ISSCC Evening Panel 2000

Wen-mei W. Hwu
More parallelism, less overhead

• Mainstream microarchitectures are currently designed to minimize compiler’s impact
 – most of the power and chip area spent in buffering and scheduling
 – less than 20% of the power is for actual execution
 – even less of the chip area is for actual execution

• In the next decade, new applications will demand
 – much better performance, power and cost
 – VDSL, software radio, pervasive networking, high-speed switches

• Compiler-enabled architectures for DSP and embedded:
 – long-term competitiveness though reprogrammability
 – performance scalability though partitioning
 – power savings through more locality and slower clocks
 – design-time reduction by reusing general hardware
Example: VDSL CAP Receiver

• VDSL not viable on today’s DSP
 – Execution units
 – Memory bandwidth

• Future:
 – Exploit algorithmic locality in a scalable architecture
 – Use compiler to partition memory access and computation
VDSL in a scalable-interface VLIW DSP

- Statically scheduled VLIW architecture
 - Compiler partitions computation and associated memory reference and storage
 - Centralized control with shift interconnect designed to hot-path common merges
 - Compiler managed multi-threading/streaming with real-time guarantees
 - Seamless interface to special function blocks
- 2000 MACs sustained with 16 units at lower power than current VLIW DSPs
Enabling compiler technology

• Deep program analysis
 – High-resolution data flow
 – Pointer / alias / array/ structure reference analysis
 – Advanced control flow manipulation techniques
 – Software / architecture power modeling
 – Safe execution time analysis
 – Identify opportunities for parallel execution and partition data set

• Parallelization and optimization
 – Computation and memory reference partitioning
 – Localization of memory and instruction references
 – Efficient, low-overhead multithreading with real-time guarantees
 – Managing specialized and/or non-uniform architectures
Most Important Microprocessor of 2010

• No single most important microprocessor
• Where will be the most exciting growth be?
• Domain Specific Processors that drastically
 – reduce needs for ASIC’s
 – increase performance per watt
 – increase performance per mm²
 – improve real-time characteristics