56 S 56
] ]
o o
3 48 f 3 48 f
g 40l S 40f
S 321 S 321
2 24 2 24
16} 16}
8 7 I 8 7 I
0 0
0 1 2 5 64 0 1 2 5 64
Number of Hardware Pointers Number of Hardware Pointers
(c) Static Multigrid (SMGRID) (d) Genome Evolution (EVOLVE)
= 64 = 64
T 56 g 56
] ]
o o
3 48 f 3 48 f
g 40 S 40f
S 321 S 321
2 24 2 24
16} 16}
st I ‘ st
oLl 0
0 1 2 5 64 0 1 2 5 64
Number of Hardware Pointers Number of Hardware Pointers
(e) MP3D (f) Water

Figure 6-2: Application speedups over sequential, running on a simulated 64 node
Alewife machine.
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Figure 6-3: TSP: detailed performance analysis on 64 NWO nodes.

the full-map directory on theright. All of the figuresin this section show Dir,,H; Sys ack
performance for the one-pointer protocol.

The most important observation is that the performance of Dir,HsSs is aways
between 71% and 100% of the performanceof Dir,,HxgS_ . Thus, the graphsin Figure 6-
2 provide strong evidence that the software-extension approach is a viable aternative
for implementing a shared memory system. The rest of this section seeks to provide a
more detailed understanding of the performance of software-extended systems.

Traveling Salesman Problem  Given the characteristics of the application’s memory
access pattern, onewould expect TSPto performwell with asoftware-extended protocol:
the application has very few large worker sets. In fact, most — but not all — of the worker
sets are small sets of nodes that concurrently access partial tours.

Figure6-3 presentsdetailed performancedatafor TSP running onasimulated 64 node
machine. Contrary to initial expectations, TSP suffers severe performance degradation
when running with the software-extended protocols. The gray bars in the figure show
that the five-pointer protocol performs more than three times worse than the full-map
protocol. This performance decrease is due to instruction/data thrashing in Alewife’'s
combined, direct-map caches: profilesof the address reference pattern of the application
show that two memory blocks that were shared by every node in the system were
constantly replaced in the cache by commonly run instructions.

A simulator option confirms this observation by allowing one-cycle access to every
instruction, without using the cache. This option, called perfect ifetch, eliminates the
effectsof instructions on the memory system. The hashed barsin Figure6-3 confirm that
instruction/datathrashing was a serious problemin theinitial runs. Absent the effects of
instructions, al of the protocols except the software-only directory realize performance
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Figure 6-4: TSP running on 256 NWO nodes.

equivalent (within experimental error) to afull-map protocol.

While perfect instruction fetching is not possible in real systems, there are various
methods for relieving instruction/data thrashing by increasing the associativity of the
cache system. Alewife's approach to the problem is to implement a version of victim
caching [39], which uses the transaction store [48] to provide a small number of buffers
for storing blocks that are evicted from the cache. The black bars in Figures 6-2(a)
and 6-3 show the performance for TSP on a system with victim caching enabled. The
few extra buffersimprove the performance of the full-map protocol by 16%, and allow
all of the protocolswith hardware pointersto perform about aswell asfull-map. For this
reason, the studies of al of the other applications in this section enable victim-caching
by default.

It isinteresting to note that Dir,,HoSus ack With victim caching achieves amost 70%
of theperformanceof Dir,, H\gS_ . Thislow-cost alternative seemsviablefor applications
with limited amounts of sharing.

Thus far, the smulations have shown the performance of the protocols under an
environment where the full-map protocol achieves close to maximum speedup. On an
application that requires only 1 second to run, the system with victim caching achieves
a speedup of about 55 for the 5 pointer protocol. Running the same problem size on a
simulated 256 node machine indicates the effects of running an application with lower
speedups. Figure 6-4 shows the results of this experiment, which indicate a speedup of
142 for full-map and 134 for five-pointers. These speedups are quite remarkablefor this
problem size. In addition, the software-extended system performs only 6% worse than
full-map in this configuration. The difference in performance is due primarily to the
increased contribution of the transient effects over distributing data to 256 nodes at the
beginning of the run.
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Adaptive Quadrature Since all of the communication in AQ is producer-consumer,
the application should perform equally well for all protocolsthat implement at least one
directory pointer in hardware. Figure 6-2(b) confirms this expectation by showing the
performance of the application running on 64 simulated nodes. Again, Dir,,HoSus ack
performs respectably due to the favorable memory access patterns in the application.

StaticMultigrid SMGRID’s speedup over sequential islimited by the fact that only a
subset of nodes work during the relaxation on the upper levels of the pyramid of grids.
Furthermore, data is more widely shared in this application than in either TSP or AQ.
The consequences of these two factors appear in Figure 6-2(c): the absolute speedups
are lower than either of the previous applications, even though the sequential time is
three times longer.

The larger worker-set sizes of multigrid cause the performance of the different
protocols to separate. Dir,,HoSws ack performs more than three times worse than the
full-map protocol. The others range from 25% worse in the case of Dir,,H; S ack tO
6% worse in the case of Dir,,HsS\z.

Genome Evolution Of al of the applicationsin Figure 6-2, EVOLVE causes the five-
pointer protocol (Dir,HsSs) to exhibit the worst performance degradation compared
to Dir,,HxgS_: the worker sets of EVOLVE serioudly challenge a software-extended
system. Figure 6-5 shows the number of worker sets of each size at the end of a 64
node run. Note that the vertical axisislogarithmically scaled: there are amost 10,000
one-node worker sets, while there are 25 worker sets of size 64.

The significant number of nontrivial worker sets implies that there should be a
sharp difference between protocolswith different numbers of pointers. A more detailed
analysis in Chapter 7 shows that a large number of writes to data with a worker-set
size of six reduces the performance of all protocols with fewer hardware pointers. The
large worker sets impact the 0 and 1 pointer protocols most severely. Thus, EVOLVE
providesagood example of aprogram that can benefit from asystem’shardwaredirectory
pointers.

In addition to the performance degradation caused by large worker sets, EVOLVE
suffers from severe data/data thrashing in the nodes direct-mapped caches. To help
diagnose the cause of the thrashing, the simulator generates atrace of al of the directory
maodification events that occur during a run with the full-map protocol. Analysis of the
thrashing addresses in the traces shows that frequently accessed, shared data structures
alocated on different nodes conflict in a number of lines of every node's cache.

Once diagnosed, the data/data thrashing problemis easy to solve. The pathological
situation is caused by the regularity of the application, and the fact that the memory
alocation heap in each node starts at a position that is aligned to every other node’'s
heap. Due to the regularity of this thrashing, a ssimple change to the operating system
caneiminateit: by skewingthenodes heapsbeforerunning the program, the conflicting
memory blocks can be shifted into different cache lines.

Figure6-6 showstheresultsof thethrashing effect on a64 noderun of the application.
The gray bars show the performance of EVOLVE without skewed heaps, the black bars
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show the performance gained by skewing each node’s heap. (The black bars correspond
to the onesin Figure 6-2(d).) When thrashing occurs, the Dir,,H\gS_ speedup is amost
45 and Dir,,HsSys reaches 27, about 40% slower. In the absence of significant thrashing,
the full-map protocol achieves a speedup of 50, while the five-pointer protocol lags
full-map by about 30%.

MP3D Since MP3D is notorious for exhibiting low speedups [56], the results in
Figure 6-2(e) are encouraging: Dir,HngS. achieves a speedup of 24 and Dir,,HsSs
realizes a speedup of 20. These speedups are for a relatively small problem size, and
absol ute speedups should increase with problem size.

The software-only directory exhibitstheworst performance (only 11% of the speedup
of full-map) on MP3D. Thus, MP3D provides another example of an application that
can benefit from at least a small number of hardware directory pointers.

Water The Water application, also from the SPLASH application suite, is run with
64 molecules. This application typically runs well on multiprocessors, and Alewifeis
no exception. Figure 6-2(f) shows that al of the software-extended protocols provide
good speedupsfor thistiny problem size. Once again, the software-only directory offers
almost 70% of the performance of the full-map directory.

6.4 A-1000 Performance

In a sense, the resultsin Figure 6-7 are much more dramatic than those presented in the
rest of thischapter: thegraphsshow the performanceof the six benchmarksonthelargest
available A-1000, an Alewife machine with 16 nodes and a 20 MHz processor clock
speed. From the point of view of a system architect, this evidenceis exciting because it
confirmsthat ideas can be transformed into practice. The fact that the same benchmark
and memory-system object code runs on both the A-1000 and the NWO simulator
validates both the software-extended design technique and the simulation technology.

The figure shows the entire range of directory sizes that work on the A-1000 hard-
ware, from Dir,HoSusack t0 Dir,,HsSys, Skipping the one-pointer protocols. It is hard
to compare the data in Figure 6-7 directly to Figure 6-2 due to the different number of
processors, a new version of the compiler, and different floating-point speeds. Never-
theless, the qualitative results are the same: as predicted by NWO, Dir,,H,Sys through
Dir,HsSys al offer similar performance, while Dir,,HoSws ack achieves acceptable per-
formance only for some of the benchmarks. The usual exceptionto thisruleisEVOLVE,
which benefits from Dir,,HsSyg's hardware directory pointers.

Asrewardingasitisto build areal system, thusfar the A-1000 offersno moreinsight
into the trade-offsinvolved in software-extended design than does NWO. The hardware
certainly supports a smaller range of protocols and design options. On the other hand,
the A-1000 allows usersto devel op real applicationsand to run data sets that could never
be attempted under simulation. As the number of benchmarks and the machine size
grow, the software-extended memory system must prove itself as the foundation for a
system with a stable user environment.
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6.5 Conclusons

The NWO and A-1000 implementations of Alewife prove that the software-extension
approach yields high-performance shared memory. The hardware components of a
software-extended system must be tuned carefully to achieve high performance. Since
the software-extended approach increases the penalty of cache misses, thrashing situa-
tions cause particular concern. Adding extra associativity to the processor side of the
memory system, by implementing victim caches or by building set-associative caches,
can dramatically decrease the effects of thrashing on the system as awhole.

Alewife sflexible coherenceinterface enabled the study of the spectrum of software-
extended memory systems by facilitating the rapid development of a number of proto-
cols. However, flexibility comes at the price of extra software processing time. The
next chapter uses an analytical model to show that the extra processing time does not
dramatically reduce end-to-end performance. The following chapter proves the useful-
ness of flexibility by demonstrating memory systems that use intelligence to improve
performance.
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Chapter 7
The Wor ker-Set M odel

A working system provides copiousinformation about anarrow range of design choices.
In contrast, an analytical model providesaway to exploreades gn space without thehigh
overhead of building new systems. This chapter combines these two methods for eval-
uating an architecture: first, the Alewife system validates a mathematical model; then,
the model examines a range of architectural mechanisms used to implement software-
extended shared memory.

Rather than attempting to reproduce the details of operation, the model predicts
the gross behavior of systems by aggregating its input parameters over the complete
execution of programs. The inputs characterize the features of an architecture and the
memory access pattern of an application, including a description of the application’s
worker sets. The model uses these parameters to calculate the frequency and latency of
various memory system events. From these derived quantities, the model estimates the
system’s processor utilization, a metric that encompasses both the frequency of memory
access and the efficiency of a memory system.

This chapter is organized as follows: the next section defines the model inputs and
outputs precisely. Following the definitions, the model is described at both the intuitive
and mathematical levels. Before exploring the design space, comparisons between the
predictions and experimental results validate the model. Once validated, the model is
used to investigate a number of options in memory system design by predicting the six
benchmarks' performance on avariety of architectures. Then, synthetic workloads help
explore the relationship between application memory access patterns and performance.
The final section enumerates a number of conclusions about the memory system design
space and discusses the problem of modeling cost.

7.1 Modd Inputsand Outputs

Figure 7-1 illustrates the function of the worker-set model. The two types of model
inputs come from several sources. ahigh-level description of the memory system archi-
tecture; measurements from microbenchmarks that determine the latency of important
transactions in a software-extended system; and experimental measurements of each
application’s memory access patterns. For this study, the latter two input sources cor-
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Figure 7-1: The worker-set model.

respond to simulations that require up to severa hours to generate each data point. In
contrast, given a set of inputs, the model can predict the performance for a whole range
of architectures within afew minutes, if not seconds.

From a distance, the model outputs in the following sections look very much like
the performance graphs in the previous chapter. The horizontal axis measures an ar-
chitectural mechanism (such as the number of hardware pointers in a directory entry)
or ameasure of an application’s memory access pattern (such as worker-set size). The
vertical axisgives processor utilization, a measure of the performance of the system asa
whole. Although the performance metricsare different, the model outputs give the same
qualitative information as the studies that use detailed implementations of the Alewife
architecture.

7.1.1 Notation

Table 7.1 lists some basic notation used to describe the model. P standsfor the number
of processing nodes in a system and : denotes the number of pointersin each directory
entry of a software-extended system.

The model uses two types of time intervals — or latencies — as parameters. T,
representsthetimerequiredto process :, some sort of memory transaction, inasoftware-
extended system. Ty, IS the latency of the same transaction when it can be handled
completely in hardware. In some memory systems, an event  may need to be handled
partially in hardware and partially in software. ¢, denotes the amount of time delay
induced by the software component of the system. All time intervals are measured in
units of processor cycles.

The model’s metric of system performance is always processor utilization, repre-
sented by ¢/. This symbol istypically subscripted to indicate the model from whichitis
derived.

7.1.2 Application Parameters

The worker-set model parameterizes the behavior of a workload as a set of hit ratios
at each level of the memory hierarchy, the latencies of access at each level, and its
worker-set behavior. These inputs to the model may be derived from different sources,
depending on the type of workload. For the benchmark applications, al of the model
inputs come from statistics gathered by ssimulating each application with a Dir,,HngS-
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Symbol Meaning
P number of processorsin asystem
? number of hardware directory pointers
T, the latency of x, an event in amemory system
Ty | latency of = when using a hardware-only directory
ty the additional overhead of handling » due to software extension
Unm processor utilization predicted by model A

Table 7.1: Notation for the analytical model.

memory system. In asense, the model uses a characterization of an application running
on ahardware-only system to predict the performance on the gamut of software-extended
systems.

WORKER, the synthetic workload, requires Dir,,HygS. Simulationsto determineits
hit ratios and latencies; itsworker-set behavior is completely determined by its structure
and can be specified by examination. For this reason, WORKER was used to develop
the model and to perform the initial model validation.

Other synthetic workloads may be created by specifying a complete set of model
inputs without any data from simulations. Such workloads can not represent the perfor-
mance of the system on real applications, but they are useful for examining the sensitivity
of software-extended systems to an application’s memory access behavior.

Table 7.2 lists al of the model inputs derived from applications or synthetic work-
loads. The first set of variables contains the hit ratios and access latencies. These pa-
rameters are the familiar quantities used to characterize a memory system with caches.
The average memory access time for a hardware-only system (75 ) may be calculated
directly from them:

Ta,hw = nTy, + 1T + TTr,hw (7-1)

The access latencies (7,) are application-dependent, as opposed to constant parameters
of the architecture, because they take contention into account. For example, 7}, — the
cache hit latency — incorporates cache access delays due to processor versus CMMU
contention for the address/data bus. Similarly, 7; contains contention between local
and remote requests for a node's DRAM and 7}, incorporates contention within the
interconnection network. Appendix A lists the values of model parameters for the six
benchmarks.

Definition  Aworker set isthe set of processors that access a block of memory between
subsequent modifications of the block’ s data.

The worker set for a read-only block of memory, which is initialized but never
modified, consists of all of the processorsthat ever read it. Aninstantaneousworker set
is the set of processors that access a block of memory between an instant in time and
the previous modification. At the time of awrite, the instantaneous worker set is equal
to the worker set.
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Symbol Meaning
N; number of instruction fetches

N, number of memory accesses
h cache hit ratio

[ local memory access ratio

r remote memory access ratio

Ty cache hit latency

T local memory access latency
Tinw | hardware-only remote access latency

Ry number of reads with % processorsin instantaneous worker set
Wy number of writeswith & processorsin worker set

Table 7.2: Inputsto the analytical model from applications.

In order to minimize the amount of record-keeping, the model assumes that the
memory system has a load/store architecture: all memory accesses are either reads or
writes. Consequently, two sequences of parameters specify an application’s worker-set
behavior: the first sequence {R; | 0 < k& < P} indicates the size of the instantaneous
worker set at the time of a each read; the second sequence {WW}, | 0 < k& < P} indicates
the size of the worker set at the time of writes and dirty reads. A dirty read causes the
Alewife protocols to invalidate a read-write copy of the requested data. This type of
read transaction requires approximately the same amount of time as a write transaction
that invalidates a single read-only copy of data.

The two sequences may be plotted as histograms, with worker-set size on the ordinate
and the number of corresponding accesses on the abscissa. Figures 7-2 and 7-3 show
the histograms for the six benchmarks. These histograms are produced by collecting
traces of directory modification events during smulated runs of the benchmarks with
Dir,HngS_. After the end of each simulation, atrace interpreter scans the event traces
and constructs the histograms. The interpreter uses the following operational rules to
construct the worker-set behavior histograms:

1. When aprocessor readsadata object, the bin with the corresponding instantaneous
worker-set size is incremented once.

2. When a processor writes a data object, the bin with the corresponding worker-set
size isincremented once.

TSP exhibits the type of worker-set behavior that takes advantage of a software-
extended system: the application primarily reads and writes data objects that are shared
by only a few processors. There are also two memory blocks that are widely-shared
and are distributed to all of the nodes in the system. The spike at the right end of
Figure 7-2(a) indicates some residual thrashing of the widely-shared objects, even with
the victim caches enabled. The thrashing causes extra accesses after the instantaneous
worker sets reach the size of the corresponding worker set.
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Figure 7-2: Read access instantaneous worker-set histograms.
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Figure 7-3: Write access worker-set histograms.
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The worker-set histograms show that AQ performs more writes than reads. This
behavior makes sense in light of the fact that synchronizing reads are treated as writes
with respect to coherence. Sincetheapplication usesproducer-consumer communication
— orchestrated by the f ut ur e construct, almost of the data is communicated through
synchronizing reads and writes.

The other applications show similar worker-set profileswith some amount of widely-
shared, read-only data and read-write data with predominately small worker sets. The
histogramsare useful for understanding the way that the benchmarks use shared memory
and for interpreting their performance on shared-memory systems[78].

Software-only directories are particularly sensitive to the values of Ry, Wy, and W1,
which can be affected by purely intranode accesses. For the sake of completeness, the
graphs in Figures 7-2 and 7-3 contain al intranode and internode accesses. However,
the software-only directory implemented for Alewife (Dir,,HoSys ack) includesa one-bit
optimization for intranode data (see Section 3.1). For this reason, the model uses the
values of R, and W, that do not include purely intranode accesses, unless otherwise
specified.

A similar Alewife feature uses a special one-bit directory pointer reserved for the
local node. Unless otherwise specified, the event trace interpreter assumes the existence
of this pointer, and does not include the local node in the worker set when calculating
Ry and Wj,. Section 7.4.5 analyzes the effect of both one-bit optimizations.

7.1.3 Architecture Parameters

Since the analytical model isused primarily to investigate the performance of software-
extended systems, its architectural parameters describe the time required to handle
memory accesses in software. Table 7.3 lists the software-handling latency parame-
ters and their measured values. These values are comparable to the measurements in
Tables 6.1 and 6.2. The numbers are similar because they are also derived from the
statistics gathered from WORK ER simulations; they are different because they measure
the average — not the median time — to execute each activity. Furthermore, many of
the values given are the result of simple linear regressions that specify execution time as
afunction of the number of directory pointers or of worker-set size.

trpase @Nd 11 exira @€ an example of a pair of parameters derived from a linear regres-
sion of WORKER measurements. Together, they specify the time for memory-system
software to process a read request (¢,) in an architecture with : hardware directory
pointers:

t, = tr,base + itr,extra

All of the (base,extra) pairsin Table 7.3 are regression parameters. The other variables
inthetablearesimple averagelatenciesfor software-extension processing. Section7.2.2
explains how each of these parameters contributes to memory system latencies.

Some of the higher-level architectural parameters areincorporated into the model by
modifying these parameters. For instance, Section 7.4.1 investigates the effect of trap
latency (the time to clear the processor pipeline, save state, and switch to supervisor
mode) on the performance of software-extended systems. The model generates extra
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Symbol Type of Latency Value | Trap
trprologue | read software handler prologue 130 | /
trvase | baseread software handling 205 | /
tredra extraread software handling, per pointer 47
twhase | base write software handling 605 |
twetra | €Xtrawrite software handling, per copy 12
twiak | 1 pointer, handle acknowledgment 188 | /
twilack | 1 pointer, handlelast acknowledgment 452 | /
trosmpase | O pointers (small wss), base read 322 |
trosmedra | O pointers (small wss), extraread, per copy 11
trolg 0 pointers (large wss), read latency 433 | /
twosmbase | O pointers, base write latency 388 |
twosmexra | O pointers, extrawrite latency per copy 41
twojgpase | O pointers, base write latency 1138 |
twolgedara | O pointers, extrawrite latency per pointer 13
twoack | O pointers, cost of handling acknowledgment 182 | /
twojack | O pointers, cost of handling last acknowledgment | 283 | /

Table 7.3: Inputs to the analytical model from protocol measurements, values are in
processor cycles.

trap latency by increasing the value of the parameters in Table 7.3 with a check-mark
inthe “Trap” column. Similarly, the study in Section 7.4.2 modifies code efficiency by
dividing all of the ¢, parameters by a constant factor.

Other architectural parameters require changes to the model’s equations. These
parameters include the number of directory pointers, special processors dedicated to
memory-system software, and other details of protocol implementation.

7.1.4 PerformanceMetric

The goa of the model is to produce the same qualitative predictions as the results in
the previous chapter, and then to extend the empirical results by exploring the design
space. For reasons described in [17], the model can not be expected to calcul ate actual
execution times or speedup. To summarize the discussion in [17], the model aggre-
gates the architectural and application parameters over the entire duration of execution.
This technique ignores actual forward progress in the application and neglects common
multiprocessing phenomena such as network hot-spots and computation bottlenecks.

Nevertheless, the model can predict processor utilization, a measure of the amount
of time that the program spends executing the program, as opposed to waiting for the
memory system. More formally, processor utilization is defined as

1

U=-——
1+aT,’

(7.2)
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Symbol Meaning
Unw processor utilization, hardware-only directory
Unto processor utilization, no feedback
Usp processor utilization, with feedback
Upnases | Processor utilization, phases model
number of software-handled read requests
number of software-handled write requests
number of software-handled requests
number of requests delayed by software handling
Memory access ratio
access latency
software handling ratio
software handling access latency
remote access latency
expected residual idle time during memory access
remote access ratio, time-average
expected residual life of remote accesses
software handling latency
read software handling latency
tw write software handling latency

TS RREe Bz

Table 7.4: Derived parameters of the analytical model.

wherea = N, /N; isthe memory access ratio and 7, is the average latency of access to
memory.

The aT,, term gives the average fraction of time that each processor spends waiting
for the memory system. Thus, the maximum processor utilization islim,;,_ ol = 1
and the minimum processor utilization islim,z,_... ¢/ = 0. Roughly speaking, ¢/ = 1
correspondsto a system that achieves perfect speedup over sequential, andZ/ = 0 means
that a system makes no forward progress whatsoever.

Preliminary studies that examined awide range of options for the Alewife architec-
ture [14] used processor utilization to compare different system configurations. Sub-
sequent phases of the Alewife research determined that qualitative conclusions derived
from this metric were generally correct.

7.2 Modd Calculations

Most of theintuition about software-extended memory systemsthat drivesthe analytical
model is incorporated into the equations that calculate processor utilization. The rest
of the model requires little more than good accounting in order to count the number of
occurrences and the latency of each type of event in the memory system. Table 7.4 lists
al of the quantities derived as part of the analysis.
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7.2.1 Calculating Utilization

Themodel usesequation 7.2 directly to cal culatethe processor utilization of aDir, HygS-
system:

B 1

B 1+ GTa,hw

Theformulafor utilization in software-extended systems must takeinto account both
the additional memory access latency due to software and the cycles stolen from user
code by the memory system. Substituting 7., (the predicted memory latency) for 75 hw
accounts for the longer access latency. In order to deduct the stolen cycles from the
system’s performance, the equation requires an additional term:

uhw

1
= 7.3
Lo 1+ a7, + arsty, ’ ( )
~—~— ——

request response

where r is the remote access ratio, s is the fraction of remote requests that require
software handling, and ¢, is the average time that the memory system software requires
to process arequest. Thus, each memory request takes, on average, 1, cycles of latency
and stealsr st cycles from some processor on the response side. Section 7.2.2 describes
the model’s calculations of 77, s, and ¢,.

This model of processor utilization assumes that every cycle the memory system
steals from a processor could otherwise have been spent performing useful work for the
application. While this assumption might be true for applications that achieve I/ ~ 1,
the penalty for stealing cycles in systems with lower utilization is not as extreme. It
is possible that when the memory system needs to steal cycles from a processor, the
processor is waiting for the memory system. Given this situation, there should be no
penalty for stealing cycles, because the processor has no useful work to do.

This scenario leads to an interesting observation: the lower the processor utilization,
thelesslikely that there will be a penalty for stealing cycles. This property of software-
extended systems is actually a positive feedback loop. When such a system performs
poorly, the extraprocessing that the system requires does not reduce the performance as
it does when the system performswell.

Equation 7.3 does not take this feedback into account, so it calculates U/, the
processor utilization without feedback. (nfb stands for no feedback.) In order to model
positive feedback, the stolen-cycles term changes dlightly:

1
C 14dT, + ars(ts — (1 —Un)T;)

Usp (7.4)

This term subtracts a number of idle cycles from ¢, the average number of stolen
cycles: (1 — Up) givesthe time-average probability that a processor isidle, and 7; isthe
expected number of idle cyclesremaining at the time that the memory system interrupts
aprocessor. Solving thisequation for U, yields a closed form expression for U,:

arsTHUZ + (1 + aT, + arsty, — arsT: U, — 1 =0
fb
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The problem of modeling 7; remains. The expected amount of idle time may be
viewed as a stochastic process with timeintervals drawn from the distribution of remote
memory access latencies. For the sake of argument, assume that these timeintervalsare
independent of each other and that the memory system interrupts are independent of the
stochastic process. Then, the stochastic processis arenewal process and

Ti = min(TtLTr, ts),

where r, is the time-average probability that a processor is making a remote access,
given that it is making any memory access; and L7, isequal to the time-average residual
life of the renewal process, or
BT
T 2E[T]
It is necessary to take the minimum of r, Ly, and ¢, so that the number of idle cyclesin
eguation 7.4 never exceeds the number of cycles required for software-extension.

While this model of T} yields some valuable intuition, it does not provide a good
approximation of the behavior of either the synthetic workload or the benchmarks.
Calculations show that the model constantly overestimates the utilization, sometimes by
more than a factor of two. The failure of this model suggests that the remote latency
process is not arenewal process.

Since the renewal process model does not yield accurate results, and since the
calculation of L1, isrelatively tedious, the details of the residual life calculation will be
omitted. To summarizethe L1, derivation, both the expectation and the variance of each
component of the remote latency (7)) must be calculated. These values are propagated
through to the residual life equation 7.5.

Some thought about the nature of shared memory accesses in multiprocessor pro-
grams sheds some light on the remote latency process. in many paralel agorithms,
when one processor makes a shared memory access, all of the other processes are also
making similar accesses. Thus, the accesses of requesting and responding nodes should
be highly correlated. Taking this observation to the logical extreme, a model could
assume that:

. (7.5)

Phases Hypothesis  If one node’s remote memory request coincides with a remote
access on the responding node, then the responding node’s access is exactly the same
type of access.

The name phases hypothesi s indicates the assumption that computation proceedsin
phases, during each of which all processors execute smilar functions. This intuition
is especialy true for single-program multiple-data applications like WORKER, which
synthesizes the same memory access pattern on every processor. The hypothesis leads
to anew value of 7;: (rts/2) replaces (r,Lr,.). r; corresponds to the predicate “if one
node’s remote memory request coincides with aremote access on the responding node;”
ts/2 corresponds to the consequent “then the responding node’s access is exactly the
same type of access.” Thistermist,/2 rather than ¢, because the expected residual life
when entering at arandom time into an interval of deterministic length 7 is Z/2. Thus,

Uphases = U | T; = (ril5/2)] (7.6)
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Section 7.3 compares the validity of the model without feedback and the phases
model. The rest of this section describes the derivation of all of the parametersin the
utilization equations.

7.2.2 Counting Eventsand Cycles

The parameters in equations 7.3, 7.4, and 7.6 that the model must calculate are T, s,
T,, r;, and t,. Average memory access latency may be stated in terms of the other
parameters:

Ta = hTh + lTl + TTT
= AT+ 1T A4 r(Topw + sT5)
Ta’hw ‘I‘ TSTS (77)

Thisequation usesthe standard formul ationfor amemory hierarchy, with 7', representing
the average remote access latency in a software-extended system. Note that the formula
for T, is exactly the same as the smple model used in Section 4.1.2. GivenT,, and 7,
the fraction of memory access time spent processing remote requests may be calculated
asry =11, /T,.

Since the model assumes a |oad/store memory architecture, the fraction of remote
requests that require software handling (s) and the associated overhead (¢,) can be
broken down into their read and write components. Let N, be the total number of
software-handled requests:

Ny = N, + Ny,

where N, and NN,, are the number of software-handled read and write requests, respec-
tively. Thus,

N

rN,

Not, + Nyt
N

where ¢, and ¢,, are the average latencies for using software to handle read and write
requests.

The memory access latency seen on the processor side (7)) also has read and write
components, but the breakdown depends on the implementation of the memory system:
the Alewifearchitectureincludes afeaturethat allowsthe hardwareto transmit read-only
copiesof datain parallel with the associated software handling. With thishardware read
transmit capability, read transactions may require software handling, but the software
is not in the critical path from the point of view of the requesting processor. Thus,
the number of requests delayed by software handling (/V,;) depends on this architectural

feature:
N { N, with hardware read transmit
d p—

N, + N, without hardware read transmit
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T, also depends on the same feature:

Nyt AN tw . i
ﬂpfo"]’gse without hardware read transmit

Y

. { tw with hardware read transmit

where ¢, prologue 1S the amount of time required before the software can transmit a block
of data. The components of the above quantities (V,, N, ¢,, and t,,) al depend on the
specific software-extended protocol and on each application’s worker-set behavior. For
example, they are all zerofor Dir,,H\gS_. The next few paragraphs detail the derivation
of the parametersfor the other protocols.

Dir,H;Ss < Dir,H,_1Swg For the directory protocols with two or more hardware
pointers per entry?, calculating the number of software-extended writes (V,,) and their
average latency (¢,,) is straightforward:

P
N, = > W,
k=il
> i1 (ktweara) Wi
Ny

ty, = tw,base +

Calculating the number of software-extended reads (/V,) and average latency (¢,)
is dightly more complicated, due to an option in the implementation of the extension
software. After thefirst directory overflow interrupt, the software can chooseto handleall
subsequent read requests. The software can also choose to reset the hardware directory
pointers, thereby allowing the hardware to continue processing read requests. Not only
does the pointer reset option allow parallelism between the hardware and software, it
alows every software-handled request to be amortized over the number of hardware
directory pointers. The following equations count the number of events and cycles with
and without this option:

S BRe . .
N, = R + =4 — with pointer reset option
{ S Ry without pointer reset option
.o { t& b?se + i%@‘"a with pointer reset option
! - “base;i dredra - \vithout pointer reset option

Dir,H1Susack and Dir, H1Seack  All of the event and cycle counts for the single-
pointer protocols are the same as for the multi-pointer protocols, with the exception
of the average software-extended write latency. ¢, is longer because the one-pointer
protocols must handle one or more acknowledgment messages in order to process write
transactions. For Dir,,H1Sus ack,

. Zf:z(tw,base + ktw,extra + (k - 1)tw,l,ack + tw,l,lack)Wk
= Nw 2

2"

1Dir,, H; Syg implements enough storage for two pointers.
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and for Di r, HlsNB‘LACK,

_ Zf:z(tw,base + ktw,extra + tw,l,lack) Wy
= N,

The amount of timeto handle an acknowledgment message in the middle of atransaction
IS twiacks and tw1jack Cycles are required to handle the last acknowledgment before
completing the transaction.

2"

Dir,HoSwsack  The software-only directory architecture is considerably more compli-
cated to model, because it has a much wider range of software-handled transactions.
In addition, the Alewife version of Dir,HoSysack attempts to optimize the time and
memory space required to handle small worker sets. Consequently, the model differen-
tiates between transactions involving small (sm) and larger (Ig) worker-set sizes. The
eguations used to count events and cycles are otherwise similar to the cal culations above:

P
N, = Y B
k=0
P
N, = S Wy
k=0
/ _ Zgzo(tr,o,sm,base + ktr,O,sm,e(tra)Rk + 2524 tr,O,Ing
T NT
1 _ Zgzo(tw,o,sm,base + ktw,O,sm,@(tra + (k - 1)tw,0,ack + tw,O,Iack) Wk +
w Nw
Zf:S(tW,O,Ig,base + ktw,o,lg,e(tra + (k - 1)tw,0,ack + tw,O,Iack) Wk
Ny

7.2.3 Restrictions and | naccuracies

As gpecified in the preceding section, the model calculations are valid only for the
software-extended protocols used in Alewife. However the model is purposely built
with an abstraction for the type of software-extension scheme: four values (N,, N, t,,
and ¢,,) encapsulate the protocol. Given the specification of a protocol not described
above, it would be relatively easy to recalculate values for these four values and to run
the model with these values.

Even though intuition behind multiprocessor algorithms and software-extended sys-
temsdrives the model, it is not obvious that the model can produce accurate predictions
of system performance. Certain assumptions of independence are particularly trouble-
some. For example, all of the input parameters (such as access ratios and latencies) are
assumed to be independent of the amount and latency of memory accesses handled by
software. This assumption should prove to be valid given large processor caches and
a high-bandwidth interconnection network, but certainly can not be verified a priori.
The next section proves that despite the smplicity of the model, its results match the
performance of the experimental systems described in Chapter 6.
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7.3 Validating the M odel

Before using the analytical model to make any predictions, it is important to validate
it by comparing its predictions against known experimental values. This section uses
both qualitative and quantitative methods to compare the model’s predictions with the
empirical results from the previous chapter. To summarize the results of this study:

e The model always matches the qualitative results of the experimental data.

e The phases model predicts the behavior of the synthetic WORKER application
better than the model without feedback.

e The no feedback model exhibits dightly less systematic error than the phases
model when trying to predict the performance of the six benchmarks.

7.3.1 The WORKER Synthetic Workload

Using the WORKER synthetic workload together with the NWO simulation system al-
lowsexperimentswith theentire cross-product of worker-set sizesand software-extended
systems. This software provides a good apparatus for developing and training the an-
alytical model. Figure 7-4 illustrates the results of this process by using the phases
model to compare the performance of various software-extended systems to Dir,, H\gS-
performance.

The graph in the figure reproduces the one in Figure 6-1 on page 68, which uses
simulation data to make the same comparison. Note that the performance metrics are not
exactly the same in the two figures! Figure 7-4 uses the ratio of processor utilizations,
while Figure 6-1 uses the (inverted) ratio of execution times. Were it not for the small
anomalies in the empirical data, it would be difficult to tell the difference between the
two sets of curves. Qualitatively, they are the same.

The results for Dir,,HoSus ack require some elaboration. Recall that the worker-set
behavior of WORKER iscompletely determined by its structure. A synthetic histogram
generator creates the worker-set behavior (R, and 1)) values required to produce the
results in Figure 7-4. When using the basic outputs of this histogram generator, the
model does not predict the risein performance at theleft end of the Dir,,HoSys ack Curve
(corresponding to small worker-set sizes).

Examination of the detailed statistics generated by NWO revealsathrashing situation
in each processor’s cache. This thrashing causes one node to send read-write copies of
memory blocks back to memory just before other nodes read the same blocks. This
scenario improves performance by converting dirty reads (Smilar in latency to writes)
into clean reads that do not require a protocol to send invalidations. Eliminating the
thrashing in the ssimulated system provesto be adifficult task, but adjusting the synthetic
histogram generator is easy. The Dir,,HoSwsack Ccurve in Figure 7-4 corresponds to
the data with the corrected worker-set histograms. Although the model underestimates
the software-only directory performance dlightly, it does show the same performance
increase at low worker-set sizes.
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Figure 7-4: Predicted performance of the synthetic workload, used to validate the model.
Compare to Figure 6-1.

Figure 7-5 presents a quantitative comparison of the model and the experimental
data. The scatter plots in the figure show the percent error of the model versus the
number of hardware directory pointers. The error in the model isdefined as

error = empirical result — model’s prediction
execution cycles for Dir,, HygS- _ Umode
execution cyclesfor Dir,HxSya  Unw

The percent error is the error divided by the empirical result, multiplied by 100. The
figure shows percent error for both ¢, (8) and Uphases (D).

The dashed line on the plots indicates no error. Following from the definition of
error, positive error (above the line) indicates that the model has underpredicted the
system performance; negative error (below the line) indicates an overprediction. Since
both modelsignore contention, they should both overpredict performance: however, the
model without feedback systematically underpredicts the system performance, while
the phases model overpredicts performance. Thus, the feedback modeled in Upnases IS
present in the synthetic benchmark and has a second-order effect on performance.

Table 7.5 summarizes the characteristics of the error distribution. It lists the dis-
tributions expectation (E[error]) and standard deviation (c[error]), as well as the 90%
confidence interval asdefined in [35]. The low absolute expected error indicates a good
match between the phases model and the synthetic benchmark.
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Figure 7-6: Model error in predictions of benchmark performance.
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Workload Model E[error] | o[error] | 90% Confidence Interval

Synthetic | No Feedback | 0.0361 | 0.0186 (0.0317,0.0404)

Synthetic Phases -0.0262 | 0.0259 (-0.0322,0.0202)
Benchmarks | No Feedback | -0.0662 | 0.0600 (-0.0876,-0.0447)
Benchmarks Phases -0.0777 | 0.0672 (-0.102,-0.0537)

Table 7.5: Summary of error in anaytical model.

7.3.2 TheBenchmarks

The nfb model’s predictions for the benchmarks, which are graphed in Figure 7-7, also
match the qualitative results of the empirical study. All of the major conclusions derived
from Figure 6-2 on page 70 could be derived equally well from the analytical model.
However, predicting the performance of applications is by nature more complicated
than modeling a synthetic workload. In fact, the quantitative comparison in Figure 7-6
shows some systematic error in the model. The error in thisfigureis calculated as

error = empirical result — model’s prediction
speedup for Dir, Hx Sya _ Unoge
speedup for Dir, HngS- Unw

Figure 7-6 showsthat the model without feedback tendsto overestimate the system’s
performance, and the phases model makes slightly worse predictions. Table 7.5 quanti-
fiesthe systematic error. The error is probably caused by the fact that the model ignores
network hot-spots and computation bottlenecks, which are serious factorsin real mul-
tiprocessor applications. The error is particularly high for the software-only directory
(Dir,,HoS\s ack), Which achieves such low performance that small mispredictions look
relatively large on a percent error graph.

The reader should bear in mind that small differencesin processor utilization are not
significant; yet, the larger percent error for Dir,,HoSys ack Usually does not obscure the
qualitative conclusions from the model. Since Dir, HoSusack requires more software
than any of the other software-extended memory systems, the software-only directory
tends to exhibit much more sensitivity to architectural features.

In fact, the model never misorders the performance of different software-extended
schemes. Thus, the model may be used to choose between alternative implementations,
if not to predict their relative performance exactly.

7.4 Modd Predictions

Thereal utility of the analytical model isitsability to extend the exploration of software-
extended memory systems beyond the limits of the Alewife implementations. This
section uses the model to investigate the effect of a number architectural mechanisms
and features, including trap latency, code efficiency, dedicated memory processors,
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Figure 7-7: Predicted performance of benchmark applications, used to validate the
model. Compareto Figure 6-2.
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network speed, and protocol implementation details. The time required to perform this
kind of study by fabricating actual hardware or by building and running a smulation
system would have been prohibitive.

Thefigures presented below differ dlightly from the graphsin previous sections. The
performance metric on the vertical axis is always raw processor utilization, while the
horizontal axis shows the number of hardware directory pointers. All of the figures plot
the model’s predictionsfor a 64 processor system. In order to provide areference, every
graph contains a curve marked with unfilled triangles. This curve givesthe performance
of the stock Alewife architecture, enhanced only to implement the full range of hardware
pointers.

The units of the x-axis require some explanation: since many of the architectural
features discussed below primarily affect the protocols with small hardware directories,
the graphs emphasize the left end of the scale by using a linear scale. The associated
curve segments are plotted with solid lines. The right end of the scale is approximately
logarithmic, plotting 8, 12, 16, 32, and 64 hardware pointers. Dashed curve segments
indicate this portion of the graph.

7.4.1 Trap Latency

One of the most common questions about the Alewife memory system involves the
relationship between software-extended performance and the trap latency of the system.
Trap latency is defined as the time between the instant that the processor receives an
asynchronous interrupt (or synchronous exception) and the time that it processes the
first instruction of the interrupt handling code. (For the purposes of this discussion, the
prologue instructions that save machine state are not considered part of the handling
code.)

Dueto Alewife’'smechanismsfor performing afast context switch, itstrap latency is
about 10 cycles (see Table 6.2), plus 3 cyclesto flush the processor’s pipeline. Thistrap
latency is extremely low, especially compared to heavy-weight process switch times,
which can take thousands of cycles in popular operating systems. What happens to the
performance of a software-extended system when trap latency increases?

Figure 7-8 answers this question by showing the model’s predictions for systems
with 10, 100, and 1000-cycletrap latency. The 10 cycle latency indicates the aggressive
Alewife implementation; 100 cycles corresponds to an architecture that does not incor-
porate specia features for context-switching; 1000 cycles indicates a reasonable lower
bound on performance.

The figure shows that, within an order of magnitude, trap latency does not signifi-
cantly affect the performanceof software-extended systems. Given appropriatehardware
support — in the form of enough directory pointersto contain major application worker
sets — even two orders of magnitude does not cause a dramatic change in performance.
In other words, an architecture similar to Alewife in all respects except trap latency
would not perform significantly different on any of the benchmarks except EVOLVE.
This benchmark would suffer by afactor of about 30% with the long trap latency.

At the other end of the scale, the software-only scheme does show sensitivity tolarge
changes in trap latency. 1000-cycle trap latency causes Dir,,HoSys ack performance

97



- 10 A 10 cycle traps - 10 A 10 cycle traps
2 O 100 cycle traps 2 O 100 cycle traps
509} 5 0.9

N <& 1000 cycle traps N < 1000 cycle traps
5081 508

2 207

[%2] [}

it 8 0.6

o o

o o

0.2 L
0.1} 0.1
0.0 Lu | | | | | | 0.0 Lu | | | | | |
0 2 4 6 8 16 64 0 2 4 6 8 16 64
Number of Hardware Pointers Number of Hardware Pointers
(a) Traveling Salesman Problem (TSP) (b) Adaptive Quadrature (AQ)
- 10 A 10 cycle traps - 10 A 10 cycle traps
2 O 100 cycle traps 2 O 100 cycle traps
5 091 s 0.9
N < 1000 cycle traps N < 1000 cycle traps
E 0.8} E 0.8
o o
[} [}
[} [}
Q Q
(5] (5]
o o
o o

0.0 Lu | | | | | | 0.0 Lu | | | | | |
0 2 4 6 8 16 64 0 2 4 6 8 16 64
Number of Hardware Pointers Number of Hardware Pointers
(c) Static Multigrid (SMGRID) (d) Genome Evolution (EVOLVE)
- 10 A 10 cycle traps - 10 A 10 cycle traps
2 O 100 cycle traps 2 O 100 cycle traps
5091 s 0.9
N < 1000 cycle traps N < 1000 cycle traps
& 0.8} &
207} 2
[%2] [%2]
S06L ]
o o
& o051 a

0.0

| |
2 4 6 8 16 64
Number of Hardware Pointers

(e) MP3D

0.1

0.0

0 2 4 6 8

| |
16 64
Number of Hardware Pointers

(f) Water

Figure 7-8: Modeled performance of software-extended schemes with trap latency
increased to 100 cycles and 1000 cycles.
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to suffer by factors ranging from 36% to 72%. Section 7.4.3 explores a different
implementation of software-only directoriesthat avoidstraps entirely.

7.4.2 Code Efficiency

Another factor that affects the performance of software-extended protocolsis the qual-
ity of the memory-system software itself. Section 6.1 analyzes the difference between
protocol handlers written with the flexible coherence interface, versus hand-tuned ver-
sions of the same handlers. The investigation shows that hand-coding can increase the
efficiency of the memory system by afactor of 2 or 3.

Figure7-9 continuesthisinvestigation by predicting theincreased performance of the
benchmark suite, assuming that protocol code efficiency can be increased by afactor of
2 or 4. The speed of the handlers significantly affects the performance of the software-
only directory, but has no effect on directories that are large enough to contain each
benchmark’s worker sets.

This result suggests a trade-off between cost and flexibility: a flexible interface
generally requires layers of abstraction, and therefore lower code efficiency than aless
flexible system may achieve. Increasing the cost of a system by adding directory pointers
(DRAM chips) essentially buys flexibility, or the ability to add abstraction without
incurring a performance penalty. Unfortunately, experience shows that flexibility is
amost indispensable when writing complex protocols such as Dir,HoSsack- This
point will surface again in the following section.

In any case, gratuitously poor code quality never benefits a system. Over time, both
the Alewife compiler and appropriate portions of the flexible coherence interface will
improve. Faster protocol handlers should have an impact on benchmark performance,
especidly if they accelerate the system during bottleneck computations, which are
neglected by the analytical model. For example, Figure 6-4 shows the performance
of TSP running on 256 nodes. In this configuration, the time required to distribute
many copies of data impacts the performance of the software-extended systems. Faster
protocol handlers would help reduce the impact of thistype of transient effect.

7.4.3 Dedicated Memory Processors

The sengitivity of Dir,,HoSwsack tO trap latency and code efficiency suggests an alter-
native design approach for multiprocessor memory systems: build two-processor nodes
asin*T [60], and dedicate one of the processors exclusively to handling software for a
memory system. Kuskin [51] and Reinhardt [66] claim that such a methodology results
in flexible, high-performance systems.

Figure 7-10 uses the model to examine these claims. In order to predict the perfor-
mance of dual processor systems, the model uses the processor utilization equation 7.2
(without the software-extension term), but uses equation 7.7 to predict the average mem-
ory access latency. The figure shows the performance of the base software-extended
system (triangles) with one processor and a communications and memory management
unit (CMMU), a two-processor system using the same memory-system software (cir-
cles), and atwo-processor system than manages to increase code-efficiency by a heroic
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Figure 7-9: Modeled performance of software-extended schemes with code efficiency
improved by afactor of 2 and afactor of 4.
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factor of 10 (squares).

The model predicts that a dedicated processor and limited directories are mutually
exclusive hardware acceleration techniques. the increase in performance achieved by
combining these two features never justifies their combined cost. In fact, EVOLVE
shows the only significant increase in performance generated by a second processor.
Chapter 8 discusses costless changes to the LimitLESS system that produce similar
gainsin performance.

It is important to note that smply dedicating a processor to Dir,,HoSws ack (repre-
sented by the unfilled circle at 7 = 0) does not produce a system that achieves the same
performance as the Alewife Dir,,HsSys (represented by the unfilled triangle at : = 5).
For al of the benchmarks, the code efficiency on the two processor systems must reach
afactor of about 10 in order to achieve comparable performance.

In practice, it is difficult to implement such fast memory-system software without
serioudly sacrificing the quality of abstraction, and therefore flexibility. Dual processor
systems require a combination of special processor mechanisms implemented specifi-
cally for memory-system software and either hand-tuned code or a completely new type
of compilation technol ogy.

Up to this point, the analysis of dual processor systems has assumed that all of
the Dir,,HoSws ack implementationstake advantage of Alewife’'s optimization for purely
intranode accesses. (See Section 3.1.) The filled triangle, circle, and square on the
graphs in Figure 7-10 show the effect of removing this optimization from each of the
proposed systems. The model predicts that three out of the six benchmarks would
perform significantly worse without this optimization. Thus, dual processor systems are
extremely sensitive to the efficiency of the memory system software, especially when
the software impacts purely intranode accesses.

7.4.4 Network Speed

What range of operating conditions require the accel eration afforded by hardware direc-
toriesor by adual processor architecture? One of the key parametersof a multiprocessor
architecture isthe network speed, measured by the latency of internode communication.
In the Alewife system, the network latency is about the same order of magnitude as the
hardware memory access time. Figure 7-11 presents graphs that show the relationship
between network speed and software-extended systems.

The model adjusts network latency by multiplying the average remote access latency
(Tt nw) by factorsof 5, 10, 20, and 100. Thetop curvein each graph showsthe predictions
for the base system, and the key indicates the base value of 7;n,. High-performance
multiprocessors should have network latencies close to or faster than Alewife's, com-
munication in networks of workstations is between 20 and 100 times slower than in
Alewife. The new adjustment constitutes a major — and unvalidated — change in the
model! Thus, the graphs certainly do not predict performance accurately, but they do
show the relative importance of different parameters of the model .

For al of the benchmarks, the relative benefit of the hardware directory pointers
decreases as network latency increases. This trend indicates that hardware acceleration
isnot useful for systems with slow networks. In fact, the curvesin Figure 7-11 indicate
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Figure 7-10: Modeled performance of software-extended schemes with three different
architectures. Solid symbols show the performance of the zero-pointer scheme without
hardware support for purely intranode accesses.
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that asoftware-only directory does not seriously impact performancewhen remote access
latencies are high.

Of course, the graphs also show that as the network latency increases, performance
decreases to an unacceptable level. However, the model’s predictions about absolute
performance are predicated on a very specific memory hierarchy: namely, one that
performs 16-byte transfers to fetch data into 64 Kbyte caches. Actua systems with
long network latencies must transfer much larger blocks of datain order to amortize the
network latency. If such systems can tolerate long communication delays, they should
also be able to tolerate the extra processing required by software-only directories.

For systems with slow networks, software-only directories (or even completely soft-
ware distributed shared memory) should provide reasonable aternatives for implement-
ing shared memory. This conclusion leadsto an interesting scheme for using theflexible
coherence interface to implement arange of memory systems. Section 8.5 describesthis
scheme.

7.4.5 Protocol |mplementation Details

This section examinesthe effects of anumber of details of coherence protocol implemen-
tation. These detailstend to have only aminor impact on the cost and the performance of
software-extended systems. Although the conclusions are not terribly surprising, thisin-
vestigation showsthat the model isuseful for understanding both important architectural
mechanisms and the inner workings of a system.

Pointer reset Alewife's pointer reset feature allows the software to choose to reset
the hardware directory pointers. This mechanism allows the system to avoid /(¢ +
1) interrupts caused by directory overflow events on a memory block, after the first
such event. Figure 7-12 shows the effects of this feature. The curves marked with
unfilled symbols show that when trap latency is low, the pointer reset feature improves
performance only dightly: the 6% improvement for Dir,,H,Ss running EVOLVE is
the largest in any of the graphs. The curves with filled symbols show that resetting the
directory is more important when trap latency is high. When software handling takes a
long time, it isimportant to avoid as many interrupts as possible.

Hardwaretransmit Figure 7-13 shows the performance benefit of Alewife's feature
that allows the hardware to transmit read-only copies of datain parallel with the associ-
ated software handling. (Dir,,HoSysack Can not use this feature.) Since thisfeatureisa
prerequisitefor pointer reset, the curves marked with circles show the model’ s prediction
for systems without either the hardware transmit or the pointer reset mechanism.
Software-extended architectures with longer trap latencies benefit from transmitting
data in hardware, because the feature eliminates the need for many interrupts. The
curves marked with filled symbols show the performance improvement when the trap
latency is1000 cycles. Withtheexception of AQ, all of the benchmarksrealizeimproved
performance, sometimes even when the number of hardware pointersis large.
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Figure 7-11: Modeled performance of software-extended schemes with increasing net-
work latency. The base remote latencies are experimental values from Dir,HyxgS-
simulations.
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Figure 7-12: Modeled performance of software-extended schemes with and without the
software optimization that resets the hardware directory pointers after storing them in
local memory.
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The contribution of pointer reset is a little less than half of the total performance
improvement derived from the two mechanisms combined. This observation is true
because the hardware reset feature removes al of the directory-overflow interruptsfrom
the average memory access time (77,), while the pointer reset option eliminates the need
foronly 7/(z + 1) of the interrupts on responding nodes.

Local bit The local bit feature in Alewife provides an extra one-bit pointer in every
directory entry that is used exclusively for intranode accesses. This feature is useful
primarily because it ensures that directory overflows will never occur on intranode
memory accesses, thereby simplifying the design of the CMMU and the memory-
system software. 1n addition, this bit corresponds to the amount of mechanism required
for Dir,HoSusack to optimize purely intranode memory accesses.

Figure 7-14 shows that the feature is very important for the software-only directory.
(TheDir,,HoS\s ack circlesinthefigure correspondto thefilled trianglesin Figure 7-10.)
The local bit also has a dight performance benefit for the other protocols, because it
provides one additional pointer when local nodes are members of important worker sets.
Thus, the local-bit shifts the SMGRID and EVOLV E performance curves to the left by
one hardware pointer.

7.5 Node Architecture

The previous section used the worker-set model to predict the performance of software-
extended systems as a function of features of the memory system. This section extends
the scope of the investigation by exploring the node architecture in parallel systems.
First, the model predicts the change in performance when using superscalar processors,
as opposed to Alewife's Sparcle (single-issue RISC) processors. Then, the model shows
the impact of building a machine with several processors per node, rather than asingle
processor per node.

7.5.1 Superscalar Processors

Throughout the preceding analysis, al timeintervalswere measured in units of processor
clock cycles. Since Alewife has a single-issue RISC processor, a clock cycle is equal
to the time required to retire each non-memory, integer instruction. Superscalar proces-
sors with more functional units and higher execution bandwidths suffer from intrinsic
hardware latency in amemory system more than Alewife's conventional processors.
Theworker-set model can estimate theinteraction between software-extended shared
memory and superscalar processors by changing timeunits. Let the processor bandwidth
(b) be equal to the peak number of instructionsthat can beretired per cycle. Multiplying
themodel’stimeinterval by theinverse of thisbandwidth (1/5) approximates processors
that can retire 6 instructions per cycle. This transformation is equivalent to multiplying
the hardware memory access latencies (7; and 7} ,) by the processor bandwidth (6). No
other latencies need to be modified: assuming awell-engineered memory hierarchy, the
effective cache hit latency (77,) would be equal to the new time interval; and assuming
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Figure 7-13: Modeled performance of software-extended schemes with and without the
optimization that alows hardware to transmit read-only copies of data before invoking
software handlers.
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Figure 7-14: Modeled performance of software-extended schemes with and without the
hardware optimization that employsaspecia one-bit directory pointer for thelocal node.
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appropriate compilation technology, protocol software handling (represented by the ¢,
parameters) would speed up with the processors.

Figure 7-15 shows the predicted behavior of the system with superscalar processors
running the six benchmark applications. Asin the previous sections, the horizontal axis
of the graph shows the number of hardware pointersin the software-extended coherence
scheme. The vertical axis shows the instructions per cycle achieved for each node
architecture, calculated as utilization ((n,) multiplied by the processor bandwidth (b).
This calculation makes the optimistic assumption that the benchmarks exhibit enough
instruction-level parallelism to fill the functional units of any superscalar processor, up
to 8-way instructionissue. Conversely, the model makes the pessimistic assumption that
the memory system is the performance bottleneck. Each line on the graph shows the
performancefor adifferent processor bandwidth value.

The results show that all of the applications (except MP3D) could benefit from
superscalar processors. However, just as single-issue processors will not achieve 100%
utilization, superscalar processors will not achieve their peak instruction issue rate. Due
to the impact of memory latency and bandwidth limitations, doubling the processor
bandwidth never doubles actual performance. Certainly, increasing intranode memory
bandwidth along with processor bandwidth would help ameliorate some of this effect.

In addition, hardware support for shared memory (in the form of limited direc-
tories) proves to be extremely important when a system has superscalar processors.
Even though multiple-issue processors might be able to execute software-extension
code swiftly, the utilization penalty of stealing processor cycles increases with pro-
cessor bandwidth. While the relative performance difference between Dir,,HoSws ack
and Dir,HngS_ decreases as processor bandwidth increases, the absolute differencein
performanceincreases with processor bandwidth.

7.5.2 Multiple Processorsper Node

Another parameter in multiprocessor node design involves the number of processors
per node. The nodes of a number of existing parallel architectures consist of several
processors and memory modules connected by abus[55, 79, 23]. These clustered nodes
communicate over ahigher-level interconnection network. From the point of view of the
memory system, implementing multiple processors per node has two beneficial effects
and one detrimental effect. First, the datalocality changes. since the amount of memory
in each node increases with the number of processors, alarger percentage of an applica-
tion’sdataresidesin each node, increasing theratio of local to remote accesses. Second,
the worker-set profiles collapse: each “worker” corresponds to severa processors, so
the worker-set sizes become smaller (assuming proper task and data placement). This
effect reduces the demands for coherence directory pointers. The locality and worker-
set effects decrease the demands on the memory system and interconnection network,
thereby improving performance.

Third, the local and remote memory access times increase. No matter how well a
bus is engineered, physical limitations make a multidrop bus slower than a one-to-one
link between a processor and alocal memory module. In addition, contention for shared
memory resources decreases the memory bandwidth available to each processor. The
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Figure 7-15: Modeled performance of software-extended schemes with superscalar
processors. Processor bandwidth indicates the peak number of instructions per cycle.
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results below show that this effect can cancel any improvementsin data locality.

In order to separate the effects of data locality and access time, first consider a
hypothetical system that clusters processors without any additional intranode latency or
contention. Thistype of architecture can be modeled by accounting for the changes in
locality (modifying/ and ) and in worker-set profiles(scaling the R, and 1W/,, sequences).

Figure7-16 showsthe predicted performancefor each of thesix benchmarks, running
on this hypothetical system. The horizontal axis shows the number of processors per
node, and the vertical axis shows processor utilization. The general trend in each graph
is for the performance of all of the schemes (except for Dir,,HoSus ack) tO @pproach
the performance of Dir,HngS_ as the number of processors per node increases. This
trend is caused by the collapsing worker-sets. The (very) dight increase in Dir,,HngS-
performanceis dueto the increasein the local to remote access ratio.

With at least two hardware pointers(Dir,,H,Sys), the performance benefit of multiple
processorsissmall, except when running the EVOLVE application. Collapsing thelarge
worker-setsin EVOLVE dramatically improves the performance of all of the software-
extended schemes. With only two processors per node, Dir,,HsSyg performsas well as
Dir,HnxgS_. On the other hand, Dir,,HoSws ack improves only dightly: software-only
directories hamper performance even with multiple processors per node.

Whilethese resultsmake clustered nodes|ook moderately promising, they do not take
into account the effect of increased memory access time. The worker-set model can help
understand this effect by quantifying how much latency can increase before it cancels
the benefits of multiple processors per node. A good metric for examining the trade-off
isthe latency equivalent, theincrease in latency that causes a clustered-node architecture
to achieve exactly the same performance as an architecture with single-processor nodes.

For example, Figure7-16(e) showsthat MP3D, running on asystem with Dir,,HsSs,
will exhibit aprocessor utilization of 0.36 with one processor per nodeand 0.38 with eight
processors per node. However, solving the worker set model for the latency equivalent
shows that if the local memory access latency increases by 61% (latency equivalent =
1.61), the system with eight processors per node achieves a processor utilization of 0.36,
the same as the architecture with single-processor nodes. Building a node with eight
processors rather than with one processor would surely increase local memory latency
by more than 61%, so a system with single-processor nodes would run MP3D faster than
a system with clustered nodes.

Figure 7-17 shows the latency equivalentsfor the benchmarks running on the gamut
of node architectures. The vertical axis of these graphs plots the latency equivalent for
each configuration on a logarithmic scale. Figure 7-17(e) shows the latency equivalent
described above: the triangle at (8, 1.61) indicates that for eight processors per node, a
factor of 1.61 increase in latency negates the benefits of multiple processors per node.

For Dir,H,Sg, Dir,,HsSs, and Dir,,HxgS_, the latency equivalent remains below
afactor of 2.5 for al of the benchmarks except EVOLVE. This evidence indicates that
clustered nodes would have to be engineered extremely well to beat the performance
of single-processor nodes. Since single-processor nodes are easier to build and permit
more modular packaging than clustered nodes, parallel architectureswith Dir,,H,Sys (or
a higher-performance protocol) should use single-processor nodes.

This concluson must be weakened when considering applications like EVOLVE.
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Figure 7-16: Modeled performance of software-extended schemes with multiple pro-
cessors per node, assuming constant intranode latency and contention.
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Figure 7-17: Latency equivalent, the increase in latency that causes a system with
multiple processors per node to perform the same as a system with single-processor
nodes.
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Figure 7-17(d) shows that the performance improvements for EVOLVE promised by
Figure 7-16(d) can be realized with ordinary engineering techniques. The high latency
equivalents indicate that it would be easy to build a clustered-node system that outper-
formsasingle-nodesystem. |If EVOLVE isatypical application, then architecturescould
improve performance by implementing multiple processors per node, thereby collapsing
worker sets.

Dir,,HoSws ack @nd Dir,,H1Syg ack could also benefit from clustered nodes. However,
an architect would need strong motivation to implement one of these inexpensive proto-
cols, yet increase the system cost by implementing multiple processors per node. One
such design might use Dir,, HoSys ack t0 connect preexisting bus-based multiprocessors
into alarger system.

7.6 TheWorkload Space

This section drives the model with completely synthetic inputs in order to investigate
the relationship between an application’s worker-set behavior and the performance of
software-extended systems. This study isintended to give someinsight into the behavior
of shared memory, rather than making any specific predictions.

The synthetic inputs are primarily a composite of the six benchmark applications.
The hit ratios and access latencies in the input set are held constant at values that are
similar to those found in the benchmarks. The worker-set inputs smulate a bimodal
distribution of data objects. one type of data object has a small worker-set size, and the
other type of data object is shared by every node in the system. Since the workload is
completely synthetic, it is easy to model 256 processors, rather than 64.

Three variables in the worker-set inputs are changed. First, the size of the smaller
worker sets ranges from one node to P. The default worker-set sizeis 5. Second, the
percentage of data objects with the small worker-set size varies from 0% to 100%. The
default percentage of small worker setsis50%. Third, the percentage of dataobjectsthat
are modified (as opposed to read-only) variesfrom 0% to 100%. The default percentage
of written objectsis 50%.

The data access model requires a bit of explanation. If a data object iswritten and
itsworker-set size is S, then the worker-set histograms contain exactly .S reads and one
write for that object. Consider two classes of data objects, one with worker-set size 5,
and the other with worker-set size S, where 5; < S,. If both of these classes have the
same percentage of modified objects, then the class with worker-set size S; will have a
higher write:read ratio than the class with worker-set size S,,.

This effect is visible in Figure 7-18. The figure projects a three-dimensional plot
with the number of hardware pointers and the size of the smaller worker set on the
horizontal axes, and processor utilization on the vertical axis. The axis with the number
of pointershasasimilar scale to thetwo-dimensional plotsin the previous sections. Low
numbers of hardware pointers are plotted on a linear scale; high numbers are plotted
on alogarithmic scale. The line on the upper right-hand side of this graph (and of the
other two graphs in this section) shows the Dir,,HxgS_ performance for the synthetic
workload. All of the points on thisline correspond to a processor utilization of 0.58.
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Figure 7-18: Dependence of performance on worker-set size and hardware directory
size.

There are two plateaus in the graph: the lower plateau in the foreground of the plot
corresponds to the performance of software-extended systems that implement at least
two directory pointersin hardware. The cliff in front of this plateau indicates the lower
performance of Dir,,HoSys ack @nd Dir,,HiSysack- The second plateau corresponds to
the protocols that implement enough hardware pointers to contain the small worker
sets. A more complicated worker-set profile would create one plateau for every different
worker-set size.

The cliff at the far end of the higher plateau indicates the jump in performance
between the software-extended systems and Dir,,HngS_ . Thiscliff iscaused by the data
objects that are shared by every processor in the system. The cliff between the two
plateaus indicates the increase in performance achieved by processing all of the small
worker sets in hardware. The height of this cliff depends on thewrite:read ratio. Thus,
the cliff is higher on the left side of the graph where worker sets are small than on the
right side of the graph.

Figure 7-19 shows the effect of the write:read ratio more effectively, because it
holds all worker-set variables constant, except the percentage of modified data objects
(measured by the left axis). The cliff between the two plateaus is now parallel to the
y-axis, because the worker set isfixed at 5. For the same reason, the 50% curve in this
figureis exactly the same as the curve in Figure 7-18 with aworker-set size equal to 5.

Both Dir,,HoSus ack @nd Dir,,H1 Sys ack improve with lower percentages of modified
data, because these protocols handle the invalidation process entirely in software. The
Dir,H1Susack curveis particularly dramatic: at 0% data objects modified, the protocol
performs aimost as well as Dir,,H,S. On this side of the plot, the only difference
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Figure 7-19: Dependence of performance on percentage of modified data and hardware
directory size.

between the two schemes is the extra hardware directory pointer. At 100% data objects
modified, Dir,,H; S ack performs approximately the same as Dir,,HoSus ack, because
processing invalidations becomes the protocols dominant activity.

Figure 7-20 shows the effect of the balance of the two worker-set sizes. The left
axis now shows the percent of the data objects that are shared by all of the nodesin the
system, as opposed to the data objects shared by only 5 nodes. Again, the 50% curvein
this graph is the same as the curve in Figure 7-18 with worker-set size equal to 5, and
the same as the 50% curve in Figure 7-19.

The figure shows that when few data objects are widely-shared, thereis a steep cliff
between the software-extended systems with too few pointers and the ones with enough
pointers to hold the smaller worker set. The cliff is steep, because the second plateau
reaches the performance of Dir,,H\gS._ .

The height of the cliff seems to belie the claim that software-extended systems
offer a graceful degradation in performance. This claim remains true for most real
workloads, which have a more complicated range of worker-set sizes compared to the
simple bimodal distribution used to generate this plot. Even with abimodal distribution,
the performance of the Dir,,H x Syg protocol sshould still be higher than the corresponding
limited directories (Dir;HngS. ), because the software-extended directories do not suffer
from pointer thrashing.

When most data objects are widely-shared, the cliff disappears and the two plateaus
merge together at a relatively low processor utilization. Given this type of worker-set
behavior, none of the software-extended protocol s performwell compared toDir,, HygS_ .
The next chapter describes three techniques that use the flexibility of the software-
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Figure 7-20: Dependence of performance on mix of worker-set sizes and hardware
directory size.

extended design to help eliminate the problems caused by widely-shared data.

7.7 Conclusonsand an Open Question

The model answers a number of guestions about the sensitivity of software-extended
systems to architectural mechanisms and to application workloads. If desired, this
analytical tool may be expanded to incorporate a wider range of software-extended
systems. The conclusions may be divided roughly into those that are valid for software-
extended systems that incorporate alimited hardware directory, and those that are valid
for the software-only directory architecture.

Given an appropriate number of hardware pointers, software-extended systems are
not sensitive to an order of magnitude differencein trap latency, but do require a better
implementation of interruptsthanisprovided by most popular operating systems. Adding
hardware directories to a system buys insengitivity to memory-system code efficiency,
thereby encouraging flexibility. Adding an inexpensive mechanism that streamlines
intranode accesses is useful, but not essential. Hardware directories and dedicated
memory-system processors are mutually exclusive: having one obviates the need for the
other. Finaly, hardwaredirectoriesare uselessin systemswith extremely slow networks.

Implementing software-only directories is more problematic, even when the system
dedicates processors for the exclusive use of the memory system. The performance
of such systems depends strongly on the efficiency of the memory-system software
and on mechanisms that streamline intranode accesses. This sengitivity stems from the
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fact that these systems expend hardware on al memory accesses, instead of accelerating
common case accesses. Contrary to the conventional wisdom, the sensitivity of software-
only schemes may result in fewer abstractions, and therefore less flexibility in actual
implementations. Without the devel opment of a new compilation strategy, protocolsfor
software-only directorieswill have to be painstakingly hand-coded.

One important metric neglected by the analytical model is the cost of software-
extended systems, in terms of both component price and design time: is the cost of
Dir,,Hx Ss close to a standard processor/MMU combination, or do software-extended
systems cost about the same as a dual-processor system? There are arguments for both
comparisons. Certainly, atypical virtual memory system requiresaunit with associative
memory, extra memory for page tables, and a processor interface. On the other hand,
the first iteration of the A-1000 CMMU required more design time and gates than did
Sparcle, the A-1000 processor. An evaluation of the costsinvolved in building each type
of shared-memory system will play a critical role in determining the implementation
(and even the existence) of large-scale, shared memory systems.
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Chapter 8

Smart Memory Systems

The philosophy of shared memory isto makethe application programmer’sjob aseasy as
possible. Giventhisgoal, the memory systems described in the previouschaptersachieve
only partial success. Although the basic Dir,,Hx Sy protocols do provide a convenient
programming model at reasonable cost, they do nothing to help the programmer make
the most efficient use of a multiprocessor.

Implementing part of a memory system in software presents an opportunity for
the system designer to do much more for application programmers. Incorporating
intelligence into the software can allow the system to improve application performance
with and without the help of the programmer. This chapter presents three methods for
building this kind of smart memory system: adaptive broadcast protocols; LimitLESS
profiling; and a profile-detect-optimize scheme. The following research is not intended
to be a definitive work on the topic of software-enhanced memory systems; rather, it
attempts to indicate directions and to provide motivation for future investigation.

8.1 Challenges

Two interwoven challenges emerge when trying to build asmart memory system: collec-
tion of performance data and information feedback. Data collection refers to the ability
of a system to measure its own performance. If a measurement technique is to become
part of the permanent, everyday operation of a system, it must have low overhead in
terms of both computation and memory usage. That is, it must be simple. Expensive
and complicated measurements a so have a place in the system, but they tend to be used
during the development phase of applications rather than as part of production versions.
In any case, the more overhead required by a measurement technique, the lessit will be
used in practice.

Information feedback involves transforming measurements into performance im-
provement. By far, the most convenient timefor providing feedback (for both the system
designer and the programmer) ison-line, during the actual operation of the system. Inthe
best scenario, a system can adapt to various memory access patterns while a programis
running. The better the performance improvement, the more complicated the measure-
ment, feedback, and optimization can be. However in most cases, memory systemswith

119



latencies on the order of a microsecond require this kind of dynamic feedback mecha-
nism to be extraordinarily smple. Section 8.2 describes one technique for alowing a
software-extended memory system to adapt dynamically to program behavior.

Due to the short lengths of time involved, more complicated feedback must take
place during the development of an application. The general methodology requires the
programmer to put the system into a special state before running a program. While the
system runsthe program, it profiles the execution, measuring and recording performance
data. At some point, the programmer requests the system to produce a report that
summarizesthe gathered information. Typically, the production versions of applications
do not make use of a system'’s profiling capability.

Unfortunately, this static feedback technique requires mechanisms to convert mea-
surements of the dynamic operation of the system into information about the program
itself. This conversion process requires cooperation between the compiler and the smart
memory system. Such cooperation is made difficult by dynamic data allocation and by
the aliasing problem.

Most programs use someform of dynamic dataallocation, which preventsacompiler
(evenincombinationwith alinker and loader) from knowing theactual memory addresses
of dataobjects. Thus, while amemory system can easily collect information that relates
memory addresses to data object behavior, it must feed the compiler information that
maps instructions (or program counters) to behavior. Section 8.3 describes a scheme
for Alewife that produces such amapping. The compiler can then correlate instructions
with positionsin a program’s source code, thereby compl eting the feedback loop.

When presented in an appropriate human-readable format, this type of information
is often helpful to the programmer. Information about the how a program uses shared
memory often indicates ways for a programmer to optimize the performance. Even so,
it is much more convenient for the programmer when the compiler and memory system
can combine to optimize performance automatically.

When a solution to the challenge of dynamic data allocation exists, the aliasing
problem still makes automatic feedback difficult: given a variable, it is usually not
possible for acompiler to track all of the accesses to the variable throughout a program.
Conversely, givenaninstructionthat accesses memory, itisoftenimpossibleto determine
all of thevariablesthat correspond to that access. Any completely automatic optimization
scheme must function in theabsence of completeinformation about the mapping between
variables and program counters. Section 8.4 describes a system that addresses this
challenge by asking the programmer for just enough information to solve the aliasing
problem. After profiling and feedback steps, the system automatically performs safe
optimizations on the program. Such optimizations generally improve performance, and
never cause a program to produce the wrong results.

8.2 Adaptive Broadcast Protocols

The premise underlying the LimitLESS protocols states that most, but not all, data
objectsareaccessed by small worker sets. Consequently, thefamily of software-extended
memory systems provides graceful degradation in performance as the amount of widely-
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shared data increases.

But how graceful? When transforming a memory block from Read-Only to Read-
Write state, both the Dir,HngS. and its naive Dir,,Hx Syg extensions transmit one
invalidation and receive one acknowledgment message for every member of the worker
set. Thus, the time and communication bandwidth required for this transition grows
linearly with worker-set size. Although the constant factorsarerelatively low, especially
for the unscalable Dir,,HngS. protocol, the invalidation process becomes a bottleneck
in systems with alarge number of processors.

Software-extended systems provide an efficient alternative to this inherently se-
guential process. If the size of a memory block’s worker set exceeds a predetermined
threshold, then the software can choose to broadcast invalidation messagesto every node
in the system (or to some appropriate subset of nodes). Such apolicy caps the maximum
latency and bandwidth for the invalidation process. Furthermore, this adaptation to
widely-shared datais smple enough that it adds very little to memory access latency.

This strategy is very similar to the Dir;HgS_ protocols, except that the software
broadcast has far more available options. For example, the extension software can
choose a broadcast threshold that is significantly higher than the number of pointers
implemented in hardware. The software can also choose a broadcast algorithm that is
optimized for the exact size and topology of the a given system. A flexible choice of
threshold and algorithm should prove especially useful in multiprocessors that may be
logically partitioned into smaller virtual machines.

A broadcast protocol has an additional benefit to the Dir,,Hx Sys protocols. If the
software decides to use a broadcast invalidation strategy for a memory block, then it
can conserve significant time and memory: subsequent interrupts caused by overflowing
the block’s directory entry may safely be ignored. No additional pointers need to be
recorded, because the next write will cause the data to be removed from every cachein
the system. Infact, if the directory hardware allows the software to disable the directory
overflow interrupt for a particular memory block (but not the associated trap-on-write),
the extension software can eliminate all of the overhead from subsequent directory
overflows.

Figure 8-1 shows the difference in performance between various protocol options
discussed above. The graph shows the performance of EVOLVE, with the broadcast
threshold on the ordinate and speedup on the abscissa. Since the Dir,,HygS_ protocol
has no broadcast threshold, its performance is shown as a horizontal line at the top of
theplot. Similarly, thelinefor the Dir,,HsSs protocol appears at the bottom. Of the six
benchmark applications, EVOLVE provides the best case study due to the differencein
performance between Dir,,HysS_ and Dir,HsSs L.

Due to its low constant factor in transmitting messages, DirsHgS. (shown as a
horizontal, dotted line) achieves higher performance than any of the software-extended
schemes. This protocol performs worse than Dir, HygS_, because it uses a sequential
broadcast and transmits many more invalidations than necessary. DirsHsSs, which
corresponds to the horizontal line just above Dir,HsSyg, uses the same type of naive

1The values are dightly different than in Figure 6-2 due to several months of changes in the Alewife
kernel and compiler.
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Figure 8-1: Performance of EVOLVE, running on 64 simulated nodes with various
broadcast protocols.

broadcast, but implementsit in software.

The dashed linesin the figure show the performance of the software-extended system
with a scalable broadcast scheme. This scheme uses active messages and a hierarchi-
cal agorithm to distribute invalidations to every cache in the system. The hardware
acknowledgment counter mechanism then tallies the corresponding acknowledgments
sequentially. When running on 64 NWO nodes, thisstrategy providesbetter performance
than several other software broadcast schemes that have been implemented. The hori-
zontal, dashed line shows the performancefor aprotocol called DirsHsSgsae, @ protocol
that performs a broadcast for all memory blocks that overflow their hardware directory
entry. Thisprotocol isasoftware-extended version of DirsHgS_, and allowsEVOLVE to
perform better than with Dir,,HsSs. Inorder to investigate arealistic implementation of
DirsHsSs«cale, the simulator is configured so that the processor never receives adirectory
overflow trap. This option is not available on the A-1000.

The Dir;HsSgsae protocol is similar to DirsHsSgeae, €XCept that Dir;HsSgscae USES
a broadcast to transmit invalidations only for memory blocks with worker-set sizes
greater than a certain threshold (¢). Each circle on the plot indicates the performance for
one experimental threshold, with al other experimental factors constant. Dir;HsSsscaie
achievesitsbest performancewith athreshold set to 8, whichisdightly larger than one of
the dominant worker-set sizesin EVOLVE shownin Figure 7-3(d). At thisthreshold, the
protocol — which can run on the A-1000 without modification — achieves performance
close to the unsupported DirsHsSgsqe protocol.

DirHsSsscaletrap-oif 1S €xactly the same as Dir HsSssale, €XCEPL that this protocol
takes advantage of a hardware directory feature that allows the software to disable the
directory overflow interrupt. Like DirsHsSgscales DiriHsSescalerap-oft Can avoid excessive
interrupts; like DiriHsSsscale, DiriHsSsscalerap-of ONlY broadcasts to worker sets over a
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threshold size. The performance of this hybrid protocol also peaks at a threshold of
eight, and exceeds the performance of both of the other scalable broadcasts. Again,
the A-1000 does not implement the feature that allows the software to disable directory
overflow interrupts; however, changing exactly one line of source code in the CMMU
specification would enable this feature. Given the potential gain in performance, this
change seems worthwhile.

It is important to interpret Figure 8-1 in light of the 64-node system size and the
EVOLVE benchmark. For example, while DirsHgS_ performs admirably well on a 64
nodemachine, it outperformsDir;HsSescaie rap-oft DY Only asmall factor. Ondlightly larger
machinesand on bandwidth-limited applications, the scalable broadcast protocolsshould
be even more beneficial. Given the asymptotic bandwidth and latency requirements of
the sequential and scalable broadcasts, it is certainly possible that Dir;HsSsscale rap-off and
Dir;HsSgsae Would be able to outperform Dir,,HygS_ for machines within the 512 node
A-1000 limit.

While EVOLVE certainly provides the best available workload for studying broad-
casts, its smple structure and corresponding worker-set behavior do not have a great
dynamicrange. Figures7-2(d) and 7-3(d) show the application’sbehavior for the second
iteration of the genome evolution algorithm. EVOLV E exhibits slightly more interesting
behavior — in the form of larger worker sets — over the entire length of arun. The
large worker sets do not produce a significant effect in the model, because the model
does not consider the impact of hot-spots and bottlenecks; however, they do affect the
speedupsin Figure 8-1. A bandwidth-hungry application with more widely-shared data
than EVOLV E would show more significant differences between the various protocols.

The preceding case-study suggests a question that needs to be answered before
incorporating Dir;HsSssca1e 1Nt0 @ production system: given an application and a system
configuration, what isthe appropriate setting for the broadcast threshold? The answer is
determined by the relative performance of the sequential and the broadcast schemes, as
well as the requirements of the application.

For sufficiently large systems, there must be aworker-set size such that the latency of
broadcasting invalidationsis equal to thelatency of asequential scheme. Similarly, there
must be aworker-set size such that the bandwidth of abroadcast isequal to the bandwidth
of sequential invalidations. If the latency-equivalence point is equal to the bandwidth-
equivalence point, the broadcast threshold should always be set to the worker-set size
corresponding to this mutual equivalence point. Then, the adaptive protocol would
always select the optimal strategy.

Duetothe small constant factor of the sequential invalidation scheme, the bandwidth-
equivalence point should belower than thelatency-equivalencepoint. Inthiscase, theap-
propriate choice of threshold would depend on the requirements of each application. For
bandwidth-limited applications, the threshold shoul d be set to the bandwi dth-equival ence
point; the opposite is true for latency-limited applications. Most real programs would
probably fall somewhere in between. In practice, it might be difficult to calculate the
equivalence points a priori. Instead, calibration techniques such as the one used with
Strata [10] would be appropriate for determining the protocol balance thresholds.

Despite the remaining questions involved in the implementation and configuration
of adaptive broadcast protocols, the case study shows that they can be implemented
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and promise to improve the performance of large systems. This class of protocols also
serves as a good example of a (necessarily smple) scheme that uses on-line feedback to
improve the performance of the system as awhole.

8.3 TheLimitLESS Profiler

While on-line adaptive techniques might be able to ameliorate the effects of certain
classes of data, it is the programmer who has the knowledge required to make real
improvements in the performance of an application. The LimitLESS profiler is a mea-
surement and feedback mechanism that uses Alewife’'s software-extended system to
give programmersinformation about the way that applications use shared memory. This
section describes the implementation and the interface of this optimization tool.

8.3.1 TheProfiler Interface

The LimitLESS profiler isaworking part of the Alewife programming tool set. In order
to useit, aprogrammer sets a single variable in the runtime environment. Subsequently,
when the programmer runsaprogram, the memory system gathersinformationwhenever
it invokes software to handle a memory request.

The overhead of the profiling mechanism depends on the operating characteristics of
the application. For applications that run for many seconds and cause little communica
tion between processors, the overhead is small. For example, when running the Water
benchmark (216 molecules, 10 iterations) on a 16 node A-1000, the time required to
execute the application increases by only 1% with LimitLESS profiling enabled. Appli-
cationsthat run for only afraction of asecond and make constant use of shared memory
incur a higher overhead. MP3D (10000 particles, 5 iterations) requires 45% more time
to run with the profiler than without it.

After the application finishes running or at any time during its execution, the pro-
grammer can reguest the system to dump the information gathered by the profiler. This
information may be stored on disk for subsequent, off-lineexamination. Having dumped
the information, the programmer can request areport of memory usage. Although many
possible formats for presenting the data are possible, only one has been released to
programmersthus far.

Figure 8-2 shows a sample LimitLESS profiler report, which displays information
about the MP3D application. The figure shows a window containing an Enacs (text
editor) display. Thelower half of the screen displaysrecordsin thereport; thefirst record
givesinformation for hexadecimal program counter 101618, which correspondsto the
function boundary, line 49, in the MP3D sourcefileadv. c. Specifically, the program
counter indicates the first remote memory access to the structure slot BCond- >bc_A.

During the course of execution, the instruction at this program counter caused the
first remote access to 13 different memory blocks (termedcache | i nes inthereport).
After the first remote reference to these 13 memory blocks, their worker sets grew to
a maximum size of between 6 and 15, with a median size of 8. Furthermore, MP3D
accesses Bcond- >bc _A asread-only data. That is, none of the memory blocks required
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gtatic void boundaryibn,. Part?

int bn;z A= houndary number =/
struct particle *=Part; /% molecule =/
£
int i.
local _rext.?
float dZ,
Lemp:?

struct. boond #=BCond = &BocondsChnl;
struct ares *FPart;

++local _BC:
if fbn <« COMD_OFFSET} #= Solid wall case =7 £
B d2 = 2= (BCond-hc_A*Part-x
+ BCond-hc_B*Part-—ry
+ BCond->hc_C*Part->z
+ BCond->ac_Dr;
if d2 < 0.0y £
FPart—>= —= d2 * BCond-*bc_A?
Part—>y4 —= d2 * BCond-*bc_B?
—i%—Emacs: adw.c
#x101613: adv,c:d9: in boundary
dZ = Z2={BCond-rbc_A=Part—rx

13 LimitLESS cache lines:
worker =et =ize between b and 15, median i=s 8
read—only data when in LinitlESS mode

#x10163d; adv,c:B5l: in boundary
+ BCond->bc_C=Part->z

8 LimitLESS cache lines:
worker =et =ize between b and 15, median i=s 8
reacd-only data when in LimitLESS mocde

#101A00 3 adv,c:6l: in boundary
temp = BCond->bc_temp*{l,0 - BCond->bc_coef i;

1 LimitlLESS cache line
worker =t zize iz 11, read-only data when in LimitLESS mode

————Emacs: ®conpilation=
M—= rext—error

Figure 8-2: Sample report with LimitLESS profile information for MP3D.

125



the LimitLESS software to process a write request by sending invalidation messages.
Section 8.4 describes the importance of the read-only designation.

The programmer can use the next - er r or command, shown at the bottom of the
display, to scroll through each record in the report. This command causes Enacs to
move the subsequent record to the first line of the bottom window, load the appropriate
source file, and position the cursor on the relevant line of code. In Figure 8-2, the top
half of the screen displaysadv. c, with the cursor on line 49.

8.3.2 Exampleof Use

The LimitLESS profiler proved its usefulness amost as soon as it became available.
When displaying information about a program named gauss, the profiler displayed this
record:

#x1004A0: gauss.c:134: in threadproc
for (i =nyid; i <N i += dobl->nprocs )

1 LimtLESS cache |ine
wor ker set size is 15, 29 wites in LimtLESS node

The 29 writes to the nprocs dot of A obl were completely unexpected. Upon
examining the program, Ricardo Bianchini (a graduate student visiting the Alewife
group from the University of Rochester) found the following lines of code:

t ypedef struct

{
element a[N[N;

i nt nprocs;
p4_l ock_t pivot_done[ N ;
} d obal Dat a;

d obal Data *d obl ;

This structure definition caused npr ocs, aread-only dot with alarge worker set, to
be stored in the same memory block aspi vot _done, a synchronization object accessed
by a small worker set with read-write semantics. Ricardo realized that by adding
some padding into the structure, the accesses to the two conflicting data types could be
decoupled, thereby improving performance.

8.3.3 Implementation

There are four components of the LimitLESS profiler: configuration, on-line profiling,
information dump, and report generation. Configuration allows the programmer to
enable the profiler; on-line profiling gathers information about program counters and
associated memory addresses while running the program; information dump transfers
the profile data from the Alewife machine to the programmer’s workstation, and report
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generation matches program counters with memory blocks and formatsthe reports. The
last two components correspond to the feedback portion of the smart memory system.

From the point of view of this study, the on-line profiling component is the most
interesting, because it is built on top of the flexible coherence interface. The memory
protocol used to gather information about program counters and memory blocks is a
hybrld of DirnHQSqB‘ACK and DirnHXS\B, where X > 2.

Each memory block starts out in theinitial state of Dir,,HoSys ack, Which allows all
intranode accesses to compl ete without software intervention, but generates an interrupt
upon the first remote access to a memory block. When the software detects the first
remote access, it performstwo actions: first, it changes the state of the memory block
to the appropriate state in Dir,HxSys. Then, the protocol uses an active message,
rather than a normal protocol message, to transmit the memory block’s data back to the
requesting node. Upon receiving this active message, the requesting node records the
current program counter and memory block addressin a specia buffer. Thisinformation
is used to map program counters and memory blocks, thereby solving the dynamic
data allocation problem in the feedback step. Since this extra processing happens only
upon the first remote access to data, programs that run for long periods of time without
allocating new memory blocks tend to have lower overhead than programs that run for
short amounts of time or allocate many blocks.

The rest of the information about shared memory usage comes from the normal
Dir,Hx S operation. In order to gather data, the profiler splices into the hash table
functions listed in Table 5.1. During execution, the profiler spoofs the operation of the
hash table and saves information about worker-set sizes and the number of each type of
access. This component of the profiler only gathers information for memory blocksthat
require LimitLESS software handling. Thus, MP3D incurs more overhead than Water
because it requires more LimitLESS software processing.

By selecting a protocol with fewer hardware pointers than 5 (the default), the pro-
grammer can observe the behavior of smaller worker setsat the expense of moreprofiling
overhead. In general, higher profiler overhead indicates more useful information for the
programmer. Since the profiler uses a non-trivial amount of storage for every shared
memory block, the programmer usually can not profile an application running on its
maximum data set size. However, experience shows that small data sets capture much
of the information about the behavior of many applications.

8.4 Profile, Detect, and Optimize

Whileit isuseful for asystem to be able to provideinformation directly to the program-
mer, atruly smart memory system should requirelittle, if any, input from the programmer
to improve performance. This section describes a method that allows the compiler and
the memory system to cooperate and automatically optimize the performance of widely-
shared, read-only data. This method has three stages. First, the runtime system profiles
an application’s execution. Second, an analysis routine uses the profile information to
detect read-only memory blocks. Third, the compiler generates code that causes the
runtime system to optimize accesses to the detected blocks. Hence, thismethod is called
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PRODO for profile, detect, and optimize.

A PRODO system has been implemented for Alewife programs written in Mul-
T. This section describes the system and some initial experience, including the user
interface, the implementation, and a case study using the EVOLVE benchmark. The
description concludes by examining some relevant architectural featuresin the Alewife
machine.

8.4.1 ThePRODO Interface

Although the PRODO system detects and optimizes memory accesses automatically, it
requires some direction on the part of the programmer. Most of the programmer’ stasks
involve specifying interesting data objects and providing information that helps the sys-
tem work around dynamic memory allocation and aliasing problems. The programmer
must annotate an application, compile it in a specia environment, run the LimitLESS
profiler, and then instruct the compiler to perform its optimizations.

Table 8.1 shows the three program annotations, which are all easy to use. When
prodo is used to call a primitive allocation function (e.g. make-vect or ), it causes
the compiler to apply the PRODO method to the data object returned by the function.
Thedefine-al l oc andcal | -al | oc macrosare used to define and to call alocation
functions that either call other allocation functions or contain pr odo declarations. For
example, the following line of code creates a high-level function that always makes a
vector with five elements:

(define-alloc (nmake-5-vector) (prodo make-vector 5))
A corresponding line of code might allocate atop-level instance of thistype of vector:
(define *my-5-vector* (call-alloc nake-5-vector))

Given this code, *ny- 5-vect or * would be a global variable that points to a 5-
element vector. The PRODO system would automatically profile* ny- 5- vect or * and
optimizeit, if possible.

After annotating aprogram, running the PRODO systemisalmost trivial. At present,
the actions required to run PRODO include the normal compilation commands, the
LimitLESS profiler commands, and three other commands. For a production version of
the system, the entire process could easily be automated completely: the programmer
would only need to provide a list of the source files and arguments to be used when
running the program with the profiler.

8.4.2 Implementation

The PRODO system consists of a heuristic for detecting read-only dataand an optimiza-
tion that uses a broadcast protocol to ensure safety. The heuristic attempts to match
allocated data objects with the behavior of memory blocks. It assumes that there is a
one-to-one mapping between each unique type of data object and the procedure call tree
when it isalocated. The macros listed in Table 8.1 help the PRODO system keep track
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Macro Purpose
(prodo primalloc . args) cal pri mal | oc withar gs
and PRODO the result
(define-alloc (alloc-fun . args) | definean alocation function
body) define an allocation function
(call-alloc alloc-fun . args) cal al | oc-fun withar gs

Table 8.1: PRODO macros.

of important call sequences. In a sense, the programmer uses the macros to specify the
branches of the call tree that are important to track.

During the compilation phase that takes place before profiling, each instance of the
prodo and cal | - al | oc macros generates a unique identifier. The defi ne-al | oc
macro declares an additional argument for the corresponding function. This argument
is used to pass through the identifier generated by cal | - al | oc. During the profiling
phase, eachcal | - al | oc withinafunction labeled withdef i ne- al | oc createsatwo-
word cell that isused to chain the procedure call informationinto an actual call-tree data
structure. Asthe program runs, the macros generate enough information to trace the call
tree down to the alocation of every object labeled with the pr odo macro. In addition,
the PRODO system stores a record of the address and size of every pr odo object.

After the profiling phase, the PRODO system combines the information about call
trees and data obj ect sizes with the information gathered by the LimitLESS profiler. The
system first matches all data objects with their call trees. Then, the analyzer does a
brute-force search that attempts to correlate the location of read-only data within each
object. More formally, it attemptsto find (base,stride) pairsin each object such that

Va[((y = base+ « x stride) A (y € obj ect)) = y € read-only],

where baseisaconstant integer offset from the address of each object, strideisamultiple
of the memory block size, obj ect isthe set of all memory blocks contained within a
unique type of object, and r ead- onl y isthe set of all read-only memory blocks. The
search algorithm checks all possible (base,stride) pairs and runsin time O(n?), wheren
isthe total number of memory blocks in the profiled data objects.

Having identified all of the (base,stride) pairs that correspond to read-only data, the
PRODO system is ready to optimize the program in afinal compilation phase. During
this phase, the system smplifies the call-tree identification code and inserts a safe
optimization for each (base,stride) pair. The code simplification replaces instructions
that dynamically construct the call-tree data structure with instructions that pass just
enough information between functions to indicate when an optimization should take
place. Thisinformation is much more concise than the call-tree data structure, because
only a few leaves of the call-tree correspond to read-only data. While the profiled
application alocates cellsdynamically and chainsthem together, the optimized program
uses shift-and-add sequences and passes integers down through the call tree.

The safe optimization for each (base,stride) pair isa system call that sets the appro-
priatedirectory entriesinto aspecia read-only state. When the program runs, allocating
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EVOLVE verson | Memory System || Speedup
Base DirnH5S\|B 29.8
PRODO Dir,,HsS\s 36.4
PRODO Dir,, HsSug trap-oft 37.2
Base DirnHNBS_ 490

Table 8.2: Performance of different versions of EVOLVE.

read-only structures takes dightly longer due to this extra work. During the operation
of the program, the memory system treats this read-only data as if it had exceeded
the threshold of a broadcast protocol. The memory system software never extends the
directory entry, thereby avoiding most of the overhead associated with read-only data.
In a memory system that allows the software to disable directory overflow traps, the
optimization would avoid all of the overhead.

This optimization is safe, because the protocol can use a broadcast to invalidate
cached copies should the program ever attempt to write the data. At the end of the
broadcast, the memory block reverts back to the normal Dir,,HsSys protocol, thereby
cancelling the incorrect optimization.

8.4.3 A Case Study

In order to determine the efficacy of this type of smart memory system, the EVOLVE
benchmark was annotated with the appropriate macros and optimized with the PRODO
system. The annotations required modifying only 3 out of the 117 lines of code in the
benchmark, and 40 out of 394 linesin acode library. The profiling phase took place on
a 16 node A-1000 with aten dimensional problem set, and the entire PRODO process
took less than a minute.

Table 8.2 compares the performance of the base (unoptimized) version and the
PRODO (optimized) versions of EVOLVE. The measurements use both alarger system
size (64 ssimulated nodes) and alarger problem size (12 dimensions). Thefirst row of the
table shows the base performance of the application with the Dir,,HsSys protocol, and
the last row shows the performance with Dir,,HygS.. The middle two lines show the
increase in performance due to the PRODO optimizations. Although the table specifies
the Dir,,HsSyg protocol, the protocol would have transmitted broadcastsif it detected any
incorrect optimizations. Instrumentation in NWO shows that no such events occurred
during the simulations of the optimized version of EVOLVE.

The second line of the table indicates that the PRODO optimizations resulted in a
22% improvement in performance with Dir, HsSs. Dir,,HsSus rap-off, Which alows the
software to disable directory overflow traps, permits the optimized program to achieve
a 25% performance improvement. The trap-off feature would be enabled by the same
one-line change to the CMMU source code mentioned in Section 8.2.

Theimprovement shown by the PRODO system should encourage morework on this
type of method for performance enhancement. From the point of view of the programmer,

130



thememory systemistruly “smart,” because it can increase an application’s performance
with very little external help.

8.4.4 Architectural Mechanisms

Having implemented a smart memory system that automatically takes advantage of the
semantics of read-only data, it is worth reexamining the original proposal for such a
system. Even the early work on the Alewife protocols recognized the importance of
optimizing the memory accesses for this important type of data [14]. Asaresult, the
Alewifeinstruction set architectureincludes a software-coherent load, which causes the
memory system to fetch aread-only copy of data without allocating a directory pointer.
When using this instruction, the application software (written by the programmer or
generated by the compiler) assumes the responsibility for guaranteeing coherence.

Such an ingtruction may be used by the compiler to improve the performance of
accesses to read-only data. In fact, the Alewife compiler has used the instruction for a
few data objects, including instructions and procedure closures. However in the present
system, instructions are stored in each node’s private memory, so the software-coherent
load israrely used.

It would also be possibleto follow the lead of other systems (e.g. [11]) that alow the
programmer to designate data as read-only. The compiler would merely trandate read-
only data accesses into software-coherent loads. Whileit isuseful to providethisfeature
in shared-memory systems, all of theresponsibility for the correctness and the success of
this approach lies with the programmer: if avariableis mislabeled, the program returns
the wrong answer; if the programmer forgets to add a label, performance suffers; if a
generic function is used to manipulate many types of data, its memory accesses can not
be optimized using the software-coherent |oad.

Nevertheless, the original proposal for the PRODO scheme assumed that the mem-
ory system could give the compiler enough information to use this instruction suc-
cessfully. Automatic optimization could relieve the programmer of the burden of la-
beling data throughout the program! There are two reasons why this hypothesis is
wrong: first, the aliasing problem makes it impossible to map all instructions to data
objects or vice versa. In general, information from the memory system about one
(i nstruction, dat a-obj ect) pair indicates nothing about other data objects ac-
cessed by thei nst ruct i on or about other instructionsthat access thedat a- obj ect .
Without agenera method for propagating information from instruction to instruction or
from object to object, the requisite analysis becomes very difficult.

Second, the software-coherent load is an unsafe optimization. When it is used, the
system assumes that application software will ensure the coherence of the data. Since
the programmer ostensibly has total knowledge about the application, it is reasonable
to provide an opportunity for improved performance at the risk of incorrect behavior.
Neither the same knowledge nor the same options are appropriate for an automatic
optimization system. Sincetheinformation provided by the profiler isat best statistically
valid, any optimization hasachance of being incorrect. Given the choice between correct
behavior and improved performance, almost every (sane) programmer would choose the
former. Thus, the safe memory-side optimization implemented for Alewife serves as a
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Shared Memory Application

Flexible Coherence Interface

Transaction | | Automatic TLBs
Buffers Request
Fast Limited Broadcast

Trap Directory Mechanism

Smart Memory System

Figure 8-3: A flexible coherence interface serves as a basis for hardware-accelerated
coherent shared memory.

much more stable foundation for the PRODO system.

8.5 Hardware-Accelerated Coherent Shared Memory

By balancing the time required to collect data with the benefits that the information pro-
vides, a software-extended memory system can use intelligence to augment the shared-
memory model and to improve multiprocessor performance. The adaptive broadcast
protocols, the LimitLESS profiler, and the PRODO system achieve this balance in dif-
ferent ways. Yet, they are all implemented on top of a single hardware base with the
flexible coherence interface.

Reversing the software-extended approach leads to a top-down methodology for
building a distributed shared memory architecture. Instead of extending limited hard-
ware with software, the goal isto use hardware to accelerate slow software. Figure 8-3
illustrates an architecture that follows this hardware-acceleration approach. The foun-
dation of the architecture is a flexible coherence interface that provides an abstraction
between shared memory software and hardware. In addition to expediting software
development, the interface allows multiprocessor applications and smart memory sys-
temsto run on avariety of different hardware platformswith varying support for shared
memory.

The support takes the form of hardware mechanisms that accelerate functionsin the
memory-system software. Functionsthat hardware does not accel erate must be emul ated
completely in software. For example, Alewife's hardware mechanisms include limited
directories, fast traps, automatic remote data requests, and transaction buffers. Alewife
must emulate broadcasts and page tables in software, because the architecture lacks a
broadcast network and trandlation-lookaside buffers.

Infact, several independent conclusions derived from thework on software-extended
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memory systems support this approach to shared-memory design. First, the budding suc-
cess of smart and flexible memory systemsindicates an increasing number of techniques
for using intelligence to improve multiprocessor efficiency. For these techniques to be-
come generally useful, they need to be portable. Only a software library with aflexible
and standard interface will achieve this goal.

Second, the analytical model indicates that different operating regimes demand dif-
ferent hardware acceleration techniques. While limited directories benefit a system
with Alewife's low-latency network, they would not be appropriate for a system with
much higher latencies. Since computer markets demand a range of cost versus perfor-
mance trade-offs, any portable system must be able to accommodate arange of hardware
options.

Finaly, Alewife's flexible coherence interface aready supports partial hardware
independence: theinterface hidesthe binary format of directories, the details of message
transmission, and the size of the unit of data coherence. Using this abstraction, it would
not be hard to port Alewife's adaptive broadcast protocols to a software-only directory
architecture. The port would requirean emulation of theunderlying LimitLESSdirectory
scheme, atask that is certainly easier than writing an entire Dir,,HoSus ack protocol from
scratch.  For performance reasons, a software-only directory architecture with high
network latency would need to use a larger unit of coherence than Alewife. Since the
flexibleinterface hidesthe memory block size, not asinglelineof codein thehigher-level
adaptive protocol would need to change. The same sort of methodology could be used
to abstract all of the mechanismsillustrated in Figure 8-3.

Software extension and its dual, hardware acceleration, provide an architecture for
building a range of cost-efficient implementations of shared memory. Low-cost, mod-
erate performance systems can use software-only directories, more expensive, high
performance systems can implement the hardware structures required to sustain low la-
tency memory access. With aflexible coherenceinterface, thisrange of implementations
would support a common set of applications, running on top of a single smart memory
system. Packaged as aline of products, this architecture would solve the ultimate goal
of cost-effectivity: customers could choose price/performance combinations according
to their own needs for computational power.
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Chapter 9

Conclusions

The software extension approach offers a cost-efficient method for building scalable,
coherent, high-performance shared memory. Two implementations of the Alewife ar-
chitecture testify to this conclusion: the A-1000 proves that the approach works in
practice, and the NWO experiments demonstrate a range of performance versus cost
aternatives.

An analytical model — validated by the empirical study — surveys the design
gpace. Architectural features such as trap latency and code efficiency do not seriously
impact the performance of software-extended systems, aslong as they implement at least
one hardware directory pointer. Specific hardware optimizations for features of cache
coherence protocols can enhance performance slightly, but they are not essential.

Alewife's flexible coherence interface facilitates the rapid development of new
software-extended protocols. This interface hides hardware implementation details and
provides a convenient message-based programming abstraction. Anecdotal evidence
suggests that the abstraction is well worth a small decrease in performance; however,
production software-extended systems will blend hand-tuned optimizations and higher-
level code.

The software-extended approach, combined with a flexible coherence interface, en-
ables aclass of smart memory systems. These systems use dynamic and static feedback
techniques to boost multiprocessor performance, with and without the help of appli-
cation programmers. Experience with three such techniques on Alewife indicates that
incorporating software into a memory system has far greater benefits than mere cost-
management.

9.1 Recommendations for Distributed Shared Memory

In order to achieve high performance with alarge number of processors, a cost-efficient
shared memory architecture requires a LimitLESS hardware directory and a flexible
coherence interface. The minimal architecture, called 1dir (pronounced “wonder”),
includes:

e Associative processor caches. The associativity may take the form of victim
caches.
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e One pointer per directory entry (Dir,,HiSusack) that stores an arbitrary node
identifier and serves as an acknowledgment counter. The directory entry should
also implement a one-bit pointer for the local node. This configuration optimizes
for producer-consumer communication.

¢ Oneprocessor and memory module per node, with streamlined intranode accesses.

¢ A fastinterfacebetween processorsand theinterconnection network. Transmitting
or receiving a message should take on the order of ten instructions.

e A processor interrupt mechanism. Processors should execute no more than 100
instructions between an asynchronous event and the beginning of its handler.

¢ Intelligent softwarethat rideson top of aflexible coherenceinterface. Smart mem-
ory systems maximize performance by generating synergy between programmers,
compilers, and runtime environments.

This recommendation agrees with the findings of Hill, Wood, et. al.: suitably tuned
one-pointer protocols yield performance comparable to more expensive architectures.

The software-extension approach leads to the 1dir architecture and enables a cost
versus performance trade-off in shared memory design. Designers can add additional
directory pointers to the architecture, spending DRAM for increased performance and
flexibility. Extrapointersimprove performance by capturing more complicated commu-
nication patterns than producer-consumer in hardware. The corresponding reduction in
software-extension events decreases a system'’s sensitivity to software processing time,
thereby increasing flexibility.

Distributed shared memory designers might also choose to eliminate the hardware
directory entirely. Such software-only directory architectures lie at the inexpensive end
of the spectrum of software-extended systems and are a deceptively low-cost imple-
mentation of shared memory. While such systems do avoid the cost of the control and
state required to implement a hardware directory, they are extremely sensitive to the
guality of memory-system software. The designers of these systems will be faced with
the choice of reducing network speed and amortizing communication delay over large
blocks of data, or implementing hardware mechanisms — such as dedicated processors
— to speed up the software.

The performance of 1dir depends, in part, on the quality of its memory system
software. The architecture will benefit from a library of smart memory techniques
that optimize the way that programs use shared memory. The future of research on
multiprocessors lies not in new methods for implementing distributed shared memory,
but infinding waystointegrate the hardware and software components of multiprocessors
into a coherent whole.

9.2 FutureWork

Unfortunately, itishard to extrapolate from asingle datapoint. Since Alewifeistheonly
working multiprocessor with a software-extended memory system, conclusions about
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the entire design space are tentative at best. Fortunately, the research areais an active
one and new machines will add additional data pointsto the design space.

In the near term, the Alewife project will continue progress towards building a pro-
duction version of software-extended shared memory. The addition of more applications
and microbenchmarksto the machine's repertoire will drive aphase of performanceand
reliability tuning. Performance tuning will result in improvements in many parts of
the software system, including the flexible coherence interface. Reliability tuning will
involve adding features that allow the system to run for long periods of time.

The long term will see new systems that investigate the design and cost of various
hardware mechanisms for accelerating multiprocessor performance. In an effort to
provide aconvenient and efficient abstraction to application programmers, these systems
will attempt to consolidate shared memory, message passing, and a virtual machine
model. Ultimately, the market will base decisions about parallel architectures on cost-
effectiveness, convenience, and politics. | hope that elegance survivesthe frenzy.
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Appendix A

Experimental Data

A.1 Smulation Measurements.

Coherence Scheme | Protocol Options | Execution Time
Dir,,H\xeS. None. 620874
DirsHngS- None. 1356447
Diro,HgS- None. 1527552
Dir{HpS- None. 1575031
Dir,HsS\s 25 cycle latency 594716

50 cycle latency 654444

100 cyclelatency 689113

150 cycle latency 703801
Dir, HsS\s 50 cycle latency 614585
Dir,,H,Ss 50 cycle latency 669784
Dir,H1S\s 50 cycle latency 920283

Table A.1: ASIM: Execution timesfor Wesather. (Figures4-3, 4-4, and 4-5.)

Dir,, Worker-Set Size
Protocol 1 2 4 6 8 10 12 14 16

HeS\B 1 1 1 1 1 0350 | 0.348 | 0.369 | 0.360
HsS\s 1 1 1 0316 | 0306 | 0.339 | 0.348 | 0.358 | 0.357
HoS\s 1 1 0215 | 0257 | 0291 | 0.297 | 0312 | 0.323 | 0.324
HiS\s 1 0.157 | 0.207 | 0.248 | 0.264 | 0.279 | 0290 | 0.298 | 0.300
HiSweack | 1 0.161 | 0207 | 0.166 | 0.184 | 0.198 | 0210 | 0.216 | 0.219
HiSweack | 1 0.136 | 0.136 | 0.118 | 0.119 | 0.121 | 0.126 | 0.125 | 0.126
HoSwsack | 0.150 | 0.130 | 0.122 | 0.0987 | 0.0986 | 0.0994 | 0.0979 | 0.0993 | 0.0967

Table A.2: NWO: WORKER performance compared to full-map. (Figure 6-1.)
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Pointers | TSP | AQ | SMGRID | EVOLVE | MP3D | Water
0396|393 114 115 26| 284
1534|523 30.9 211 102 | 374
2533|516 36.0 30.8 170 | 401
5| 54.7 | 51.6 38.9 35.2 204 | 410

64 | 55.8 | 51.6 414 49.8 240 | 421

Table A.3: NWO: Speedup over sequential, 64 nodes. (Figure 6-2.)

normal ifetch | normal ifetch | perfect ifetch | 256
Pointers no victim victim no victim nodes
0 2.7 39.6 44| 576
1 5.2 534 56.8 | 113.1
2 9.0 53.3 57.8 | 122.0
5 15.3 54.7 59.8 | 134.3
64 479 55.8 59.4 | 141.9

Table A.4: NWO: Detailed TSP measurements. (Figures 6-3 and 6-4.)

WSS | Number
1 9646
2 1391
3 316
4 708
7 1308
8 942

11 168
14 2
15 1
16 38
18 8
19 1
20 6
24 1
28 1
32 16
33 4
57 1
64 25

Table A.5: NWO: EVOLVE worker-set sizes. (Figure 6-5.)
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Pointers | not skewed | skewed
0 6.3 115

1 121 21.1

2 18.8 30.8

5 275 35.2

64 44.6 498

Table A.6: NWO: Detailed EVOLV E measurements. (Figure 6-6.)

Pointers | TSP | AQ | SMGRID | EVOLVE | MP3D | Water
0] 140|142 7.00 3.54 0.60 | 5.46
1154149 152 9.69 764 | 10.8
21154149 153 10.9 791 | 110
51155149 154 126 791 | 111

64 | 155 | 149 154 129 796 | 111

Table A.7: A-1000: Speedup over sequential, 16 nodes. (Figure 6-7.)

Protocol Threshold | Speedup
Dir,,HngS- 49.0
DirsHgS. 42.7
DirsHsSgecale 35.3
Dir;HsSgscale trap-off 4 29.9

8 38.5

16 38.3

32 315

64 30.2

Dir;HsSsxcale 4 29.9
8 34.7

16 339

32 30.8

64 29.6

DirsHsSs 30.7
Dir,HsSws 29.9

Table A.8: NWO: EVOLVE with broadcasts. (Figure 8-1.) The values are dightly
different than in Table A.6 due to severa months of changesin the Alewife kernel and
compiler.
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A.2 Mode Parameters

Table A.9 lists extra model parameters that are needed to model the Alewife memory
hierarchy. These parameters, which were omitted from the discussion in Chapter 7 to
eliminate gratuitous detail, are used as follows:

h = hcache + htxnbuf
T hcacheT h,cache + htxnbufTh,txnbuf
h pu—

h
I = lnonet + lnet
T InonetT nonet + Inet Tl net
: [

Thevaluesof al of these parametersarelisted in Table A.10, a ong with the other model
inputs.

Symbol Meaning

hcache | Cachehitratio

hnout | transaction buffer hit ratio
Thcache | Cache hit latency
Thinout | transaction buffer hit latency

lnonet | ratio of local accesses that require no network messages

lnet ratio of local accesses that require network messages

Tinonet | latency of local accesses that require no network messages

Tinet | latency of local accesses that require network messages

Table A.9: Additional model parametersfor the Alewife memory hierarchy.
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Symbol TSP AQ SMGRID | EVOLVE | MP3D Water
N; 28186444 | 17933534 | 98117235 | 19056262 | 19669795 | 110747983
N, 5892391 | 7447602 | 11409727 | 4317830 | 3860909 | 20077454
h 0.96 0.988 0.91 0.984 0.894 0.99

[ 0.0339 0.00861 0.0472 0.0058 0.0176 0.00806

T 0.00568 0.00334 0.0432 | 0.00997 0.0885 0.00227
Ty 1.32 2.03 131 1.38 135 1.86
T 134 134 16.7 28.7 16.5 139
T hw 55.2 59.5 52.5 54.4 85.4 60.0
hecache 0.95 0.988 0.899 0.983 0.892 0.989

Paxnbou 0.0101 | 0.000291 0.011 | 0.00167 | 0.00159 | 0.000420

Th cache 1.27 2.03 124 1.37 134 1.86

T txnbouf 6.02 7.01 6.76 7.56 8.18 10.1
Inonet 0.0338 0.00856 0.0417 | 0.00455 0.0163 0.00776
lnet 0.0000996 | 0.0000467 | 0.00543 | 0.00124 | 0.00132 | 0.000299

T nonet 132 131 13.0 12.8 12.1 10.7
T net 68.0 69.6 44.6 86.6 70.9 96.0

Table A.10: Model input parameters for six benchmarks.
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Nodes | TSP | AQ | SMGRID | EVOLVE | MP3D | Water
0 0 0 0 175 | 2120 90
1 1362 | 62 47997 7042 | 19054 | 2409
2 645 0 16856 6675 | 2169 | 1420
3 362 0 4414 6250 790 | 1259
4 478 0 3444 5961 | 1199 | 1087
5 95 0 4007 5962 167 900
6 42 0 3214 5953 145 859
7 11 0 1058 2824 68 800
8 5 0 854 432 69 799
9 4 0 3458 222 54 798

10 4 0 356 221 62 792
11 2 0 96 92 69 781
12 2 0 85 66 82 791
13 2 0 109 63 62 779
14 2 0 44 61 59 779
15 2 0 44 60 53 7
16 2 0 41 40 38 782
17 2 0 41 42 28 770
18 2 0 29 50 32 775
19 2 0 25 34 28 769
20 2 0 25 31 28 771
21 2 0 20 29 27 768
22 2 0 20 29 28 768
23 2 0 20 28 26 768
24 2 0 23 28 25 770
25 2 0 73 28 27 768
26 2 0 16 28 22 770
27 2 0 18 28 22 769
28 2 0 19 28 22 768
29 2 0 20 28 22 768
30 2 0 20 28 22 773
31 2 0 19 28 22 769

Table A.11: Read access worker-set histograms: 0 — 31 nodes. (Figure 7-2.)
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Table A.12: Read access worker-set histograms. 32 — 64 nodes. (Figure 7-2.)
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WSS | TSP | AQ | SMGRID | EVOLVE | MP3D | Water
0 0 0 38 0 2054 210
1 | 5491 | 6102 101071 5916 | 306494 | 27298
2 7 35 32009 0| 14872 902
3 0 0 6591 0 1241 183
4 0 0 363 0 405 233
5 0 0 220 0 15 0
6 0 0 77 0 18 10
7 0 0 8 4095 77 60
8 0 0 9 0 4 0
9 0 0 111 0 0 0

12 0 0 0 0 1 0
16 0 0 0 0 1 0
17 0 0 0 0 1 0
24 0 0 0 0 1 0
26 0 0 1 0 0 0
32 0 0 0 0 0 288
33 0 0 0 0 0 96
60 0 0 0 0 1 0
64 0 0 0 0 13 0

Table A.13: Write access worker-set histograms. (Figure 7-3.)

Symbol Vaue
N; 100000000
N, 20000000

h 0.95

[ 0.00

7 0.05
Th 12
T —
Tr, hw 50

Table A.14: Model synthetic input parameters. (Figures 7-18, 7-19, and 7-20.)
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