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ABSTRACT
A future is a simple and elegant abstraction that allows concurrency
to be expressed often through a relatively small rewrite of asequen-
tial program. In the absence of side-effects, futures serveas benign
annotations that mark potentially concurrent regions of code. Un-
fortunately, when computation relies heavily on mutation as is the
case in Java, its meaning is less clear, and much of its intended
simplicity lost.

This paper explores the definition and implementation ofsafe
futures for Java. One can think of safe futures as truly transpar-
ent annotations on method calls, which designate opportunities for
concurrency. Serial programs can be made concurrent simplyby
replacing standard method calls with future invocations. Most sig-
nificantly, even though some parts of the program are executed con-
currently and may indeed operate on shared data, the semblance of
serial execution is nonetheless preserved. Thus, program reasoning
is simplified since data dependencies present in a sequential pro-
gram are not violated in a version augmented with safe futures.

Besides presenting a programming model and API for safe fu-
tures, we formalize the safety conditions that must be satisfied to
ensure equivalence between a sequential Java program and its future-
annotated counterpart. A detailed implementation study isalso
provided. Our implementation exploits techniques such as object
versioning and task revocation to guarantee necessary safety con-
ditions. We also present an extensive experimental evaluation of
our implementation to quantify overheads and limitations.Our ex-
periments indicate that for programs with modest mutation rates on
shared data, applications can use futures to profitably exploit paral-
lelism, without sacrificing safety.

1. INTRODUCTION
The newjava.util.concurrent package [28] that is part of

the Java 2 Platform Standard Edition 5.0 specifies an interface to
define futures, a concurrency abstraction first proposed for Mul-
tiLisp [21]. A future defines an asynchronous thread of control.
In MultiLisp, the future keyword annotates expressions that can
be evaluated in parallel with the rest of the program. The object
returned by such an annotated expression is a placeholder that ulti-
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mately holds the value yielded by the expression. When a program
expression requires this value, it attempts toclaim or touchthe fu-
ture; this operation serves to synchronize evaluation of the future
with the thread performing the claim.

Futures are an elegant alternative to programming with explicit
threads because they often allow concurrent programs to be cre-
ated through a relatively small rewrite of its sequential counterpart.
Furthermore, in the absence of side-effects, futures satisfy a simple
safety property: if sequential programP is annotated with futures to
yield concurrent programPF , then the observable behavior ofP is
equivalent toPF . Indeed, because futures were originally provided
as annotations on programs, their effect was intended to be trans-
parent, visible only in the form of improved concurrency, without
altering the meaning of the original sequential program.

Of course, in the presence of mutation this pleasant property
no longer holds. Indeed, by themselves, Java futures provide no
special safety guarantees. Tasks spawned as a result of a future
may perform updates on shared data concurrently accessed byother
tasks, including the task that spawned it. While this is not aserious
issue in functional or mostly-functional languages where updates
to shared data occur infrequently (if at all), it is significantly more
problematic in Java where computation is typically structured in
terms of modification to shared objects. We believe many of the no-
table benefits from using futures are significantly weakenedin Java
as it is currently specified and implemented because of this lack
of transparency with respect to access to shared data. To achieve
some measure of safety, programs must be further refined to pro-
vide synchronization on potentially shared objects. Unfortunately,
even adding synchronization does not guarantee that the resulting
behavior is equivalent to a sequential execution since the effects of
a future may be arbitrarily interleaved with the effects performed
by the computation that spawned it.

Exploring and remedying this disconnect is the focus of thispa-
per. We are interested in preserving the original spirit of futures
as a simple device to inject concurrency into a sequential program
without violating any of the program’s invariants. Achieving this
goal, however, is non-trivial. Consider a futuref that executes
concurrently with the taskCf that evaluatesf ’s continuation. A
continuation of a future is the computation that logically follows it.
Safe execution off may be compromised if it observes the effects
of operations performed byCf ; for example, ifCf updates an object
that is subsequently read byf . Similarly, safe execution ofCf may
be compromised if it accesses an object that is subsequentlywritten
by f ; for example, ifCf performs a read of an object that is sub-
sequently written byf . Both these cases lead to different behavior
than if the future and its continuation were evaluated sequentially.

To preserve these desired safety invariants, we define a semantics
and implementation forsafeJava futures. Our semantics formalizes



the notion of safety by imposing constraints on the set of schedules
that can be generated by a program in which concurrency is ex-
pressed exclusively through the use of futures. Our implementation
automatically revokes executions that fail to observe the effects of
the futures they spawned, and uses object versioning to ensure that
futures do not observe the effects of their continuations.

1.1 Contributions
This paper presents the design, semantics, an implementation,

and a performance evaluation of safe futures for Java. Our contri-
butions are summarized as follows:

• We motivate the design of safe futures, present an API, and
associated programming model. Our model allows program-
mers to view futures as simply benign annotations on method
calls inserted where concurrency may be profitably exploited.

• We define a semantics for an object calculus similar to Feath-
erweight Java [26] extended with futures. The semantics
yield schedules, an interleaved trace of read and write events.
We define safety conditions on schedules that capture notions
of validity with respect to these operations performed by con-
currently evaluating tasks. We prove a soundness result that
shows every safe schedule is indeed equivalent to a serial one
in which no interleavings are present.

• We present details of an implementation built on top of the
Jikes RVM [9, 3] that supports object versioning and task
revocation to ensure safety. In addition to providing the ra-
tionale for our implementation decisions, we describe both
necessary compiler and run-time modifications critical to the
implementation.

• A detailed experimental study is also given. In addition to
exploring the performance impact of safe futures on paral-
lelizable programs adapted from the Java Grande benchmark
suite [42], we also provide a detailed performance study on
007, a well-known synthetic database benchmark [11] that
allows us to more accurately assess implementation over-
heads, and performance limitations. Our experiments show
that for programs with modest mutation rates on shared data,
our approach can profitably exploit parallelism, without sac-
rificing safety.

2. DESIGN
Adding futures to an imperative object-oriented language like

Java raises several important design issues. Our foremost design
goal is to preserve the spirit of programming with futures that made
it so appropriate for functional programming: the expectation that
a future performs its computationas if it had been invoked as
a synchronous function call, rather than an asynchronous thread.
This is a natural evolution of functional programming languages,
since functional programs typically perform infrequent mutation of
shared objects in the heap, instead obtaining results of symbolic
computations as constructions of heap-allocated data structures. In
contrast, computations in imperative languages like Java often ob-
tain their results via mutation of container objects (eg, arrays and
hash tables) in which results are deposited via mutation.

Unfortunately, current designs for futures in Java [28] neglect to
treat them as semantically transparent annotations as originally pro-
posed for functional languages [15, 16]. We believe this defeats the
original purpose of futures as an elegant and minimalist approach to
exploiting parallelism in existing programs, since programmers are

public interface Future<V> {

V get()

throws InterruptedException,

ExecutionException;

}

public class FutureTask<V>

implements Future<V>, Runnable {

FutureTask(Callable<V> callable)

throws NullPointerException

{ ... }

V get()

throws InterruptedException,

ExecutionException

{ ... }

void run() { ... }

}

public interface Callable<V> {

V call() throws Exception;

}

Figure 1: The existing java.util.concurrent futures API

forced to reason about the side-effects of future executions to en-
sure correctness of programs that use them. Instead, we believe that
strong notions of safety for futures is what makes them so power-
ful, where safety is ensured by the run-time system rather than left
as a burden for the programmer.

We now proceed to discussion of an API for safe futures, their
associated programming model, and their interaction with existing
Java concurrency mechanisms.

2.1 API for safe futures
A major challenge in introducing any new language abstraction

is to make it intuitive and easy to use. To ground our design, we
begin with the existing Java futures API [28] that is now partof
the Java 2 Platform Standard Edition 5.0 (J2SE 5.0). Snippets of
this existing API appear in Figure 1, which embodies futuresin the
interfaceFuture. Theget operation on aFuture simply waits if
necessary for the computation it encapsulates to complete,and then
retrieves its result. We omit here those operations on futures that
are not germane to our remaining discussion.

We would also like to note that our notion of safe futures is
independent of any particular API. A solution similar to that of
Pratikakiset al [37] in whichget operations are implicit and fu-
tures are effectively only annotations on method calls would be a
perfectly viable alternative to using the current API from J2SE 5.0.

In J2SE 5.0 there is an implementation of theFuture interface
in the classFutureTask. Again, we omit details not germane to
our discussion. Here, the constructor forFutureTask creates a
future that will, upon invocation of therun method, execute the
givenCallable by invoking itscall method. If the call throws an
exception, it is delivered to the caller at the point where itinvokes
theget method, wrapped up in anExecutionException.

Our design calls for a new implementation ofFuture, namely
SafeFuture, which appears in Figure 2. Our semantics forSafeFuture

demand that the program fragments appearing in Figure 3 be se-
mantically equivalent, regardless of the computation performed by
the givenCallable<V> c, and the code surrounding its invocation
as a simple call or as a future.

To preserve the transparency of future calls, any uncaughtException

thrown by the future call (ie, from thecallmethod of theCallable)



public class SafeFuture<V>

implements Future<V>, Runnable {

SafeFuture(Callable<V> callable)

throws NullPointerException

{ ... }

V get()

throws InterruptedException,

ExecutionException

{ ... }

void run() { ... }

}

Figure 2: Safe futures API

Callable<V> c = ...;

...

...

V v = c.call();

...

...

Future<V> f

= new SafeFuture<V>(c);

f.run();

...

V v = f.get();

Figure 3: Semantically equivalent code fragments

will be delivered to the caller at the point of invocation of therun
method, and the effects of the code following the run method will
be revoked. The effects of the future call up to the point it threw the
exception will remain. These semantics preserve equivalence with
the simple call.

A more detailed example program appears in Figure 4. A future
defined in the sample code fragment computes the sum of the ele-
ments in the array of integersa concurrently with a call to the static
methodbar on classFoo, which receives argumenta. Note that
methodbar may access (and modify)a concurrently with the fu-
ture computation. Our semantics require that the observable behav-
ior of calls to methodsserial andconcurrent be the same. Re-
placing uses ofSafeFuture with the existingFutureTask from
J2SE 5.0 provides no such guarantee.

2.2 Programming model
The programming model enabled by use of safe futures permits

straightforward exploitation of latent parallelism in programs. One
can think of safe futures as transparent annotations on method calls,
which designate opportunities for concurrency. Serial programs
can be made concurrent simply by replacing standard method calls
with future invocations. This greatly eases the task of the program-
mer, since all reasoning about the behavior of the program can be
inferred from its original serial execution. Even though some parts
of the program are executed concurrently, the semblance of serial
execution is preserved. Of course, the cost of using futuresmay
outweigh exploitable parallelism, so placement of future invoca-
tions has performance implications.

Under our current programming model, safety does not extendto
covering the interaction between futures and Java threads.Threads
which execute concurrently with futures might observe the actions
of concurrently executing futures and their continuationsout-of-
order. Threads could be also incorrectly used to pass partial com-
putation results between a future and its continuation thusviolating
serial execution semantics. We defer consideration of these issues
to future work.

public class Example

implements Callable<Integer>

{

int[] a = new int[]{1,2,3};

public Integer call() {

int sum = 0;

for (int v : a) sum += v;

return sum;

}

int serial() {

Integer sum = call();

Foo.bar(a);

return sum;

}

int concurrent() {

Future<Integer> f

= new SafeFuture<Integer>(this);

f.run();

Foo.bar(a);

return f.get();

}

public static void main (String[] args) {

int serial = new Example().serial();

int concurrent = new Example().concurrent();

assert serial == concurrent;

}

}

Figure 4: Using safe futures (with automatic boxing/unboxing
of int/Integer supported by J2SE 5.0)

3. SEMANTICS
To examine notions of safety with respect to interleavings of ac-

tions that operate within a future and its continuation, we define
a semantics for a call-by-value object calculus similar to Classic
Java [20] extended with threads, and afuture construct. The se-
mantics yield aschedule– a sequence of read and write operations
performed during the execution of a program. A schedule isserial
when all the operations of a program are executed within a single
(main) thread. A schedule isconcurrentif fragments of a program
are executed concurrently by separate threads; in this case, the ac-
tions of these threads may be interleaved with one another. We
impose safety conditions on concurrent schedules to verifythat op-
eration interleavings do not violate safety invariants. Informally, a
concurrent schedule is safe if it is equivalent, in terms of its actions
on shared data, to some serial schedule.

The syntax and semantics of the calculus are given in Figure 5. A
program defines a collection of class definitions, and a collection of
threads. Classes are all uniquely named, and define a collection of
instance fields and instance methods that operate over thesefields.
Every method consists of an expression whose value is returned as
the result of a call to that method. An expression is either a variable,
a location that references an object, the pseudo-variablethis, a
field reference, an assignment, a method invocation, a sequencing
operation, an object creation operation, afuture creation, or aget
expression that claims a future.

Every class has a unique (nullary) constructor to initialize object
fields. The application of a constructor returns a referenceto an
object instantiated from the class definition. A value is eithernull,
an object instantiated from a class containing locations for the fields
declared by the class, or a location that serves as a placeholder to
hold the result of evaluating a future. A thread is uniquely labeled



SYNTAX :

P ::= P | P | t[e]l
L ::= class C{f M}
M ::= m(x){e}
e ::= x | l | this | e.f | e.f := e

| e.m(e) | e;e | new C()
| future (e) | get (e)

PROGRAM STATES:

t ∈ Tid
P ∈ Process
x ∈ Var
l ∈ Loc
v ∈ Val = null | C(l) | l
Γ ∈ Store = Loc→ Val

OPlt ∈ Ops = ({rd,wr}×Tid×Loc)
S= OPlt ∈ Schedule= P (Ops)

Λ ∈ State = Process×Store×Schedule

EVALUATION CONTEXTS:

E ::= • |

E[•].f := e | l.f :=E[•] |

E[•].m(e) | l.m(l E[•] e) | E[•] ;e |

get (E[•])

Et

P[e]l ::= P | t[E[e]]l

E[e],Γ,S→ E[e′],Γ′,S′

Et

P[e]l,Γ,S =⇒ Et

P[e′]l,Γ′,S′

SEQUENTIAL EVALUATION RULES :

E[l;e],Γ,S→ E[e],Γ,S

class C{f M} ∈ L m(x){e} ∈ M

E[l.m(l)],Γ,S→ E[[l/this,l/x]e],Γ,S

class C{f M} ∈ L Γ(l) = C(l′)
S′ = S.rdt l′i

E[l.fi],Γ,S→ E[l′i ],Γ,S′

Γ(l) = C(l′′) Γ(l′) = v

Γ′ = Γ[l ′′i 7→ v]
S′ = S.rdt l′ .wrt l′′i

E[l.fi := l′],Γ,S→ E[l′],Γ′,S′

l′,l fresh
Γ′ = Γ[l ′ 7→ C(l),l 7→ null]

S′ = S.wrt l1 . . . .wrt ln .wrt l′

l1, . . . ,ln ∈ l

E[new C()],Γ,S→ E[l′],Γ′,S′

EVALUATION RULES FOR FUTURES:

t′,t′′ fresh t≤ t ′ ≤ t ′′ l′ fresh
Et

P[future (e)]l,Γ,S =⇒ P | t′[e]
l′
| t′′[E[l′]]

l
,Γ,S

P = P′ | t′[l′′]
l′

Et

P[get (l′)]l,Γ,S =⇒ Et

P[l′′]l,Γ,S

Figure 5: Syntax and semantics of of safe futures.

with a thread identifier, and a placeholder location.
We take metavariablesL to range over class declarations,C to

range over class names,M to range over methods,m to range over
method names,f and x to range over fields and parameters, re-
spectively,l to range over locations, andv to range over object
values. We also useP for process terms, ande for expressions. We
use over-bar to represent a finite ordered sequence, for instance,f
representsf1 f2 . . . fn. The termαα denotes the extension of the
sequenceα with a single elementα, and αα′ denotes sequence
concatenation,S.OPt denotes the extension of scheduleSwith op-
erationOPt.

Program evaluation and schedule construction are specifiedby a
global reduction relation,P,Γ,S=⇒ P′,Γ′,S′, that maps a program
state to a new program state. A program state consists of a collec-
tion of evaluating threads (P), a global store (Γ) to map locations
to values (specifically, eithernull or an object), and schedules (S)
to define a global interleaved sequence of actions performedby
threads. Local reductions within a thread are specified by anauxil-

iary relation,e,Γ,S → e′,Γ′,S′ that evaluates expressione within
some thread to a new expressione′; in doing so, a new store, and
schedule may result. The only actions that are recorded by a sched-
ule are those that read and write locations. The interpretation of
schedules with respect to safety is the topic of the next section.

We use evaluation contexts to specify order of evaluation within
a thread, and to prevent premature evaluation of the expression en-
capsulated within afuture annotation. We define a process con-
text Et

P[e]l to denote an expressione available for execution by
threadt ∈ P in a program state; the labell denotes a placeholder
location that holds the result ofe’s evaluation.

The sequential evaluation rules are standard: holes in evaluation
contexts can be replaced by the value of the expression substituted
for the hole, sequence operations evaluate left-to-right,method in-
vocation evaluates the method body by substituting occurrences of
the pseudo-variablethis with the location holding the reference to
the receiver object, in addition to substituting occurrences of for-
mals with the locations yielded by evaluation of the actuals, as-



suming variables are suitablyα-renamed. Read and write opera-
tions augment the schedule in the obvious way. Anew expression
extends the schedule with writes to all instance fields (withnull
values).

An expression of the formfuture (e) causese’s evaluation to
take place in a new threadt′. A fresh locationl′ is created as a
placeholder to hold the result of evaluating this future. Thus,t′[e]

l′

denotes a thread with identifiert′ that evaluates expressione and
stores the result of this evaluation intol′.

In addition to the thread responsible for computing the value of
the future, a new threadt′′ is created to evaluate the future’s con-
tinuation. As a result, the parent thread is no longer relevant. This
specification simplifies the safety conditions discussed below. The
thread identifiers associated with threads created by a future expres-
sion are related under a total ordering (≤). Informally, this ordering
captures the logical (sequential) order in which actions performed
by the threads must be evaluated. Thus, ift′ ≤ t′′, then either
t′ = t′′, or all actions performed byt′ must logically take place
beforet′′. In particular, effects induced by actions performed by
t′′ must not be visible to operations int′.

Synchronization takes place through theget expression. In the
rule for get, the location labell′ represents a placeholder or syn-
chronization point that holds the value of a task spawned by afu-
ture. The rule is satisfied precisely when the associated future (say,
future (e)) has completed. When this occurs, the process state
will contain a thread with shapet[l′′]l′ wherel′′ is the location
yielded by evaluation ofe.

3.1 Safety
A schedule defines a sequence of possibly interleaved operations

among threads. The correctness of a schedule, therefore, must im-
pose safety constraints on read and write operations. Thesecon-
straints guarantee that the injection of futures into an otherwise se-
quential program does not alter the meaning of the program. Thus,
these constraints must ensure that interleavings are benign with re-
spect to read and write operations. The semantics does not permit
reordering of operations within a thread.

There are two conditions (roughly equivalent to the well-known
Bernstein conditions [5]) that must hold on schedules to guarantee
this property: (1) an access to a locationl (either a read or a write)
performed by a future should not witness a write tol performed ear-
lier by its continuation, and (2) a write operation to some location
l performed by a future should be visible to the first access (either
a read or a write) made tol by its continuation. In other words,
no write to a locationl by a future’s continuation can occur before
any operations onl by the future, and all writes to a locationl by
the future must occur before any operation tol by the continuation.
Note that these conditions do not prohibit interleaved operations by
a future and its continuation to distinct locations.

We summarize these constraints in terms of two safety rules,
csafeand f safe, resp. The former captures the notion of when an
operation performed by a continuation is safe with respect to the
actions performed by the future within a schedule, and the latter
captures the notion of when an operation performed by a future is
safe with respect to its continuation within a schedule.

wrt′ l,rdt′ l 6∈ S′, t′ ≤ t

csafe(S.wrt l.S′)
wrt′ l,rdt′ l 6∈ S, t≤ t′

f safe(S.wrt l.S′)

DEFINITION 1. (Schedule Safety)
A schedule S is safe if csafe(S) and fsafe(S) hold.

To validate the safety of an interleaved schedule, we must ensure
that its observable behavior is equivalent to the behavior of a corre-

sponding program in which futures have no computational effect.
In such a program, evaluation of the future’s continuation is delayed
until the future itself is fully evaluated. This trivially enforces se-
quential order between all operations executed by the future and
all operations executed by the continuation and thus automatically
yields a serial schedule.

We first introduce the notion of a schedulepermutationthat al-
lows us to define an equivalence relation on schedules:

DEFINITION 2. (Permute)
Schedule S is apermutationof schedule S′ (written S↔ S′),

if len(S) = len(S′) and for everyOP
li
t ∈ S, there exists a unique

OP
l j
t ∈ S′.

A serial schedule is a schedule in which no interleaving among
operations of different threads occurs:

DEFINITION 3. (Serial Schedule)
Schedule S= OP

l1
t1

. . . . .OP
ln
tn

is serial if for all OP
l j
t j

there does not

existOP
l j
tk

, k > j such thattk < t j .

We wish to show that any safe schedule can be permuted to a serial
one since a serial schedule reflects an execution in which operations
executed by a future are not interleaved with operations performed
by its continuation. Effectively, a serial schedule reflects an execu-
tion in which a spawned future runs to completion before any op-
erations in its continuation are allowed to execute; in other words,
a serial schedule corresponds to a program execution in which fu-
tures have no computational effect.

We first appeal to a lemma that allows us to permute adjacent
operations belonging to different threads in a safe schedule:

LEMMA 1. (Permutation)
Let schedule S= OP

l1
t1

.OP
l2
t2

be safe. Then if S is safe, there exists a
serial schedule S′ such that S↔ S′.

Proof. If t1 ≤ t2, then the schedule is trivially serial. Ift1 > t2,
and becauseS is safe, it must be the case that either (a)l1 6= l2, or
(b) l1 = l2 = l, andOPl

t2
= rdt2 l. In both cases, we can choose

S′ = OP
l2
t2

.OP
l1
t1

.
Our soundness result generalizes this lemma over schedulesof

arbitrary length:

THEOREM 1. (Soundness)
If schedule S is safe, then there exists a serial schedule S′ such that
S↔ S′.

Proof. The proof is by induction on schedule length. Lemma 1
satisfies the base case. SupposeS= S1.OPlt wherelen(S1) > 2. By
the induction hypothesis, there exists a serial scheduleS′1 such that
S′1 ↔ S1. SupposeS′1 = OP

l1
t1

. · · · .OP
lk
tk

. First, we need to show
thatS′′ = S′1.OPlt is safe. Suppose otherwise. Then, it must be the
case that either (a) there exists someOPl

t′
∈ S′1 such thatt < t′,

andOPl
t

= wrt l, or (b) there exists awrt′ l ∈ S′1 such thatt ′ > t.
If either of these conditions hold, however,S would not be safe.
Thus, by Lemma 1, we can permuteOP

lk
tk

with OPlt to yield a new

safe scheduleSp = S′′′.OP
l j
t j

.OPl
t
.OP

lk
tk

. We can apply Lemma 1

again toOP
l j
t j

.OPlt, and so on, repeatedly shiftingOPlt until a serial
schedule is constructed.

4. IMPLEMENTATION
In the previous sections, we discussed our principal designgoals

in bringing futures into Java. The overarching intention ofour de-
sign is to ensure that the observable behavior of a future-annotated



program is not dependent on whether futures are evaluated syn-
chronously (serially) or asynchronously (concurrently).The task of
maintaining thislogical serial order of operations in the presence
of potentially concurrent updates to shared state is non-trivial. Our
solution is to divide the entire program execution into a sequence
of execution contexts. An execution context is a run-time structure
that encapsulates a fragment of computation that is fully evaluated
within a single thread. We define a total order (called acontext
order) over execution contexts that represents a logical serial exe-
cution order, and use this order to identify data dependencies be-
tween operations from different execution contexts. If futures are
evaluated asynchronously, multiple execution contexts may update
shared state concurrently, which in turn may violate the logical se-
rial order of operations. An implementation must prevent this from
happening by tracking all shared data operations and revoking exe-
cution contexts that violate this order. To help reduce the number of
violations, execution contexts always operate on local versions (ie,
copies) of shared objects which guarantee that out-of-order updates
do not violate serial dependencies. The versioning mechanism is
also used to enable revocations of execution contexts violating the
logical serial execution order of operations. The remainder of this
section provides further details.

Our prototype implementation is based on IBM’s Jikes Research
Virtual Machine (RVM) [3]. The Jikes RVM is a state-of-the-art
Java virtual machine with performance comparable to many pro-
duction virtual machines. It is itself written almost entirely in Java
and is self-hosted (ie, it does not require another virtual machine
to run). Java bytecodes in the Jikes RVM are compiled directly to
machine code. The Jikes RVM’s public distribution includesboth
a “baseline” and an optimizing compiler. The “baseline” compiler
performs a straightforward expansion of each individual bytecode
into a corresponding sequence of assembly instructions. The op-
timizing compiler generates high quality code due in part toso-
phisticated optimizations implemented at various levels of inter-
mediate representation, and because it uses adaptive compilation
techniques [4] to target code selectively for optimization. Our im-
plementation targets the Intel x86 architecture.

4.1 Execution contexts
An execution context encapsulates a fragment of computation

that is executed within a singlethread. A thread defines a sep-
arate locus of control. It makes no guarantees, however, on the
relationship between the operations it executes and those of other
threads executing concurrently. In contrast, execution contexts im-
pose strong safety constraints on the operations they execute. Specif-
ically, concurrent evaluation of execution contexts by different threads
cannot lead to observable behavior different from serial evaluation
of those contexts by a single thread. We refer to an executioncon-
text that represents a completed task (either a future or itscontinu-
ation) as beinginactive; contexts that are still under evaluation are
consideredactive.

The execution of a program begins within aprimordial context
evaluated within the main thread of computation. Consider what
happens when a future is scheduled for evaluation –ie, its run

method is executed. Logically, the code fragment encapsulated
within a future executesbefore the code fragment following the
call to therun method up to the point where the future is claimed
by theget (the future’s continuation). In order to preserve logi-
cal execution order, we create two new contexts: one associated
with a thread used to evaluate the future – afuture contextevalu-
ated within a freshly created thread; and one associated with the
thread used to execute the future’s continuation – acontinuation
contextevaluated using thesame threadas the primordial context.

Tmain

Cp

(a)

run() get()
Cp Cc

Cf
Tf

Tmain

(b)

get()run()Tmain

Cp Cc

Cf
Tf

(c)

Figure 6: Execution context creation

At this point we establish an execution order over these two ex-
ecution contexts that reflects a serial order of execution inwhich
the effects of the primordial context are visible to the future con-
text whose effects are in turn visible to the continuation context.
This ordering between future and continuation contexts is applied
to all subsequently evaluated futures. The continuation ofa future
created within a (non-primordial) continuation contextC′ executes
within the same thread that executesC′, while the future itself exe-
cutes within a freshly created thread. Once evaluation of all futures
has successfully completed and they have been claimed (their re-
spectiveget methods invoked), the continuation context also com-
pletes and the execution returns to the original state –ie, only the
primordial execution context is active and all operations are per-
formed within the main thread of computation.

As an example, consider execution of the program shown in Fig-
ure 4. A primordial context is created by the run-time system
for execution of themain method. Invokingconcurrent on the
Example instance from this primordial context proceeds by creat-
ing two additional contexts at the point thatrun is invoked on the
futuref: one to execute the future and one to execute the contin-
uation in which the call tobar occurs. At the point thatget is
invoked on the future, both of these contexts are discarded,and ex-
ecution resumes in the primordial context. To reduce the overhead
of creating both contexts and the fresh threads to evaluate future
contexts, our implementation caches and re-uses both threads and
execution contexts.

This scenario is illustrated in Figure 6 (wavy lines represent threads
and boxes represent execution contexts). Initially, a primordial con-
text (Cp) is created and bound toTmain, the thread evaluating the
main method (Figure 6(a)). When a future is scheduled for execu-
tion (ie, its run method is invoked), two more contexts are created
(Figure 6(b)): contextCf to evaluate the future (Cf is bound toTf ,
a new thread used to execute the code encapsulated within thefu-
ture), and contextCc to evaluate the continuation of the future (Cc
is bound to the same thread as the primordial contextCp, in this
caseTmain). The execution of the program proceeds concurrently
until theget method is invoked (the result computed by the future
is then claimed) and then goes back to executing entirely within
Tmain, the main thread of computation. Note that at this point both
contextsCf andCc as well as threadTf are discarded (Figure 6(c))
and can be cached for later re-use.

4.2 Preserving serial semantics
When two or more execution contexts execute concurrently, their
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Figure 7: Dependency violations

operations may be arbitrarily interleaved and thus the semblance of
serial execution may be violated. Consider two execution contexts:
one representing a future (Cf ) and one representing a continuation
of this future (Cc). Under a (logical) serial order of execution,Cf
precedesCc. If Cf andCc execute concurrently, this order may be
violated in one of two ways:

• Cc does notobserve the effect of an operation performed by
Cf (eg, a read inCc does not see modification of shared data
by Cf ), even though itwould haveobserved this effect ifCf
andCc were executed serially. We call this aforward depen-
dency violation.1

• Cf doesobserve the effect of an operation performed byCc
that could never occur ifCf andCc were executed serially
becauseCf would executefully beforeCc. We call this a
backward dependency violation.

An example of schedules demonstrating both forward and back-
ward dependency violations betweenCf andCc, along with code
snippets representing execution contexts appear in Figure7. In Fig-
ure 7(a) the continuation represented by contextCc should see the
result of the write too.foo performed by the future represented
by contextCf . In Figure 7(b) the future represented by contextCf
should not see the result of the write too.bar performed by the
continuation represented by contextCc. Note that the notion of a
dependency violation capture the same properties as the schedule
safety rules from Section 3.1 (forward dependency violations are
captured by thecsaferule and backward dependency violations are
captured by thefsaferule).

We prevent forward dependency violations by tracking all data
accesses performed within execution contexts. We use per-context
read and writebit-mapsto record accesses to shared state. Each
item of shared state (ie, object, array, or static variable) hashes to a
bit in each map. How we use these bit-maps to detect violations is
described below.

In the case of a forward dependency violation, the executioncon-
text responsible for the violation is revoked automatically (with-
out programmer intervention) and restarted. Backward datadepen-
dency violations are prevented byversioningitems of shared state.
We preserve a copy-on-write invariant to ensure that each execution
context updates its own private versions of shared items, preventing
it from seeing updates performed by execution contexts in its logi-
cal future. A detailed description of these mechanisms is presented
below.

With the copy-on-write invariant we must make sure that subse-
quent reads occur to the copy and not to the original. To achieve

1Forward in the sense that an operation from the “logical future”
causes the violation.

this, we simply scan the copying context’s thread stack whenever
an item of shared state is copied, patching any references tothe
original version to refer instead to the copy – this is calledforward-
ing. Whenever a reference is loaded from the heap we ensure that it
is forwarded to the appropriate version. Thus, a context cannever
usea reference to the wrong version.

4.3 Tracking data accesses
We track data accesses using compiler-inserted read and write

barriers: code snippets responsible for maintaining the meta-data
required to detect dependency violations, and inserted by the com-
piler at the point where shared data access operations occur. The
meta-data consists of the two bit-maps associated with eachexe-
cution context: one for reads (ie, theread-map) and one for writes
(ie, thewrite-map). Whenever a read operation is performed on an
item of shared state (ie, object, array, or static variable), its hashed
bit is set in the read-map. Hashes for objects and arrays are their
natural hash value, while for a static variable it is its address (these
addresses are constants established when the class containing the
static variable is loaded). The same read-map is used for allshared
items. Write-maps are similarly maintained within write barriers,
though write barriers must always ensure that a new version is cre-
ated on first write by a context to a given item.

Since reads significantly outnumber writes in most Java pro-
grams, reducing the number of read barriers is critical to achieving
reasonable performance. Our implementation therefore trades off
accuracy for efficiency in detecting dependency violations. Instead
of placing barriers on all read accesses to shared items (eg, reading
an integer field from an object), we assume that once a reference
is read from the heap, the context reading it will eventuallyread
from the object targeted by that reference. Thus, the read barrier
is placed only on loads ofreferencesfrom the heap (eg, getfield
or arrayload bytecodes in which the type of the field or element
is a reference). In other words, we “pre-read” all objects towhich
a context holds references (when a context is initialized this means
we must apply the pre-read barrier to all references in the current
activation record). The pre-read optimization is applied only for
objects and arrays to eliminate read barriers on them. All other
accesses, including reads from static variables, and all writes to
shared items incur the appropriate barrier.

Note that bit-maps are maintained only if there is more than one
active context present in the system (ie, there is potential for con-
currency and thus logical serial order violations). That is, barriers
are responsible only for fetching the most recent version ofan item
if only the primordial context is active. Bit-map maintenance is
in reality optimized even further: the first of a series of execution
contexts does not need to record its reads because versioning en-
sures they cannot be compromised by any concurrent writes. Thus,
it does not need to maintain a read-map.

4.4 Execution context revocation
Actions performed by a context may violate the semblance of se-

quential execution because of a forward dependency violation. We
now describe how such violations are handled. First, note that we
defer detection of forward violations until the point wherea con-
text has finished executing (ie, when a future context completes its
computation, or a continuation context invokesget on the associ-
ated future2. At that time, the context must wait for completion
of contexts that logically precede it, before validating itself against
their actions. This means forming the intersection of the current
context’s read-map with the write-maps of the preceding contexts.

2As described previously, futures and continuations are created “in
pairs”.
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Figure 8: Handling of a forward dependency violation.

If there is overlap then the current context is revoked and transpar-
ently re-executed. Because a context operates over its own local
versions of shared data, its updates become visible only when it
successfully passes this forward violation check.

The implementation of revocation and re-execution for future
contexts is simple. Because a future context is evaluated within a
separate thread, we can simply terminate the thread, and re-start the
future execution. Revoking and re-executing continuationcontexts
is more challenging. Our solution adapts the Jikes RVM exception
handling sub-system to return control to the beginning of the con-
tinuation, using bytecode rewriting to save program state (values of
local variables and the state of the Java operand stack) at the start
of the continuation. Each method that invokes a future, at which
point a continuation context begins, is wrapped with an exception
scope that catches an internalrevoke exception, restores the lo-
cal state and transfers control to the beginning of the continuation
context. Therevoke exception is thrown internally by the run-
time system, but the code to catch it (implementing re-execution)
is injected into the bytecode. We also modify the compiler and run-
time system to suppress generation (and invocation) of “default”
exception handlers during the rollback operation. The “default”
handlers include bothfinally blocks, andcatch blocks for ex-
ceptions of typeThrowable, of which all exceptions (including
the revoke exception) are instances. Running these intervening
handlers would violate the transparency requirement that arevoked
execution context produces no side-effects.

Our current implementation does not preserve context stateother
than that of the method containing the continuation context, so fu-
tures that are invoked, but not claimed by the end of the method
are implicitly claimed before the invoking method can return (ie,
we wait for all spawned futures to complete their execution), even
though the matchingget operation is still to be invoked.

We illustrate how our system handles forward dependency vi-
olations using the code fragment and sample schedule from Fig-
ure 7(a). We assume that execution contextCf (representing a
future) is executed by (and thus bound to) threadTf and execu-
tion contextCc (representing a continuation) to threadTc. The en-
tire scenario is illustrated in Figure 8, where wavy lines represent
threadsTf and Tc, and a circle represents objecto (it is marked
gray when updated). The execution contexts are linked together in
order to allow execution contexts from the logical future toaccess
the maps of contexts from the logical past. There is a read-map and
write- map associated with each context (each map has three slots
and we assume that objecto hashes to the second slot).

Execution starts with the future reading a field of objecto (Fig-
ure 8(a)) and setting the appropriate slot in the read-map ofits exe-

cution contextCf . The continuation then both reads and updates the
same object, setting the read-map and write-map associatedwith its
execution contextCc (Figure 8(b)). Subsequently, the future writes
to the field of objecto and sets the write-map associated with its
execution contextCf (Figure 8(c)). At this point execution of the
future is complete (no dependency violations that could cause its re-
vocation are possible since there were no other concurrent contexts
executing in its logical past). However, before the continuation can
complete, it must check for forward dependency violations.This
check fails sinceCc’s read-map andCf ’s write-map overlap. The
continuation is revoked and re-executed (Figure 8(d)). Note that
after revocation, there are no more active execution contexts in its
logical past. As a consequence, re-execution is guaranteedto suc-
ceed so maintaining its read-map is unnecessary.

4.5 Shared state versioning
We use versioning of shared state to avoid backward data de-

pendency violations and prevent updates of shared data frombeing
made prematurely visible to other threads in case of revocations.
We only version objects when more than one execution contextis
concurrently active, since it is only then that concurrent shared state
access may occur. Whenever an active execution context attempts
to write to an object, array, or static variable, we create a private
version of that item on which to perform the write. We handle ob-
ject and array updates identically and use a similar procedure to
handle updates to static variables. The code implementing the ver-
sioning procedure resides in the read and write barriers described
in Section 4.3.

4.5.1 Object and array versioning
Because objects and arrays are treated identically, we refer only

to objects when describing the versioning procedure. We extend
the header of every object with a forwarding pointer. At object al-
location time, this forwarding pointer is initialized tonull. As the
program executes, subsequent versions are appended to a circular
list rooted at the forwarding pointer of the original object(ie, the
original object is the head and tail of this version list). Each ver-
sion is tagged with the unique identifier of the context that created
it. This enables each context to locate its version in the list. The
versions are sorted under logical context order.

We now describe the implementation of read and write opera-
tions on objects as performed by an active execution contextin the
presence of versioning. If only one execution context is active (no
concurrency), a read or write operation retrieves and accesses the
most recent version of the object (or the original object in case no
versions of this object have been created). Otherwise, a more com-
plicated access procedure is required.

4.5.1.1 Reads..
A reference to a shared objecto referenced by a contextC must

point too’s most recent version with respect toC; in particular,C
must not access any version ofo that has been created by another
context which occurs inC’s logical future. To implement this in-
variant, we traverse the versions list (in context order) and either
load the reference for the version tagged byC, or the version cor-
responding toC’s most recent predecessor context. If a contextC′

that occurs inC’s logical past has written too, andC reads the ver-
sion corresponding to this write, a forward dependency violation
exists and will be captured using the map tagging mechanism de-
scribed earlier. Indeed, the only instance when a read byC to a
version written byC′ would be safe is precisely when, at the point
the read occurs,C′ is already inactive.

The implementation of read operations is additionally compli-



cated by the fact that read barriers are only executed at reference
loads. Thus, in order for loads of primitive values to proceed cor-
rectly, we maintain an invariant that no existing referenceon the
thread stack belonging to contextC can point to a version created
by any other context executing inC’s “logical” future. This invari-
ant is relatively easy to maintain since the run-time systemmon-
itors all reference loads within read barriers. However, wemust
take special care to make sure that if a context creates a version, all
references on the thread stack are updated correctly to point to this
version (in other words, all reads performed byC must observeC’s
writes). We implement the invariant using a thread stack inspection
mechanism described below.

4.5.1.2 Writes..
When multiple execution contexts are active, all of them operate

over their own local versions of shared data. In order to reduce the
number of copies created, our implementation employs a copy-on-
write strategy – a new version is created only when an execution
contextC updates an objectfor the first time; we guarantee that all
subsequent accesses byC will refer to that version.

All object update operations (including writes to primitive fields)
are mediated by write barriers. WhenC performs an initial write to
an objecto, a local version ofo does not yet exist. It is therefore
created and inserted at the appropriate position in the versions list
rooted ato to reflect context order. At this point, other references
to the same object may exist onC’s thread stack. For example,C
might have previously reado, but not yet written to it. All such
references must then be forwarded to point to the freshly created
version ofo in order to avoid accessing stale versions. All versions
of o created by contexts inC’s logical past are considered stale with
respect toC if C creates a new version ofo.

Reference forwarding requires thread stack inspection as described
below. Note that once the new version is created and all the refer-
ences on the stack are forwarded,all the references on the stack
throughout theentireexecution of this context will always point to
the right version (because subsequent reference loads are forwarded
to the appropriate version). As a result, we avoid having to locate
the correct version on the versions list when executing writes so
long as a private copy exists. We only have to traverse the versions
list upon version creation (when the object is first written). New
versions are inserted at the appropriate place in the version list to
maintain it in order.

All contexts maintain a list of their versions and use this list to
purge revoked versions upon context revocation. Our prototype im-
plementation does not currently purge stale versions from an ob-
ject’s versions list. Instead, we defer such cleanup to the garbage
collector.

4.5.1.3 Thread stack inspection..
We use a modified version of the thread stack inspection mech-

anism used by the garbage collector to support both pre-reading
and forwarding of references on the stack. However, the essence of
the mechanism remains the same. One of the major differencesbe-
tween the original stack inspection mechanism used during garbage
collection and our modified version lies in the choice of the client
using this mechanism. Garbage collection assumes that the stacks
of inactive threads are being inspected. As a result, the entire exe-
cution state (including registers) of the inspected threadis available
for inspection. In our system, it is the active thread that inspects its
own state. We artificially create a “snapshot” of the currentthread’s
execution state, execute the stack inspection routine, andrestore the
execution state to the point before the inspection routine was in-
voked. This snapshot procedure is implemented in assembler. The

stack inspection routine either tags a read-map for every reference
encountered (when pre-reading the stack) or forwards all references
encountered to point to the correct version (when forwarding refer-
ences during copy-on-write).

4.5.2 Versioning of static variables
In Jikes RVM static variables are stored in a global array called

the JTOC. Static variables are versioned similarly to objects. A
copy-on-write strategy is used, with a versions list holding per-
context versions of static variables. Because we must version static
variables of both primitive and reference type, we introduce the no-
tion of aversion container: a small object thatboxesa value of the
static variable into an object that can be put on the versionslist.

Upon initial write to a static variable by the current context, a
version container for the corresponding variable is created. The
type of the slot in the JTOC representing this variable is then mod-
ified to indicate that its value has been copied aside to the list of
version containers. For subsequent writes, the version created by
the current context must be retrieved and the value it contains up-
dated. When reading the value of a static variable, the current exe-
cution context attempts to locate the appropriate version container
on the versions list similarly to retrieving an object version (it is ei-
ther the container created by the current context or the one directly
preceding its logical position in the list).

Indirections in the JTOC are lazily collapsed after all futures
have been successfully evaluated and the program reverts toexe-
cuting within a single (primordial) context. From this point on,
only the most recent value of each static variable can ever beused.

5. EXPERIMENTS
Our experiments with safe futures for Java explore their perfor-

mance on both standard benchmarks and a synthetic benchmark.
In both cases, we use futures in a straightforward rewrite ofini-
tially sequential benchmark programs. The standard benchmarks
are drawn from the Java Grande benchmark suite. We choose a sub-
set of naturally parallelizable benchmarks, namelyseries, sparse,
crypt andmc.

The synthetic benchmark is intended to expose the performance
of our implementation across a range of benchmark parameters,
such as read/write ratio and degree of shared access. The synthetic
benchmark is based on the OO7 object database benchmark suite
[11], modified to use futures in a parallel traversal of the OO7 de-
sign database.

For all benchmarks, we also run their original sequential version
on theunmodifiedJikes RVM, and use this as a baseline to which
we normalize for comparison with their future-enabled parallel ver-
sions.

5.1 Experimental platform
Our implementation uses version 2.3.4+CVS (timestamp 2005/06/23

13:35:22 UTC) of Jikes RVM for both our futures-modified config-
uration and the baseline configuration against which we compare.
Jikes RVM is configured with the defaults for the Intel x86 plat-
form, using the adaptive compiler framework.

We run each benchmark in its own invocation of the Jikes RVM,
repeating the benchmark six times in each invocation, and discard-
ing the results of the first iteration, in which the benchmarkclasses
are loaded and compiled, to elide the overheads of compilation.
We report mean execution times, with 90% confidence intervals, to
illustrate the degree of variation.

Our hardware platform is an 700MHz Intel Pentium III symmet-
ric multi-processor (SMP), with four CPUs, and 2GB of RAM run-
ning Linux kernel version 2.4.20-20.9 (RedHat 9.0). Our parallel



Component Number
Modules M +1, for M futures

Assembly levels 7
Subassemblies per complex assembly 3

Composite parts per assembly 3
Composite parts per module 5000

Atomic parts per composite part 20
Connections per atomic part 3

Document size (bytes) 2000
Manual size (bytes) 100000

Table 1: Component organization of the OO7 benchmark

executions run four futures simultaneously on the SMP, though we
note that such runs create multiple sets of four futures for each it-
eration of the benchmark, so a series of futures are created in each
run. This permits utilization of our context-caching mechanisms.

5.2 Benchmarks
As mentioned earlier, we draw upon benchmarks from Java Grande,

as well as the OO7 synthetic design database benchmark. The
former are representative of ideal candidate applicationsfor par-
allelization using futures. The latter is less amenable to paralleliza-
tion due to the density of the benchmark data structures and degree
of sharing among them. Nevertheless, OO7 represents a benchmark
in which meaningful parameters can be varied easily to demon-
strate their impact on the performance of our futures implementa-
tion.

5.2.1 Java Grande
Each of the selected Java Grande benchmarks was chosen for

being straightforwardly parallelizable. They perform substantial
computations over elements stored in Java arrays or in Java vectors,
where access to the data structures is encoded into loops over the
respective elements. We parallelized these benchmarks by substi-
tuting futures for subsets of the loop iterations similarlyto the way
these benchmarks have been parallelized for distributed execution
via a Java message-passing interface (MPJ) [42]. For the bench-
marks that use the arrays, this rewriting also includes partitioning
the arrays into subarrays in order to capture locality (suchtransfor-
mations were also used with MPJ), and because the conflict detec-
tion mechanisms described earlier function at per-array granulari-
ties, rather than for fragments of arrays. Theseries benchmark
performs Fourier coefficients computation,sparse multiplies an
unstructured sparse matrix stored in compressed-row format with
a prescribed sparsity structure andcrypt performs IDEA (Interna-
tional Data Encryption Algorithm) encryption and decryption and
mc benchmark is an implementation of a Monte Carlo Simulation.

We believe benchmarks like these are prime candidates for par-
allelization using futures. Note, however, that even though they
could be rewritten to use futures with only small changes to their
source code, and straightforward partitioning of their data, rewrit-
ing the OO7 benchmark was even simpler – no data partitioning
was required – and involved modifying only the top-level control
loop (detailed below).

5.2.2 The OO7 benchmark
The OO7 benchmark suite [11] provides a great deal of flexibil-

ity for benchmark parameters (eg, database structure, fractions of
reads/writes to shared/private data). The multi-user OO7 bench-
mark [10] allows control over the amount of contention for access
to shared data. By varying these parameters we are able to charac-

for (i = 1; i <= I; i++)

for (m = 1; m <= M; m++)

traversals(m, p);

(a) Sequential OO7 benchmark

for (i = 1; i <= I; i++) {
for (m = 1; m <= M; m++)

f[m] = future(traversals(m, p));

for (m = 1; m <= M; m++)

f[m].get();

}
(b) Parallel OO7 benchmark

Figure 9: Top-level loop of the OO7 benchmark

terize the performance of safe futures over a mixed range of work-
loads.

The OO7 benchmarks operate on a synthetic design database,
consisting of a set ofcomposite parts. Each composite part com-
prises a graph ofatomic parts, and adocument object containing
a small amount of text. Each atomic part has a set of attributes (ie,
fields), and is connected via a bi-directional association to several
other atomic parts. The connections are implemented by interpos-
ing a separate connection object between each pair of connected
atomic parts. Composite parts are arranged in anassemblyhierar-
chy; each assembly is either made up of composite parts (abaseas-
sembly) or other assemblies (acomplexassembly). Each assembly
hierarchy is called amodule, and has an associatedmanualobject
consisting of a large amount of text. Our results are all obtained
with an OO7 database configured as in Table 1.

Our implementation of OO7 conforms to the standard OO7 database
specification. Our traversals are a modified version of the multi-
user OO7 traversals. A traversal chooses a single path through
the assembly hierarchy and at the composite part level randomly
chooses a fixed number of composite parts to visit (the numberof
composite parts to be visited during a single traversal is a config-
urable parameter). When the traversal reaches the composite part,
it has two choices:

1. Do aread-onlydepth-first traversal of the atomic part sub-
graph associated with that composite part; or

2. Do aread-writedepth-first traversal of the associated atomic
part subgraph, swapping thex andycoordinates of each atomic
part as it is visited.

Each traversal can be done beginning with either aprivatemodule
or asharedmodule. The parameter’s of the workload control the
mix of these four basic operations: read/write and private/shared.
To foster some degree of interesting interleaving and contention in
the case of concurrent execution, our traversals also take aparam-
eter that allows extra overhead to be added to read operations to
increase the time spent performing traversals.

The top-level execution of our sequential OO7 benchmark oper-
ates as shown in Figure 9(a). It performsI benchmark iterations,
each benchmark iteration comprisesM sets of traversals in which
the private module ranges from module 1 to moduleM, module
M + 1 is used as the shared module, and the parameterp controls
the mix of operations performed by the traversals.

The top-level execution of our futures-enabled OO7 benchmark
operates as shown in Figure 9(b). It performsI benchmark itera-
tions, each benchmark iteration comprisesM futures, each of which
performs a set of traversals operating on a distinct privatemodule
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Figure 10: Java Grande: Elapsed time (normalized)

m, moduleM +1 is used as the shared module, and the parameter
p controls the mix of operations performed by the traversals.

We seed the traversals with the same random seed in both the
sequential and futures-enabled executions of the benchmark, such
that both versions perform identical workloads.

5.3 Results
We present results for the Java Grande benchmarks first, to in-

dicate the behavior of futures under ideal circumstances. OO7 is
more demanding, but also more tuneable, revealing the underlying
performance characteristics of our implementation.

5.3.1 Java Grande results
Figure 10 reports the elapsed time for execution of the future-

enabled versions of the Java Grande benchmarks, normalizedagainst
the average elapsed time for execution of the unmodified sequen-
tial benchmarks running on the unmodified Jikes RVM. Times are
arithmetic means of the 5 hot runs of each benchmark, with 90%
confidence intervals revealing minimal variability. Recall that we
parallelize the benchmarks using four futures. Thus, observe that
speedups range from perfect (or even slightly super-linear– 4× for
series), to a little less than 2× speedup forcrypt. We believe
that the reason for the super-linear speedup forseries is due to
improved locality as a result of the array partitioning.

5.3.2 OO7 results
We report results for two basic versions of OO7, one for a database

containing only 2 (M = 1) modules and one for a database com-
prising 5 (M = 4) modules. Again, we compare the future-enabled
parallel versions against the sequential version of the benchmark.
We vary the ratio of writes to reads performed within each setof
traversals as 4%, 8%, 16% and 32% writes (96%, 92%, 84%, and
68% reads, respectively), in an attempt to model workloads with
mutation rates ranging from low to moderate. We also vary thera-
tio of shared/private accesses for each mix of reads/writesas 0%,
50% and 100%. Thus, for 4% writes, 50% shared, a set of 100
traversals will on average perform 2 read-write traversalsto shared
data, 2 read-write traversals to private data, 48 read-onlytraversals
on shared data, and 48 read-only traversals on private data.

With just 2 (M = 1) modules, both the original and future-enabled
versions are inherently sequential, since the degree of future-enabled
parallelism is equal toM for a database containingM +1 modules.
Moreover, because only one future is ever active revocationcan-
not occur. Thus, the comparison forM = 1 yields a measure of
the fundamental overheads in our system for creating and claim-

ing futures (and indirectly the effectiveness of our context-caching
mechanisms), for the read and write barriers used to track accesses,
and for versioning. The elapsed time results, normalized against
the sequential version running on the unmodified Jikes RVM, are
presented in Figure 11. These reveal a per-future performance hit
of 9-12% for 4% writes. As write ratios increase, we see overheads
of 19-20% for 32% the write ratio. Figure 12 graphs the numberof
versions created per benchmark iteration, showing that thenumber
of versions created increases with sharing and the write ratio.

Of course, for more futures, this performance hit may come to
dominate. Some of the overhead results from the lack of efficient
support in Jikes RVM for caching of thread state (eg, stacks) from
one thread activation to another. Thus, spawning a future isrel-
atively expensive. Our context caching mechanisms ameliorate
some of the overhead, but there is much more that could be done
along the lines of Mul-T [31, 34]. Still, our overheads are low
enough to justify the use of safe futures for a range of applications,
as the Java Grande results already illustrate.

Adding concurrency yields opportunity for parallelism, asillus-
trated in the results for OO7 using four futures, shown in Figure 13.
With four futures executing concurrently there is the possibility of
revocation, which we graph in Figure 14. Without sharing there are
no revocations. Thus for the unshared executions we see uniform
gains of 45-56% across the range of write ratios, as expected. These
gains vary depending on the configuration; even at 32% write ratio
with 100% sharing we still observe a performance benefit of about
25% (Figure 13(d)). In all configurations, the revocations seem to
impact performance significantly, since their rise is correlated with
increased sharing, as well as write ratio (see Figure 14). The in-
crease in versions created (Figure 15) also affects execution times
– as write ratios increase, elapsed times in Figure 13 also increase
slightly even for configurations where no revocations are observed.

The cost of creating versions constitutes part of the “base”over-
head common across all configurations, though clearly non-existent
in the sequential version of the benchmark. Another large base
overhead results from executing large numbers of read barriers.
We observe on average 63 million read barriers (30 million for ob-
jects, 18 million for arrays and 15 million for static variables) per
benchmark iteration (these numbers remain much the same across
all configurations). This indicates that our initial decision to min-
imize the number of barriers by inserting them only at reference
loads was prescient. We also observe a large number of write bar-
riers – 16 million on average per benchmark iteration (6.5 million
for objects, 9.5 million for arrays, and a negligible numberfor static
variables). The number of write barriers for objects increases as the
number of writes to shared objects grows across different configu-
rations. We are particularly penalized by the number of static vari-
able accesses for this implementation of OO7, which uses them to
capture the traversal parameters. In general, static analyses such as
escape analysis also have much grist for the mill here, in optimiz-
ing away unnecessary barriers [12, 6, 7]. We note, however, that
for OO7 such analyses are unlikely to have much impact, because
all futures operate over a single recursively-defined data structure.
Nonetheless, even without the benefit of advanced compiler opti-
mizations, the performance of our implementation using just run-
time optimizations is encouraging.

6. RELATED WORK
Concurrent programming using threads that operate over shared

state can be difficult and error-prone. Besides the algorithmic is-
sues involved in structuring programs to exploit multiple threads of
control, access to shared state must be protected to ensure safety.
Typically, such protection is expressed using synchronization mech-
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Figure 11: OO7 with 1 future: Average elapsed time per iteration (normalized)
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Figure 12: OO7 with 1 future: Versions created per iteration

anisms such as locks or abstractions like monitors, built onlocks,
that allow reasoning about control within the protected region in
terms of serial execution of the threads that access it. Unfortu-
nately, this programming model is highly invasive: since there is of-
ten little coupling between threads and the data they access, safety
demands often dictate thatany object be protected which poten-
tially might be shared. Notwithstanding the negative impact on
performance, restructuring programs to guarantee safety can lead
to increased program complexity. On the other hand, underspeci-
fying synchronization can lead to critical safety violations such as
race conditions. In some cases, compiler optimizations canelide
unwanted synchronization [1, 2, 7, 43] to alleviate performance
issues. When synchronization is underspecified, tools can be em-
ployed to detect potential data races that may result. Thesetools
can be expressed using type systems [17, 8], such as ownership
types [14] to verify the absence of data races and deadlock. Other
tools such as Eraser [40] employ dynamic techniques to checkfor
races in programs [35, 33, 44]. There have also been attemptsto
leverage static analyses to reduce overheads and increase precision
of purely dynamic implementations [13, 45].

Our main contribution in this paper is a semantics and implemen-
tation of safefutures [21], a simple easily-understood abstraction
for injecting concurrency into sequential programs. Unsafe futures
when incorporated into programs that make heavy use of impera-
tive features, can exhibit behavior inconsistent with their original
intent. To ensure that annotating a program with futures does not
violate expected data dependencies and thus unexpectedly change
program behavior, we define a compiler and run-time infrastruc-
ture that employs object versioning and task revocation techniques
to identify safety violations and remedy program executions when

such violations are detected.
In this vein, our motivation is similar to recent proposals that

have argued in favor of higher-level abstractions that enforce desir-
able properties on concurrent programs such as atomicity [19, 18,
22] or transaction-based isolation [23, 41, 46] without requiring
the low-level (and thus potentially error-prone) operational reason-
ing demanded by locks. Other approaches include lock-free data
structures [38, 27] and transactional memory [25]. These efforts
share goals similar to ours insofar as they attempt to provide al-
ternatives to lock-based abstractions for concurrent programming
that preserve desirable safety properties, although the techniques
employed are different in substantial and obvious ways.

The semantics of futures [15, 16] and their implementation [31,
34] have been well-studied in the context of functional languages
like Scheme [30]. Abstractions similar to futures (eg, promises[32])
have also been proposed for statically-typed imperative languages,
but we are unaware of any previous effort that ensures their injec-
tion into a sequential stateful program is transparent withrespect to
preservation of data dependencies that exist in the original.

More recently, Pratikakiset al [37] present a static analysis to
allow Java programs to use futures without requiring wholesale
changes to the program to satisfy type restrictions. Their analy-
sis tracks how a future flows through a program, and injects coer-
cions that perform a claim operation on the future at points where
the value yielded by the future, rather than the future itself, is re-
quired. The analysis uses qualifier inference to track how futures
are used. Our goals are similar in spirit to this work in that both
attempt to treat futures as a transparent concurrency mechanism.
However, these two efforts are unrelated in their focus. Unlike our
design and implementation, Pratikakiset al make no guarantees
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Figure 13: OO7 with 4 futures: Average elapsed time per iteration (normalized)
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Figure 14: OO7 with 4 futures: revocations per iteration
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Figure 15: OO7 with 4 futures: Versions created per iteration

that the evaluation of a future does not introduce behavior incon-
sistent with the sequential program from which it was derived. By
the same token, our notion of transparent execution does notextend
automatically to injecting claims where necessary: a program that
fails to claim a future when required may still lead to transparency
violations of the kind described by Pratikakiset al in our imple-
mentation. We believe both forms of transparency are important.
Although we expect that futures are primarily useful for spawning
concurrent tasks that exhibit relatively little to modest sharing, it is
nonetheless critical that safety violations be detected when they do
occur.

The ParaTran project [29] was an attempt to parallelizing se-
quential Lisp programs in presence of side-effects. Like our im-
plementation of safe futures, ParaTran used optimistic concurrency
control techniques to monitor data accesses performed by concur-

rently executing tasks and to revoke fragments of computation after
detecting violations of the (logical) serial execution order. To the
best of our knowledge however, ParaTran has never been imple-
mented to run on a real system and the available simulation results
do not include the potential costs of such an implementation. One
of the major goals of our work was a thorough performance eval-
uation an implementation based on a realistic language execution
environment.

Another approach to parallelizing sequential programs in the pres-
ence of side-effects has been explored in the context of the Jade
parallel programming language [39]. A Jade programmer is re-
sponsible for delimiting code fragments (tasks) that couldbe exe-
cuted concurrently and explicitly specifying invariants describing
how different tasks access shared data. The run-time systemis then
responsible for exploiting available concurrency and verifying data



access invariants in order to preserve the semantics of the serial
program. Violations of data access invariants result in run-time er-
rors.

7. CONCLUSIONS
In this paper, we have presented a detailed study ofsafefutures

for Java. Futures provide a simple API for concurrent programming
that allows a concurrent program to be constructed often through
only a small rewrite of a sequential one. Unfortunately, futures as
currently specified in Java are not treated as a semanticallytranspar-
ent annotation, thus significantly weakening their utility. Program-
mers who use futures must reason about subtle interaction among
future-encapsulated computations, in much the same way they must
reason about the interaction of threads in a typical multi-threaded
Java program. Safe futures obviate the need for such reasoning
by guaranteeing their injection into a sequential program does not
violated any existing data dependencies. Furthermore, thecost of
providing this added level of safety is not prohibitive. Theeval-
uation of our prototype implementation indicates that futures can
be used to exploit concurrency even for applications with modest
mutation rates on shared data.

Our implementation leverages two general techniques that may
have wider applicability: object versioning and task revocation.
For example, object versioning can be used to implement a general
checkpointing facility since each version is tagged with a context,
a general dynamic region of code. Task revocation is the basis for
implementing optimistic concurrency-based transaction implemen-
tations [22, 23, 46] for Java, and the validation mechanism used to
determine if safety violations between a future and its continua-
tion have occurred can easily be generalized to capture violations
of properties such as atomicity or isolation for multithreaded ap-
plications that use language-level transactions or that build upon
transactional memory [24].
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