Safe Futures for Java

Adam Welc
welc@cs.purdue.edu

Suresh Jagannathan
suresh@cs.purdue.edu

Antony Hosking
hosking@cs.purdue.edu

Department of Computer Science
Purdue University
West Lafayette, IN 47907

ABSTRACT

A future is a simple and elegant abstraction that allows ameacy

to be expressed often through a relatively small rewritesgfguen-
tial program. In the absence of side-effects, futures sasugenign
annotations that mark potentially concurrent regions afecdJn-
fortunately, when computation relies heavily on mutatisrisathe
case in Java, its meaning is less clear, and much of its iatend
simplicity lost.

This paper explores the definition and implementatiorsafe
futures for Java. One can think of safe futures as truly pans
ent annotations on method calls, which designate oppdiesrfor
concurrency. Serial programs can be made concurrent sibyply
replacing standard method calls with future invocationssivsig-
nificantly, even though some parts of the program are exd@ate-
currently and may indeed operate on shared data, the sereldéin
serial execution is nonetheless preserved. Thus, prograsoning
is simplified since data dependencies present in a sequprdia
gram are not violated in a version augmented with safe fature

Besides presenting a programming model and API for safe fu-
tures, we formalize the safety conditions that must be feadigo
ensure equivalence between a sequential Java prograns éumie-
annotated counterpart. A detailed implementation studglse
provided. Our implementation exploits techniques suchhgscd
versioning and task revocation to guarantee necessarty safie-
ditions. We also present an extensive experimental evatuaf
our implementation to quantify overheads and limitatidDsr ex-
periments indicate that for programs with modest mutatides on
shared data, applications can use futures to profitablyoexgral-
lelism, without sacrificing safety.

1. INTRODUCTION

The newjava.util.concurrent package [28] that is part of
the Java 2 Platform Standard Edition 5.0 specifies an irgerfa
definefutures a concurrency abstraction first proposed for Mul-
tiLisp [21]. A future defines an asynchronous thread of aantr
In MultiLisp, the future keyword annotates expressions that can
be evaluated in parallel with the rest of the program. Thedbj
returned by such an annotated expression is a placehoktarlth

Permission to make digital or hard copies of all or part of tiork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

OOPSLA'050ctober 16-20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/001085.00.

mately holds the value yielded by the expression. When arganog
expression requires this value, it attemptstam or touchthe fu-
ture; this operation serves to synchronize evaluation efftiure
with the thread performing the claim.

Futures are an elegant alternative to programming withi@xpl
threads because they often allow concurrent programs taebe ¢
ated through a relatively small rewrite of its sequentialrterpart.
Furthermore, in the absence of side-effects, futuresfgatisimple
safety property: if sequential prograris annotated with futures to
yield concurrent prograr®:, then the observable behavior ®fis
equivalent tdP:. Indeed, because futures were originally provided
as annotations on programs, their effect was intended toabs-t
parent, visible only in the form of improved concurrencytheiut
altering the meaning of the original sequential program.

Of course, in the presence of mutation this pleasant prppert
no longer holds. Indeed, by themselves, Java futures pravid
special safety guarantees. Tasks spawned as a result afra fut
may perform updates on shared data concurrently accesseddyy
tasks, including the task that spawned it. While this is netr@ous
issue in functional or mostly-functional languages whepdaies
to shared data occur infrequently (if at all), it is signifidlgt more
problematic in Java where computation is typically streetuin
terms of modification to shared objects. We believe manyehth
table benefits from using futures are significantly weakenddva
as it is currently specified and implemented because of #uik |
of transparency with respect to access to shared data. Tevach
some measure of safety, programs must be further refinedto pr
vide synchronization on potentially shared objects. Uniuately,
even adding synchronization does not guarantee that théings
behavior is equivalent to a sequential execution sinceffieete of
a future may be arbitrarily interleaved with the effectsfpamed
by the computation that spawned it.

Exploring and remedying this disconnect is the focus of plais
per. We are interested in preserving the original spiritutfifes
as a simple device to inject concurrency into a sequentaram
without violating any of the program’s invariants. Achieving this
goal, however, is non-trivial. Consider a futufethat executes
concurrently with the tasks that evaluates’s continuation. A
continuation of a future is the computation that logicatiidws it.
Safe execution of may be compromised if it observes the effects
of operations performed lfys ; for example, ifC; updates an object
that is subsequently read By Similarly, safe execution @@+ may
be compromised if it accesses an object that is subsequeritign
by f; for example, ifC; performs a read of an object that is sub-
sequently written byf. Both these cases lead to different behavior
than if the future and its continuation were evaluated setjaiéy.

To preserve these desired safety invariants, we define antiema
and implementation faafeJava futures. Our semantics formalizes

the notion of safety by imposing constraints on the set oéduales

that can be generated by a program in which concurrency is ex-
pressed exclusively through the use of futures. Our impieation
automatically revokes executions that fail to observe ffexts of

the futures they spawned, and uses object versioning toetisat
futures do not observe the effects of their continuations.

1.1 Contributions

This paper presents the design, semantics, an implen@ntati
and a performance evaluation of safe futures for Java. Ourieo
butions are summarized as follows:

e We motivate the design of safe futures, present an API, and
associated programming model. Our model allows program-
mers to view futures as simply benign annotations on method
calls inserted where concurrency may be profitably exploite

We define a semantics for an object calculus similar to Feath-
erweight Java [26] extended with futures. The semantics
yield schedules, an interleaved trace of read and writeteven
We define safety conditions on schedules that capture rgotion
of validity with respect to these operations performed hy-co
currently evaluating tasks. We prove a soundness restlt tha
shows every safe schedule is indeed equivalent to a sedal on
in which no interleavings are present.

We present details of an implementation built on top of the
Jikes RVM [9, 3] that supports object versioning and task
revocation to ensure safety. In addition to providing the ra
tionale for our implementation decisions, we describe both
necessary compiler and run-time modifications criticaht® t
implementation.

A detailed experimental study is also given. In addition to
exploring the performance impact of safe futures on paral-

public interface Future<V> {
V get()
throws InterruptedException,
ExecutionException;

}

public class FutureTask<V>
implements Future<V>, Runnable {
FutureTask(Callable<V> callable)
throws NullPointerException

{...1}
V get()
throws InterruptedException,
ExecutionException
{...}

}

void run() { ...

}

public interface Callable<V> {
V call() throws Exception;
}

Figure 1: Theexisting java.util.concurrent futures API

forced to reason about the side-effects of future execsitioren-
sure correctness of programs that use them. Instead, vexbdfiat
strong notions of safety for futures is what makes them soepow
ful, where safety is ensured by the run-time system rattear kbt

as a burden for the programmer.

We now proceed to discussion of an API for safe futures, their

associated programming model, and their interaction wittiag
Java concurrency mechanisms.

2.1 API for safefutures

lelizable programs adapted from the Java Grande benchmark A major challenge in introducing any new language abstacti

suite [42], we also provide a detailed performance study on
007, a well-known synthetic database benchmark [11] that
allows us to more accurately assess implementation over-
heads, and performance limitations. Our experiments show
that for programs with modest mutation rates on shared data,
our approach can profitably exploit parallelism, without-sa
rificing safety.

2. DESIGN

Adding futures to an imperative object-oriented languaie |
Java raises several important design issues. Our forenssgird
goal is to preserve the spirit of programming with futurest thade
it so appropriate for functional programming: the expéctathat
a future performs its computatioas if it had been invoked as
a synchronous function call, rather than an asynchronaesdh
This is a natural evolution of functional programming laages,
since functional programs typically perform infrequenttation of
shared objects in the heap, instead obtaining results obslm
computations as constructions of heap-allocated datetstas. In
contrast, computations in imperative languages like Jéean @b-
tain their results via mutation of container objeatg (arrays and
hash tables) in which results are deposited via mutation.

Unfortunately, current designs for futures in Java [28]leegto
treat them as semantically transparent annotations asaltigpro-
posed for functional languages [15, 16]. We believe thigdtsfthe
original purpose of futures as an elegant and minimalistagah to
exploiting parallelism in existing programs, since prognaers are

is to make it intuitive and easy to use. To ground our design, w
begin with the existing Java futures API [28] that is now pafrt
the Java 2 Platform Standard Edition 5.0 (J2SE 5.0). Srsppfet
this existing API appear in Figure 1, which embodies futumetbe
interfaceFuture. Theget operation on &uture simply waits if
necessary for the computation it encapsulates to completethen
retrieves its result. We omit here those operations on dsttinat
are not germane to our remaining discussion.

We would also like to note that our notion of safe futures is
independent of any particular API. A solution similar to tthod
Pratikakiset al [37] in whichget operations are implicit and fu-
tures are effectively only annotations on method calls wdd a
perfectly viable alternative to using the current API fro2SE 5.0.

In J2SE 5.0 there is an implementation of thecure interface
in the classFutureTask. Again, we omit details not germane to
our discussion. Here, the constructor fartureTask creates a
future that will, upon invocation of theun method, execute the
givenCallable by invoking itscall method. If the call throws an
exception, it is delivered to the caller at the point wherienibkes
theget method, wrapped up in éxecutionException.

Our design calls for a new implementationRafture, namely
SafeFuture, which appears in Figure 2. Our semantics¥afeFuture
demand that the program fragments appearing in Figure 3-be se
mantically equivalent, regardless of the computationqrered by
the givenCallable<V> c, and the code surrounding its invocation
as a simple call or as a future.

To preserve the transparency of future calls, any uncalighiption
thrown by the future calii€, from thecall method of the€allable)

public class SafeFuture<V>
implements Future<V>, Runnable {
SafeFuture(Callable<V> callable)
throws NullPointerException
{...}
V get()
throws InterruptedException,
ExecutionException
{...}
void run() { ... }

Figure 2: SafefuturesAPI

Callable<V> c = ...;

Future<V> £
= new SafeFuture<V>(c);
f.run(Q);

Vv=c.callQ;

Vv==f.getQ;

Figure 3: Semantically equivalent code fragments

will be delivered to the caller at the point of invocation bétrun
method, and the effects of the code following the run methdd w
be revoked. The effects of the future call up to the pointrigththe
exception will remain. These semantics preserve equigel@rith
the simple call.

A more detailed example program appears in Figure 4. A future
defined in the sample code fragment computes the sum of the ele

ments in the array of integeasconcurrently with a call to the static
methodbar on classFoo, which receives argumemnt Note that
methodbar may access (and modify) concurrently with the fu-
ture computation. Our semantics require that the obsex\adtav-
ior of calls to methodserial andconcurrent be the same. Re-
placing uses ofafeFuture with the existingFutureTask from
J2SE 5.0 provides no such guarantee.

2.2 Programming model

public class Example
implements Callable<Integer>
{
int[] a = new int[]{1,2,3};

public Integer call() {
int sum = 0;
for (int v :
return sum;
}
int serial() {
Integer sum = call();
Foo.bar(a);
return sum;
}
int concurrent() {
Future<Integer> f
= new SafeFuture<Integer>(this);
f.run();
Foo.bar(a);
return f.get();

a) sum += v;

}
public static void main (String[] args) {
int serial = new Example().serial();
int concurrent = new Example().concurrent();
assert serial == concurrent;
}
}

Figure 4: Using safe futures (with automatic boxing/unboxing
of int/Integer supported by J2SE 5.0)

3. SEMANTICS

To examine notions of safety with respect to interleavinfgsce
tions that operate within a future and its continuation, veéirek
a semantics for a call-by-value object calculus similar tas€ic
Java [20] extended with threads, andweture construct. The se-
mantics yield aschedule- a sequence of read and write operations
performed during the execution of a program. A schedugerigl
when all the operations of a program are executed within glesin
(main) thread. A schedule @oncurrentif fragments of a program
are executed concurrently by separate threads; in this tasac-
tions of these threads may be interleaved with one anothes. W

The programming model enabled by use of safe futures permits impose safety conditions on concurrent schedules to veréfyop-

straightforward exploitation of latent parallelism in grams. One
can think of safe futures as transparent annotations onaaetls,
which designate opportunities for concurrency. Serialgpams
can be made concurrent simply by replacing standard metiixl ¢
with future invocations. This greatly eases the task of tiogmm-
mer, since all reasoning about the behavior of the programbea
inferred from its original serial execution. Even thougimsoparts
of the program are executed concurrently, the semblancerizfi s
execution is preserved. Of course, the cost of using futorag
outweigh exploitable parallelism, so placement of futureoca-
tions has performance implications.

Under our current programming model, safety does not extend
covering the interaction between futures and Java thrdddsads
which execute concurrently with futures might observe ttt@as
of concurrently executing futures and their continuatiouns-of-
order. Threads could be also incorrectly used to pass pedtia-
putation results between a future and its continuation ¥falating
serial execution semantics. We defer consideration oktiesies
to future work.

eration interleavings do not violate safety invariantgoimally, a
concurrent schedule is safe if it is equivalent, in termgoéctions
on shared data, to some serial schedule.

The syntax and semantics of the calculus are given in Figube 5
program defines a collection of class definitions, and a cidle of
threads. Classes are all uniquely named, and define a ¢ofexft
instance fields and instance methods that operate overfib&tse
Every method consists of an expression whose value is eduas
the result of a call to that method. An expression is either@ble,
a location that references an object, the pseudo-varichie, a
field reference, an assignment, a method invocation, a setnge
operation, an object creation operatiofuaure creation, or g&et
expression that claims a future.

Every class has a unique (nullary) constructor to init@tibject
fields. The application of a constructor returns a referencan
object instantiated from the class definition. A value ib@ihull,
an object instantiated from a class containing locationthi®fields
declared by the class, or a location that serves as a plaszhol
hold the result of evaluating a future. A thread is uniquelydied

SYNTAX:

SEQUENTIAL EVALUATION RULES:

P = P|P]| tle1

L == classC{fM}

M = mnX){e}

e = x| 1| this|ef |efi=e

em(€) | e;e | newC()
future (e) | get (e)

PROGRAM STATES

t € Tid

P < Process

x € Var

1 € Loc

v € Val = null | C(T) |1

[€ Store = Loc— Val

orl ¢ Ops = ({rd,wr}xTidx Loc)

S=o0pP ¢ Schedules P(Op9

N € State = Process< Storex Schedule

EVALUATION CONTEXTS:

E = o]
E[e].f:=e | 1.f :=E[e] |
E[e].m(e) | 1.m(L E[e] &) | E[e] ;e |
get (E[e])
Ebleh == P[t[E[e]l

Ele],I',S— E[¢/],[",S
EE[ehJ:S — E,E[e’]17l"7S'

EVALUATION RULES FOR FUTURES

t/,t” fresh

tﬁt/ S t//

E[1;e],I,S— Ele],l',S

class C{f M} €L n(x){e} eM
E[1.m(1)],l,S — E[[1/this,1/x]e],l",S

class C{f M} €L r)=c@a)
g = S rdt ll/
E[1.£],l,S— E[1]|,[,S

r)=c1” ra)=v
M= r[l{’ — v
S =Srd;1 . wre1f
E[1.f :=1],,S— E[1],[",S

1,1 fresh
M"=r[l'+—¢(1),I+ null]
S':S.Wl‘tll. ...Wrtln.Wrtl/
l1,...,1n €1
E[new C()],[,S— E[1/],[",S

1/ fresh

Ef[future (e)]1,I,S= P|t'[e],, | t"[E[1]];.T.S

P=P |ty

Ef[get (1')]1,7,S= EE[1");.T.S
Figure5: Syntax and semantics of of safe futures.

with a thread identifier, and a placeholder location.

We take metavariablels to range over class declaratiorsio
range over class nameasto range over methods, to range over
method namesf and x to range over fields and parameters, re-
spectively,1 to range over locations, andto range over object
values. We also usle for process terms, angfor expressions. We
use over-bar to represent a finite ordered sequence, faniesit
representd; f, ... f,. The termda denotes the extension of the
sequenceal with a single elementr, and oo’ denotes sequence
concatenationS.or, denotes the extension of sched8leith op-
erationop;.

Program evaluation and schedule construction are spebified
global reduction relatior,,S= P/,I"’, S, that maps a program
state to a new program state. A program state consists ofeceol
tion of evaluating thread<P}, a global storel{) to map locations
to values (specifically, eitherull or an object), and scheduleS) (
to define a global interleaved sequence of actions perforoyed
threads. Local reductions within a thread are specified byuail-

iary relation,e,I,S — &/,I"’, S that evaluates expressierwithin
some thread to a new expressighin doing so, a new store, and
schedule may result. The only actions that are recorded blyexds
ule are those that read and write locations. The interpostatf
schedules with respect to safety is the topic of the nextaect

We use evaluation contexts to specify order of evaluatiahiwi
a thread, and to prevent premature evaluation of the express-
capsulated within &uture annotation. We define a process con-
text Ef[e], to denote an expressianavailable for execution by
threadt € P in a program state; the lab&ldenotes a placeholder
location that holds the result efs evaluation.

The sequential evaluation rules are standard: holes in@tah
contexts can be replaced by the value of the expressionitsiibdt
for the hole, sequence operations evaluate left-to-riglethod in-
vocation evaluates the method body by substituting oconoe® of
the pseudo-variablehis with the location holding the reference to
the receiver object, in addition to substituting occure=snof for-
mals with the locations yielded by evaluation of the actuals

suming variables are suitably-renamed. Read and write opera-
tions augment the schedule in the obvious wayefk expression
extends the schedule with writes to all instance fields (with
values).

An expression of the formfuture (e) causes’s evaluation to
take place in a new thread. A fresh locationl’ is created as a
placeholder to hold the result of evaluating this futureug;i’[e],/
denotes a thread with identifief that evaluates expressienand
stores the result of this evaluation irtb

In addition to the thread responsible for computing the eaifi
the future, a new threat!’ is created to evaluate the future’s con-
tinuation. As a result, the parent thread is no longer refevahis
specification simplifies the safety conditions discussddvbeThe
thread identifiers associated with threads created by esfetpres-
sion are related under a total orderirg) (Informally, this ordering
captures the logical (sequential) order in which action$gomed
by the threads must be evaluated. Thusy'iK t”, then either
t/ = t”, or all actions performed by’ must logically take place
beforet”. In particular, effects induced by actions performed by
t” must not be visible to operations .

Synchronization takes place through gt expression. In the
rule for get, the location label’ represents a placeholder or syn-
chronization point that holds the value of a task spawned fuy a
ture. The rule is satisfied precisely when the associateddisay,

future (e)) has completed. When this occurs, the process state

will contain a thread with shape[1”];, wherel” is the location
yielded by evaluation of.

3.1 Safety

A schedule defines a sequence of possibly interleaved apesat
among threads. The correctness of a schedule, therefost,imu
pose safety constraints on read and write operations. Téwse
straints guarantee that the injection of futures into aetise se-
guential program does not alter the meaning of the progrdms,T
these constraints must ensure that interleavings areeriiy re-
spect to read and write operations. The semantics does muitpe
reordering of operations within a thread.

There are two conditions (roughly equivalent to the welbwn
Bernstein conditions [5]) that must hold on schedules taantae
this property: (1) an access to a locatiofeither a read or a write)
performed by a future should not witness a writé performed ear-
lier by its continuation, and (2) a write operation to someation
| performed by a future should be visible to the first accesheei
a read or a write) made toby its continuation. In other words,
no write to a locationl by a future’s continuation can occur before
any operations oh by the future, and all writes to a locatidrby
the future must occur before any operatioh by the continuation.
Note that these conditions do not prohibit interleaved apens by
a future and its continuation to distinct locations.

We summarize these constraints in terms of two safety rules,
csafeandfsafe resp. The former captures the notion of when an
operation performed by a continuation is safe with respeche
actions performed by the future within a schedule, and ttterla
captures the notion of when an operation performed by adugur
safe with respect to its continuation within a schedule.

wryl,rdglegS, t'<t
csaféSwr; 1.9)

DEFINITION 1. (Schedule Safety)
A schedule S is safe if csé8 and fsaf¢S) hold.

To validate the safety of an interleaved schedule, we msstren
that its observable behavior is equivalent to the behaviaroorre-

WrglrdgleS t<t
fsafgSwr; 1.9)

sponding program in which futures have no computationadogff
In such a program, evaluation of the future’s continuatsotélayed
until the future itself is fully evaluated. This triviallynéorces se-
quential order between all operations executed by the duamd
all operations executed by the continuation and thus autoatig
yields a serial schedule.

We first introduce the notion of a schedylermutationthat al-
lows us to define an equivalence relation on schedules:

DEFINITION 2. (Permute)
Schedule S is @ermutationof schedule S(written S« S),
if len(S) = len(S) and for everyor;' € S, there exists a unique

1
or’ € 8.

A serial schedule is a schedule in which no interleaving among
operations of different threads occurs:

DEFINITION 3. (Serial Schedule)
Schedule S= opL.....oR;" is serial if for all OP};} there does not

existopii, k > j such thatty < tj.

We wish to show that any safe schedule can be permuted toeh seri
one since a serial schedule reflects an execution in whiatatipes
executed by a future are not interleaved with operationfopaed
by its continuation. Effectively, a serial schedule refiesnt execu-
tion in which a spawned future runs to completion before gmy o
erations in its continuation are allowed to execute; in otherds,
a serial schedule corresponds to a program execution irbwvihic
tures have no computational effect.

We first appeal to a lemma that allows us to permute adjacent
operations belonging to different threads in a safe scleedul

LEMMA 1. (Permutation)
Let schedule S op;!.oP;2 be safe. Then if S is safe, there exists a
serial schedule ‘Such that S— S.

Proof. If t1 < tp, then the schedule is trivially serial. tf > to,
and becaus8is safe, it must be the case that either(@}~ 15, or
(b)11=1,=1, andOP%2 =rd¢, 1. In both cases, we can choose
S = or2.0R;L.

Our soundness result generalizes this lemma over schedlfules
arbitrary length:

THEOREM 1. (Soundness)
If schedule S is safe, then there exists a serial schedsiech that
S~ S.

Proof. The proof is by induction on schedule length. Lemma 1
satisfies the base case. SuppBseS;.or: wherelen(S;) > 2. By

the induction hypothesis, there exists a serial schegluteich that

S, <+ Si. SupposeS; = or;l.--- .OPLk. First, we need to show
thatS’ = S;.oP} is safe. Suppose otherwise. Then, it must be the
case that either (a) there exists som%, € 8 such thatt < t/,
andopt =wry 1, or (b) there exists ary 1 € S| such that’ > t.

If either of these conditions hold, howevé would not be safe.
Thus, by Lemma 1, we can permlﬂ)e%t with oP} to yield a new

safe schedul&, = S”.opijﬁ.opé.opit. We can apply Lemma 1

again tooptjﬁ .0PL, and so on, repeatedly shiftirgpt until a serial
schedule is constructed.

4. IMPLEMENTATION

In the previous sections, we discussed our principal degigis
in bringing futures into Java. The overarching intentioroof de-
sign is to ensure that the observable behavior of a futunetated

program is not dependent on whether futures are evaluated sy
chronously (serially) or asynchronously (concurrentiife task of
maintaining thidogical serial order of operations in the presence
of potentially concurrent updates to shared state is nwiatrOur
solution is to divide the entire program execution into ausege
of execution contextsAn execution context is a run-time structure
that encapsulates a fragment of computation that is fulyuated
within a single thread. We define a total order (calledoatext
order) over execution contexts that represents a logical sex&l e
cution order, and use this order to identify data depenésnioe-
tween operations from different execution contexts. ltifas are
evaluated asynchronously, multiple execution contextg npaate
shared state concurrently, which in turn may violate thécklgse-
rial order of operations. An implementation must preveig flrom
happening by tracking all shared data operations and regakie-
cution contexts that violate this order. To help reduce timalper of
violations, execution contexts always operate on locadives (e,
copies) of shared objects which guarantee that out-ofrand@ates
do not violate serial dependencies. The versioning meshais
also used to enable revocations of execution contextstirigléhe
logical serial execution order of operations. The remaimdehis
section provides further details.

Our prototype implementation is based on IBM’s Jikes Radear
Virtual Machine (RVM) [3]. The Jikes RVM is a state-of-theta
Java virtual machine with performance comparable to many pr
duction virtual machines. It is itself written almost eptirin Java
and is self-hostedid, it does not require another virtual machine
to run). Java bytecodes in the Jikes RVM are compiled direotl
machine code. The Jikes RVM'’s public distribution includbesh
a “baseline” and an optimizing compiler. The “baseline” ¢uler
performs a straightforward expansion of each individuakbgde
into a corresponding sequence of assembly instructiong. oph
timizing compiler generates high quality code due in parsde
phisticated optimizations implemented at various levélinter-
mediate representation, and because it uses adaptive latopi
techniques [4] to target code selectively for optimizati@ur im-
plementation targets the Intel x86 architecture.

4.1 Execution contexts

An execution context encapsulates a fragment of computatio
that is executed within a singliread A thread defines a sep-
arate locus of control. It makes no guarantees, howeverhen t
relationship between the operations it executes and thiosther
threads executing concurrently. In contrast, executiorieds im-
pose strong safety constraints on the operations they exe8pecif-
ically, concurrent evaluation of execution contexts byed#nt threads
cannot lead to observable behavior different from serialuation
of those contexts by a single thread. We refer to an execation
text that represents a completed task (either a future aoitnu-
ation) as beingnactive contexts that are still under evaluation are
consideredactive

The execution of a program begins withirpamordial context
evaluated within the main thread of computation. Consideatw
happens when a future is scheduled for evaluatiam, -its run
method is executed. Logically, the code fragment encapeiila
within a future executedeforethe code fragment following the
call to therun method up to the point where the future is claimed
by theget (the future’s continuation). In order to preserve logi-
cal execution order, we create two new contexts: one agsdcia
with a thread used to evaluate the future future contexevalu-
ated within a freshly created thread; and one associated thet
thread used to execute the future’s continuation cemtinuation
contextevaluated using theame threadhs the primordial context.

T
@)

Tf

Cp
get ()

el
T !

(©

Tmain run()

Figure 6: Execution context creation

At this point we establish an execution order over these two e
ecution contexts that reflects a serial order of executiowhith
the effects of the primordial context are visible to the fataon-
text whose effects are in turn visible to the continuationtesgt.
This ordering between future and continuation contextpdiad

to all subsequently evaluated futures. The continuation foture
created within a (non-primordial) continuation cont€ktexecutes
within the same thread that execu@swhile the future itself exe-
cutes within a freshly created thread. Once evaluationl éfiires
has successfully completed and they have been claimed (&ei
spectiveget methods invoked), the continuation context also com-
pletes and the execution returns to the original state enly the
primordial execution context is active and all operatiors pger-
formed within the main thread of computation.

As an example, consider execution of the program shown in Fig
ure 4. A primordial context is created by the run-time system
for execution of thenain method. Invokingconcurrent on the
Example instance from this primordial context proceeds by creat-
ing two additional contexts at the point thain is invoked on the
future £: one to execute the future and one to execute the contin-
uation in which the call tar occurs. At the point thaget is
invoked on the future, both of these contexts are discawmatetiex-
ecution resumes in the primordial context. To reduce thehsael
of creating both contexts and the fresh threads to evaludteef
contexts, our implementation caches and re-uses bothdsheead
execution contexts.

This scenariois illustrated in Figure 6 (wavy lines represlereads
and boxes represent execution contexts). Initially, a priial con-
text (Cp) is created and bound fn,in the thread evaluating the
main method (Figure 6(a)). When a future is scheduled focexe
tion (ie, its run method is invoked), two more contexts are created
(Figure 6(b)): context; to evaluate the future; is bound toTs,

a new thread used to execute the code encapsulated withfn-the
ture), and context; to evaluate the continuation of the futur@: (

is bound to the same thread as the primordial conxtin this
caseTmain). The execution of the program proceeds concurrently
until the get method is invoked (the result computed by the future
is then claimed) and then goes back to executing entirelkimvit
Tmain, the main thread of computation. Note that at this point both
contextsC; andC. as well as thread are discarded (Figure 6(c))
and can be cached for later re-use.

4.2 Preserving serial semantics
When two or more execution contexts execute concurrehty; t

Cst Ce
int i = o.bar; o.bar = 0;
o.foo = 0; int j = o.foo;
Ct | Ce Ct | Ce
reado) write(o)
write(o) reado)
reado) write(o)
write(o) reado)

(a) Forward (b) Backward

Figure 7. Dependency violations

operations may be arbitrarily interleaved and thus the mmb of
serial execution may be violated. Consider two executiorieods:
one representing a futur€() and one representing a continuation
of this future Cc). Under a (logical) serial order of executidds
precede<£.. If C; andC; execute concurrently, this order may be
violated in one of two ways:

e C. does notobserve the effect of an operation performed by
Cs (eg aread irCc does not see modification of shared data
by C¢), even though itvould haveobserved this effect i€+
andC. were executed serially. We call thisaward depen-
dency violationt

e C; doesobserve the effect of an operation performeddy
that could never occur i€s andC; were executed serially
becauseC; would executefully beforeC.. We call this a
backward dependency violation

An example of schedules demonstrating both forward and-back
ward dependency violations betwe€p andC¢, along with code
shippets representing execution contexts appear in FigureFig-
ure 7(a) the continuation represented by con@xshould see the
result of the write too.foo performed by the future represented
by contextCs. In Figure 7(b) the future represented by context
should not see the result of the write dobar performed by the
continuation represented by cont&¢ Note that the notion of a
dependency violation capture the same properties as tleglsieh
safety rules from Section 3.1 (forward dependency viofetiare
captured by thesaferule and backward dependency violations are
captured by thésaferule).

We prevent forward dependency violations by tracking athda
accesses performed within execution contexts. We usequeext
read and writebit-mapsto record accesses to shared state. Each
item of shared statéq, object, array, or static variable) hashes to a
bit in each map. How we use these bit-maps to detect violai®n
described below.

In the case of a forward dependency violation, the execuion
text responsible for the violation is revoked automaticgWith-
out programmer intervention) and restarted. Backward diepen-
dency violations are prevented kgrsioningitems of shared state.
We preserve a copy-on-write invariant to ensure that eagbugion
context updates its own private versions of shared itenesgpiting
it from seeing updates performed by execution contextsitodi-
cal future. A detailed description of these mechanismsasqmted
below.

With the copy-on-write invariant we must make sure that subs
quent reads occur to the copy and not to the original. To &ehie

1Forward in the sense that an operation from the “logical future”
causes the violation.

this, we simply scan the copying context’s thread stack when

an item of shared state is copied, patching any referencéseto
original version to refer instead to the copy — this is cafteevard-

ing. Whenever a reference is loaded from the heap we ensuré that i
is forwarded to the appropriate version. Thus, a contexineer
usea reference to the wrong version.

4.3 Tracking data accesses

We track data accesses using compiler-inserted read anel wri
barriers: code snippets responsible for maintaining the meta-data
required to detect dependency violations, and insertetidgdom-
piler at the point where shared data access operations. other
meta-data consists of the two bit-maps associated with eseh
cution context: one for readge(theread-map and one for writes
(ie, thewrite-map). Whenever a read operation is performed on an
item of shared stated, object, array, or static variable), its hashed
bit is set in the read-map. Hashes for objects and arraysaie t
natural hash value, while for a static variable it is its @&ddr(these
addresses are constants established when the class ounthie
static variable is loaded). The same read-map is used fehatked
items. Write-maps are similarly maintained within writerthers,
though write barriers must always ensure that a new versiorer
ated on first write by a context to a given item.

Since reads significantly outnumber writes in most Java pro-
grams, reducing the number of read barriers is critical toesing
reasonable performance. Our implementation therefodesraff
accuracy for efficiency in detecting dependency violatidnstead
of placing barriers on all read accesses to shared itegisgading
an integer field from an object), we assume that once a referen
is read from the heap, the context reading it will eventuadigd
from the object targeted by that reference. Thus, the reaikba
is placed only on loads a&ferencedrom the heapdg getfield
or arrayload bytecodes in which the type of the field or element
is a reference). In other words, we “pre-read” all objecte/hich
a context holds references (when a context is initializésinteans
we must apply the pre-read barrier to all references in theent
activation record). The pre-read optimization is appliedlydor
objects and arrays to eliminate read barriers on them. Aot
accesses, including reads from static variables, and &svto
shared items incur the appropriate barrier.

Note that bit-maps are maintained only if there is more tham o
active context present in the systeim, there is potential for con-
currency and thus logical serial order violations). Thabariers
are responsible only for fetching the most recent versicamdfem
if only the primordial context is active. Bit-map mainteganis
in reality optimized even further: the first of a series of@x@®n
contexts does not need to record its reads because verggienin
sures they cannot be compromised by any concurrent writass, T
it does not need to maintain a read-map.

4.4 Execution context revocation

Actions performed by a context may violate the semblance-of s
quential execution because of a forward dependency violatiVe
now describe how such violations are handled. First, naiewe
defer detection of forward violations until the point whereon-
text has finished executingge(when a future context completes its
computation, or a continuation context invokest on the associ-
ated futuré. At that time, the context must wait for completion
of contexts that logically precede it, before validatirgelf against
their actions. This means forming the intersection of theent
context's read-map with the write-maps of the precedingexds.

2A_s described previously, futures and continuations aratett"in
pairs”.

Figure 8: Handling of a forward dependency violation.

If there is overlap then the current context is revoked aadsjpar-
ently re-executed. Because a context operates over its avat |
versions of shared data, its updates become visible onlyithe
successfully passes this forward violation check.

The implementation of revocation and re-execution for rfeitu
contexts is simple. Because a future context is evaluatéuma
separate thread, we can simply terminate the thread, astdirethe
future execution. Revoking and re-executing continuationtexts
is more challenging. Our solution adapts the Jikes RVM etkarp
handling sub-system to return control to the beginning efdbn-
tinuation, using bytecode rewriting to save program stekigs of
local variables and the state of the Java operand stack ataint
of the continuation. Each method that invokes a future, dthvh
point a continuation context begins, is wrapped with an ptioa
scope that catches an internalvoke exception, restores the lo-
cal state and transfers control to the beginning of the naation
context. Therevoke exception is thrown internally by the run-
time system, but the code to catch it (implementing re-etxech
is injected into the bytecode. We also modify the compilet am-
time system to suppress generation (and invocation) ofatdef
exception handlers during the rollback operation. The ddif
handlers include botliinally blocks, andcatch blocks for ex-
ceptions of typeThrowable, of which all exceptions (including
the revoke exception) are instances. Running these intervening
handlers would violate the transparency requirement thateked
execution context produces no side-effects.

Our current implementation does not preserve context sthe
than that of the method containing the continuation contaxfu-
tures that are invoked, but not claimed by the end of the naetho
are implicitly claimed before the invoking method can retie,
we wait for all spawned futures to complete their executiemgn
though the matchinget operation is still to be invoked.

We illustrate how our system handles forward dependency vi-
olations using the code fragment and sample schedule frgm Fi
ure 7(a). We assume that execution coni&xt(representing a
future) is executed by (and thus bound to) thrdadand execu-
tion contextCc (representing a continuation) to thregd The en-
tire scenario is illustrated in Figure 8, where wavy linegresent
threadsT; and T, and a circle represents objett(it is marked
gray when updated). The execution contexts are linked hegét
order to allow execution contexts from the logical futurextwess
the maps of contexts from the logical past. There is a regoland
write- map associated with each context (each map has thutse s
and we assume that objechashes to the second slot).

Execution starts with the future reading a field of obje¢Fig-
ure 8(a)) and setting the appropriate slot in the read-mé#p eke-

cution contexCs. The continuation then both reads and updates the
same object, setting the read-map and write-map assoeiéteis
execution context (Figure 8(b)). Subsequently, the future writes
to the field of objeci and sets the write-map associated with its
execution contex€; (Figure 8(c)). At this point execution of the
future is complete (no dependency violations that couldedts re-
vocation are possible since there were no other concuroenéexts
executing in its logical past). However, before the cordiian can
complete, it must check for forward dependency violatiofikis
check fails sinceC:'s read-map an¢’s write-map overlap. The
continuation is revoked and re-executed (Figure 8(d)). eNbat
after revocation, there are no more active execution ctsiaxts
logical past. As a consequence, re-execution is guarambemat-
ceed so maintaining its read-map is unnecessary.

45 Shared state versioning

We use versioning of shared state to avoid backward data de-
pendency violations and prevent updates of shared datatfeamy
made prematurely visible to other threads in case of reimtsat
We only version objects when more than one execution corgext
concurrently active, since it is only then that concurrdwtred state
access may occur. Whenever an active execution contertatte
to write to an object, array, or static variable, we createieate
version of that item on which to perform the write. We handbe o
ject and array updates identically and use a similar praeetiu
handle updates to static variables. The code implementimger-
sioning procedure resides in the read and write barriersritbes!
in Section 4.3.

4.5.1 Objectand array versioning

Because objects and arrays are treated identically, weoafg
to objects when describing the versioning procedure. Wenekt
the header of every object with a forwarding pointer. At abj-
location time, this forwarding pointer is initialized tm11. As the
program executes, subsequent versions are appended tukarcir
list rooted at the forwarding pointer of the original objéiet, the
original object is the head and tail of this version list).cEaer-
sion is tagged with the unique identifier of the context thretited
it. This enables each context to locate its version in the Tiie
versions are sorted under logical context order.

We now describe the implementation of read and write opera-
tions on objects as performed by an active execution coirigkie
presence of versioning. If only one execution context isvagno
concurrency), a read or write operation retrieves and aesethe
most recent version of the object (or the original objectaaecno
versions of this object have been created). Otherwise, a ocwn-
plicated access procedure is required.

45.1.1 Reads..

A reference to a shared objezxteferenced by a contet must
point too’s most recent version with respect@ in particular,C
must not access any version@that has been created by another
context which occurs i€'s logical future. To implement this in-
variant, we traverse the versions list (in context order aither
load the reference for the version taggedyor the version cor-
responding t&C’'s most recent predecessor context. If a con@xt
that occurs irC’s logical past has written to, andC reads the ver-
sion corresponding to this write, a forward dependencyatioh
exists and will be captured using the map tagging mechanesm d
scribed earlier. Indeed, the only instance when a rea@ by a
version written byC’ would be safe is precisely when, at the point
the read occurs;’ is already inactive.

The implementation of read operations is additionally ctmp

cated by the fact that read barriers are only executed aterefe
loads. Thus, in order for loads of primitive values to prateer-
rectly, we maintain an invariant that no existing referenocethe
thread stack belonging to conteXtcan point to a version created
by any other context executing €is “logical” future. This invari-
ant is relatively easy to maintain since the run-time sysiteom-
itors all reference loads within read barriers. However, mgst
take special care to make sure that if a context creates mneadl
references on the thread stack are updated correctly to fodinis
version (in other words, all reads performed®ynust observ€’s
writes). We implement the invariant using a thread stacgenton
mechanism described below.

45.1.2 Writes..

When multiple execution contexts are active, all of thenrage
over their own local versions of shared data. In order tocedhe
number of copies created, our implementation employs a-oopy
write strategy — a new version is created only when an exatuti
contextC updates an objedor the first time we guarantee that all
subsequent accesses®@wvill refer to that version.

All object update operations (including writes to priméifields)
are mediated by write barriers. Wh€merforms an initial write to
an objecto, a local version ob does not yet exist. It is therefore
created and inserted at the appropriate position in theorerdist
rooted ato to reflect context order. At this point, other references
to the same object may exist @'s thread stack. For exampl€,
might have previously read, but not yet written to it. All such
references must then be forwarded to point to the freshigtede
version ofo in order to avoid accessing stale versions. All versions
of o created by contexts i@’s logical past are considered stale with
respect taC if C creates a new version of

Reference forwarding requires thread stack inspectioesaribed
below. Note that once the new version is created and all fiee-re
ences on the stack are forwardedl, the references on the stack
throughout theentire execution of this context will always point to
the right version (because subsequent reference loadsrauarfled
to the appropriate version). As a result, we avoid havingtate
the correct version on the versions list when executingesr#o
long as a private copy exists. We only have to traverse tr@omes
list upon version creation (when the object is first writtebhew
versions are inserted at the appropriate place in the velsioto
maintain it in order.

All contexts maintain a list of their versions and use thés 1o
purge revoked versions upon context revocation. Our pypéoim-
plementation does not currently purge stale versions fromla
ject’s versions list. Instead, we defer such cleanup to trbage
collector.

4.5.1.3 Thread stack inspection..

We use a modified version of the thread stack inspection mech-
anism used by the garbage collector to support both prengad
and forwarding of references on the stack. However, thenessaf
the mechanism remains the same. One of the major differdmgces
tween the original stack inspection mechanism used dugrigage
collection and our modified version lies in the choice of thert
using this mechanism. Garbage collection assumes thatabless
of inactive threads are being inspected. As a result, thiecese-
cution state (including registers) of the inspected thisadailable
for inspection. In our system, it is the active thread thapetts its
own state. We artificially create a “snapshot” of the curtergad’s
execution state, execute the stack inspection routineremtdre the
execution state to the point before the inspection routias im-
voked. This snapshot procedure is implemented in assenitier

stack inspection routine either tags a read-map for evdeyarce
encountered (when pre-reading the stack) or forwardsfalleaces
encountered to point to the correct version (when forwaydéfer-
ences during copy-on-write).

4.5.2 \ersioning of static variables

In Jikes RVM static variables are stored in a global arraledal
the JTOC. Static variables are versioned similarly to dbje®
copy-on-write strategy is used, with a versions list hajder-
context versions of static variables. Because we mustoressatic
variables of both primitive and reference type, we intragtie no-
tion of aversion containera small object thaboxesa value of the
static variable into an object that can be put on the verdiehs

Upon initial write to a static variable by the current corfex
version container for the corresponding variable is cbat€he
type of the slot in the JTOC representing this variable is tihned-
ified to indicate that its value has been copied aside to #tefi
version containers. For subsequent writes, the versicatenleoy
the current context must be retrieved and the value it cositap-
dated. When reading the value of a static variable, the cuexe-
cution context attempts to locate the appropriate versamainer
on the versions list similarly to retrieving an object vers(it is ei-
ther the container created by the current context or the oaetly
preceding its logical position in the list).

Indirections in the JTOC are lazily collapsed after all fet
have been successfully evaluated and the program reveeteeto
cuting within a single (primordial) context. From this pbion,
only the most recent value of each static variable can eveséd.

5. EXPERIMENTS

Our experiments with safe futures for Java explore theifgper
mance on both standard benchmarks and a synthetic benchmark
In both cases, we use futures in a straightforward rewritaief
tially sequential benchmark programs. The standard beardtsn
are drawn from the Java Grande benchmark suite. We choo$e a su
set of naturally parallelizable benchmarks, namelyies, sparse,
crypt andmec.

The synthetic benchmark is intended to expose the perfarenan
of our implementation across a range of benchmark parageter
such as read/write ratio and degree of shared access. Ttietgn
benchmark is based on the OO7 object database benchmaek suit
[11], modified to use futures in a parallel traversal of the7Oie-
sign database.

For all benchmarks, we also run their original sequentiedion
on theunmodifieddikes RVM, and use this as a baseline to which
we normalize for comparison with their future-enabled perser-
sions.

5.1 Experimental platform

Ourimplementation uses version 2.3.4+CVS (timestamp /2&033
13:35:22 UTC) of Jikes RVM for both our futures-modified cgnfi
uration and the baseline configuration against which we eoelp
Jikes RVM is configured with the defaults for the Intel x86tpla
form, using the adaptive compiler framework.

We run each benchmark in its own invocation of the Jikes RVM,
repeating the benchmark six times in each invocation, aschdil-
ing the results of the first iteration, in which the benchmadsses
are loaded and compiled, to elide the overheads of conmilati
We report mean execution times, with 90% confidence interval
illustrate the degree of variation.

Our hardware platform is an 700MHz Intel Pentium Il symmet-
ric multi-processor (SMP), with four CPUs, and 2GB of RAM fun
ning Linux kernel version 2.4.20-20.9 (RedHat 9.0). Ourafief

Component Number
Modules M +1, for M futures
Assembly levels 7
Subassemblies per complex assemply 3
Composite parts per assembly 3
Composite parts per module 5000
Atomic parts per composite part 20
Connections per atomic part 3
Document size (bytes) 2000
Manual size (bytes) 100000

Table 1. Component organization of the OO7 benchmark

executions run four futures simultaneously on the SMP,ghoue
note that such runs create multiple sets of four futures dohet-
eration of the benchmark, so a series of futures are createalch
run. This permits utilization of our context-caching meuisans.

5.2 Benchmarks

As mentioned earlier, we draw upon benchmarks from Javadéran
as well as the OO7 synthetic design database benchmark. Th

former are representative of ideal candidate applicatfonpar-
allelization using futures. The latter is less amenableataleliza-
tion due to the density of the benchmark data structures egred

of sharing among them. Nevertheless, OO7 represents arpankch

in which meaningful parameters can be varied easily to demon
strate their impact on the performance of our futures impleta-
tion.

5.2.1 Java Grande

for (i = 1; i <= I; i++)
for (m = 1; m <= M; m++)
traversals(m, p);

(a) Sequential OO7 benchmark

for (i = 1; i <= I; i++) {
for (M= 1; m <= M; m++)
f[m] = future(traversals(m, p));
for (m = 1; m <= M; m++)
fm].getO;

(b) Parallel OO7 benchmark

Figure 9: Top-level loop of the OO7 benchmark

terize the performance of safe futures over a mixed rangeodf-w
loads.

The OO7 benchmarks operate on a synthetic design database,
consisting of a set ofomposite partsEach composite part com-

eprises a graph ofitomic parts and adocument object containing

a small amount of text. Each atomic part has a set of attiskiege
fields), and is connected via a bi-directional associatiogetveral
other atomic parts. The connections are implemented bypiose
ing a separate connection object between each pair of ctathec
atomic parts. Composite parts are arranged iassemblyierar-
chy; each assembly is either made up of composite pabaseas-
sembly) or other assemblies¢gamplexassembly). Each assembly
hierarchy is called anodule and has an associatethnualobject
consisting of a large amount of text. Our results are all iobth
with an OO7 database configured as in Table 1.

Each of the selected Java Grande benchmarks was chosen for Ourimplementation of 007 conforms to the standard OO7 aatab

being straightforwardly parallelizable. They perform stantial
computations over elements stored in Java arrays or in &avears,
where access to the data structures is encoded into loopshave
respective elements. We parallelized these benchmarkalistis
tuting futures for subsets of the loop iterations similadyhe way
these benchmarks have been parallelized for distributedution
via a Java message-passing interface (MPJ) [42]. For thehben
marks that use the arrays, this rewriting also includestjaring
the arrays into subarrays in order to capture locality (stensfor-
mations were also used with MPJ), and because the confliet-det
tion mechanisms described earlier function at per-arrapgari-
ties, rather than for fragments of arrays. Tdwries benchmark
performs Fourier coefficients computatiagparse multiplies an
unstructured sparse matrix stored in compressed-row towita
a prescribed sparsity structure angypt performs IDEA (Interna-
tional Data Encryption Algorithm) encryption and decrgptiand
mc benchmark is an implementation of a Monte Carlo Simulation.
We believe benchmarks like these are prime candidates fer pa
allelization using futures. Note, however, that even thotiiey
could be rewritten to use futures with only small changeshairt
source code, and straightforward partitioning of theiagadwrit-

ing the OO7 benchmark was even simpler — no data partitioning

was required — and involved modifying only the top-level ttoh
loop (detailed below).

5.2.2 The OO7 benchmark

The OO7 benchmark suite [11] provides a great deal of flexibil
ity for benchmark parametered database structure, fractions of
reads/writes to shared/private data). The multi-user O&rch-
mark [10] allows control over the amount of contention focess
to shared data. By varying these parameters we are abletaccha

specification. Our traversals are a modified version of théimu
user OO7 traversals. A traversal chooses a single pathghrou
the assembly hierarchy and at the composite part level ralydo
chooses a fixed number of composite parts to visit (the number
composite parts to be visited during a single traversal isrdig-
urable parameter). When the traversal reaches the corapusit,

it has two choices:

1. Do aread-onlydepth-first traversal of the atomic part sub-
graph associated with that composite part; or

2. Do aread-writedepth-first traversal of the associated atomic
part subgraph, swapping tReandy coordinates of each atomic
part as it is visited.

Each traversal can be done beginning with eithprigate module

or asharedmodule. The parameter’s of the workload control the
mix of these four basic operations: read/write and prigh@/ed.
To foster some degree of interesting interleaving and ciate in
the case of concurrent execution, our traversals also tpleeaam-
eter that allows extra overhead to be added to read opesatiion
increase the time spent performing traversals.

The top-level execution of our sequential OO7 benchmark-ope
ates as shown in Figure 9(a). It perforinbenchmark iterations,
each benchmark iteration comprisdssets of traversals in which
the private module ranges from module 1 to modMle module
M + 1 is used as the shared module, and the paranpatentrols
the mix of operations performed by the traversals.

The top-level execution of our futures-enabled OO7 benchma
operates as shown in Figure 9(b). It performsenchmark itera-
tions, each benchmark iteration compriséfutures, each of which
performs a set of traversals operating on a distinct prigateule

ing futures (and indirectly the effectiveness of our cotiteaching
mechanisms), for the read and write barriers used to trasgsses,
and for versioning. The elapsed time results, normalizexnag
the sequential version running on the unmodified Jikes RV, a
presented in Figure 11. These reveal a per-future perfaenhit
of 9-12% for 4% writes. As write ratios increase, we see ovads
of 19-20% for 32% the write ratio. Figure 12 graphs the nunafer
versions created per benchmark iteration, showing thatuheber
of versions created increases with sharing and the write rat
Of course, for more futures, this performance hit may come to
dominate. Some of the overhead results from the lack of effici
support in Jikes RVM for caching of thread stagg (stacks) from
one thread activation to another. Thus, spawning a futurelis
0" series sparsecrypt mc atively expensive. Our context caching mechanisms anagior
some of the overhead, but there is much more that could be done
Figure 10: Java Grande: Elapsed time (nor malized) along the lines of Mul-T [31, 34]. Still, our overheads arevlo
enough to justify the use of safe futures for a range of appitios,
as the Java Grande results already illustrate.
m, moduleM + 1 is used as the shared module, and the parameter Adding concurrency yields opportunity for parallelism,iéss-

o o o
IS P %
L L L

Elapsed time (normalized)
~
)

p controls the mix of operations performed by the traversals. trated in the results for OO7 using four futures, shown iruFégl3.
We seed the traversals with the same random seed in both theWith four futures executing concurrently there is the plitity of
sequential and futures-enabled executions of the benéhmach revocation, which we graph in Figure 14. Without sharingetere
that both versions perform identical workloads. no revocations. Thus for the unshared executions we seeromif

gains of 45-56% across the range of write ratios, as expettezse
5.3 Results gains vary depending on the configuration; even at 32% waite r
We present results for the Java Grande benchmarks first; to in With 100% sharing we still observe a performance benefit ofiab
dicate the behavior of futures under ideal circumstance®7 @& 25% (Figure 13(d)). In all configurations, the revocatioeers to
more demanding, but also more tuneable, revealing the Lyiatgr impact performance significantly, since their rise is caes with
performance characteristics of our implementation. increased sharing, as well as write ratio (see Figure 14k ifih
crease in versions created (Figure 15) also affects exectithes
5.3.1 Java Grande results — as write ratios increase, elapsed times in Figure 13 atsease

slightly even for configurations where no revocations arseobed.
The cost of creating versions constitutes part of the “basef-
head common across all configurations, though clearly xistemt
in the sequential version of the benchmark. Another largeeba
overhead results from executing large nhumbers of readdoarri
We observe on average 63 million read barriers (30 milliorofo
jects, 18 million for arrays and 15 million for static varia) per
benchmark iteration (these numbers remain much the sarssacr
all configurations). This indicates that our initial deoisito min-
imize the number of barriers by inserting them only at reieee
loads was prescient. We also observe a large number of vaite b
riers — 16 million on average per benchmark iteration (6.fioni
5.3.2 0OO7 results for objects, 9.5 million for arrays, and a negligible numfuerstatic
variables). The number of write barriers for objects insesaas the
number of writes to shared objects grows across differemtfiguo-
rations. We are particularly penalized by the number ofcsteri-
able accesses for this implementation of OO7, which uses the

Figure 10 reports the elapsed time for execution of the &itur
enabled versions of the Java Grande benchmarks, normalizeéaist
the average elapsed time for execution of the unmodifiedesequ
tial benchmarks running on the unmodified Jikes RVM. Times ar
arithmetic means of the 5 hot runs of each benchmark, with 90%
confidence intervals revealing minimal variability. Ré¢hht we
parallelize the benchmarks using four futures. Thus, oestrat
speedups range from perfect (or even slightly super-lirgas for
series), to a little less than { speedup forrypt. We believe
that the reason for the super-linear speedupstaries is due to
improved locality as a result of the array partitioning.

We report results for two basic versions of OO7, one for aluteta
containing only 2 i1 = 1) modules and one for a database com-
prising 5 M = 4) modules. Again, we compare the future-enabled

parallel versions against the sequential version of thelraark. capture the traversal parameters. In general. static Buch as
We vary the ratio of writes to reads performed within eachafet P . X -ng , StaliC SERBUC
escape analysis also have much grist for the mill here, iimigpt

traversals as 4%, 8%, 16% and 32% writes (96%, 92%, 84%, and. .
. . . ing away unnecessary barriers [12, 6, 7]. We note, howekat, t

68% reads, respectively), in an attempt to model workloaitls w for 007 such analvses are unlikely to have much impact au

mutation rates ranging from low to moderate. We also varydhe y y pact,

tio of shared/private accesses for each mix of reads/waite3% all futures operate over a single recur_sively-defined dmtm:u;_;r_e.
50% and 100%. Thus, for 4% writes, 50% shared, a set of 100 N(.)ntheleSS’ even without the beqeflt of advar!ced CF’mpF“*" °
traversals will on average perform 2 read-write travergakhared ?r::t(;ort]ifﬁitzgii(?r?srfic;rzr?cnocfr:figur implementation using jus-
data, 2 read-write traversals to private data, 48 read-alersals P ging.
on shared data, and 48 read-only traversals on private data.

With just 2 M = 1) modules, both the original and future-enabled 6. RELATED WORK

versions are inherently sequential, since the degreewfdtgnabled Concurrent programming using threads that operate oveegha
parallelism is equal tM for a database containirig + 1 modules. state can be difficult and error-prone. Besides the algoiiths-
Moreover, because only one future is ever active revocatiom sues involved in structuring programs to exploit multigiesads of

not occur. Thus, the comparison fot = 1 yields a measure of control, access to shared state must be protected to erefetg. s
the fundamental overheads in our system for creating anichcla Typically, such protection is expressed using synchraitimanech-

% shared wrltes
50 % shared writes
100 % shared writes

% shared wrltes
50 % shared writes
100 % shared writes

A
i
¥

Elapsed time (normalized)
=

Elapsed time (normalized)
=

0 50 100 0
Shared reads (%)
(a) 4% writes, 96% reads

0 50 100
Shared reads (%)
(b) 8% writes, 92% reads

2 2
S |20 % shared wrltes S |20 % shared wrltes
@ || 50 % shared writes @ || 50 % shared writes
N [C] 100 % shared writgs N [C] 100 % shared writgs
© ©
£ £
2 2
= e Ere. oo T = M= =@ e
@ 7 @ 7
E E
o o
7] 7]
7] 7]
o o
< <
Ll Ll
0 0

0 50 100
Shared reads (%)
(d) 32% writes, 68% reads

0 50 100
Shared reads (%)
(c) 16% writes, 84% reads

Figure 11: OO7 with 1 future: Average elapsed time per iteration (normalized)

24 K7 0 % shared writes| 1 24 K7 0 % shared writes| 1
2 50 % shared write [50 % shared write

[1100 % shared writgs [1100 % shared writgs

520 k- R 520 k- B
L L
© ©

016 k- g 016 k- i
(5] (5]

812 ki~ g 812 k- |
2 S
o o

O 8k- , O 8k- 1
> >

4 k- g 4 k- |

o= I e 0 L

0 50 100
Shared reads (%)
(b) 8% writes, 92% reads

0 50 100
Shared reads (%)
(a) 4% writes, 96% reads

24 K7 0 % shared writes| 1 24 K70 % shared writes| 1
[50 % shared write [50 % shared write

[1100 % shared writgs [1100 % shared writgs

520 k- R 520 k- B
L L
© ©

016 k- g 016 k- i
5} 5}

812 ki~ g 812 k- |
2 S
o o

O 8k- , O 8k- 1
> >

4 ki 1 4 ki 1

\in uln §lN B I8

50 100
Shared reads (%)
(d) 32% writes, 68% reads

0 50 100
Shared reads (%)
(c) 16% writes, 84% reads

Figure 12: OO7 with 1 future: Versionscreated per iteration

anisms such as locks or abstractions like monitors, builboks,
that allow reasoning about control within the protectedaregn
terms of serial execution of the threads that access it. ftirfo
nately, this programming model is highly invasive: sinceréhis of-
ten little coupling between threads and the data they acsafsty
demands often dictate thany object be protected which poten-
tially might be shared. Notwithstanding the negative impat
performance, restructuring programs to guarantee saetyjead
to increased program complexity. On the other hand, undersp
fying synchronization can lead to critical safety violasosuch as
race conditions. In some cases, compiler optimizationsetide
unwanted synchronization [1, 2, 7, 43] to alleviate perfance
issues. When synchronization is underspecified, tools eagni
ployed to detect potential data races that may result. Ttoede

can be expressed using type systems [17, 8], such as owmershi

types [14] to verify the absence of data races and deadlotiierO
tools such as Eraser [40] employ dynamic techniques to cfueck
races in programs [35, 33, 44]. There have also been atteampts
leverage static analyses to reduce overheads and incrnesssiqn

of purely dynamic implementations [13, 45].

Our main contribution in this paper is a semantics and implem
tation of safefutures [21], a simple easily-understood abstraction
for injecting concurrency into sequential programs. Uedafures
when incorporated into programs that make heavy use of iper
tive features, can exhibit behavior inconsistent with itlegiginal
intent. To ensure that annotating a program with futures cha
violate expected data dependencies and thus unexpecteaiige
program behavior, we define a compiler and run-time infeastr
ture that employs object versioning and task revocationrtiegies
to identify safety violations and remedy program execgioinen

such violations are detected.

In this vein, our motivation is similar to recent proposdistt
have argued in favor of higher-level abstractions that eefdesir-
able properties on concurrent programs such as atomidtyl[,
22] or transaction-based isolation [23, 41, 46] withoutuieqg
the low-level (and thus potentially error-prone) openadiloreason-
ing demanded by locks. Other approaches include lock-fetéa d
structures [38, 27] and transactional memory [25]. Thefartsf
share goals similar to ours insofar as they attempt to peosid
ternatives to lock-based abstractions for concurrentaragiing
that preserve desirable safety properties, although tentgues
employed are different in substantial and obvious ways.

The semantics of futures [15, 16] and their implementat8ih [
34] have been well-studied in the context of functional lzamges
like Scheme [30]. Abstractions similar to futuregy(promiseg32])
have also been proposed for statically-typed imperatinguages,
but we are unaware of any previous effort that ensures thyeic4
tion into a sequential stateful program is transparent ragipect to
preservation of data dependencies that exist in the ofigina

More recently, Pratikakigt al [37] present a static analysis to
allow Java programs to use futures without requiring whalkes
changes to the program to satisfy type restrictions. Thealya
sis tracks how a future flows through a program, and injeats-co
cions that perform a claim operation on the future at poirtiens
the value yielded by the future, rather than the futurefitselre-
quired. The analysis uses qualifier inference to track hawrés
are used. Our goals are similar in spirit to this work in thathb
attempt to treat futures as a transparent concurrency micha
However, these two efforts are unrelated in their focus.ikenbur
design and implementation, Pratikakdt al make no guarantees

10 % shared wrltes
[50 % shared writes
1 100 % shared writes

10 % shared wrltes
[50 % shared writes
1 100 % shared writes

Elapsed time (normalized)
=

Elapsed time (normalized)
=

| il |

0 50 10
hared reads (%) Shared reads (%)
(a) 4% writes, 96% reads (b) 8% writes, 92% reads

<
[9) [3)
€ 0.2— € 02—
o] 0 % shared writes o] 0 % shared writes
(&) O 50 % shared write (&] O 50 % shared write
g [1 100 % shared writes g [1 100 % shared writes
= =
(8} (8}
Q Q
< <
[3) [3)
o 0.1 f o 0.1 f
o o
[%2]) [0}
c c
il il
IS IS
(8] Q
o) o)
> >
2 2
0% 50 100 0% 50 100
Shared reads (%) Shared reads (%)

(a) 4% writes, 96% reads (b) 8% writes, 92% reads

% shared wrltes
50 % shared writes
100 % shared writes

10 % shared wrltes
[50 % shared writes
[1 100 % shared writes

Elapsed time (normalized)
=

Elapsed time (normalized)
=

il ¢

0 50 10 0 50 100
Shared reads (%) Shared reads (%)
(c) 16% writes, 84% reads (d) 32% writes, 68% reads

Figure 13: ©O7 with 4 futures: Average elapsed time per iteration (nor makized)

]]
c 0.2 c 0.2

o] 0 % shared writes o] 0 % shared writes

(&] O 50 % shared write (&] O 50 % shared write

g [1 100 % shared writes g [1 100 % shared writes

= =

(8} (8}

Q Q

< <

[3) [3)

o 0.1 f o 0.1 f

o o

[0} [0}

c c

il il

IS IS

Q Q

o) o)

> >

2 r r r & r : r
0% 50 100 0% 50 100

Shared reads (%) Shared reads (%)

(c) 16% writes, 84% reads (d) 32% writes, 68% reads

Figure 14: OO7 with 4 futures: revocations per iteration

24 K7 0 % shared writes| 1 24 K70 % shared writes| 1
2 50 % shared write 2 50 % shared write

[1100 % shared writgs [1100 % shared writgs

520 k- R 520 k- R
L L
© ©

016 k- g 016 k- i
(5] (5]

812 ki~ g 812 k- |
2 S
))

O 8k- , O 8k- 1
> >

4 k- 1 4 k- 1

G L L O rO L L

0 50 100 50 100
Shared reads (%) Shared reads (%)
(a) 4% writes, 96% reads (b) 8% writes, 92% reads

24 K7 0 % shared writes| 1 24 K70 % shared writes| 1
[50 % shared write 2 50 % shared write
[1100 % shared writgs [1100 % shared writgs
520 k- R 520 k- R
2 2 7
@ 5 — — |
D16 k- 1 16 k- * f
(5] (5] —
812 ki~ g 812 k- |
2 S
o o
O 8k- , O 8k- 1
> >
4 k- 1 4 k- 1
0] 0]

0 50 100
Shared reads (%) Shared reads (%)
(c) 16% writes, 84% reads (d) 32% writes, 68% reads

Figure 15: OO7 with 4 futures. Versionscreated per iteration

that the evaluation of a future does not introduce behavioon-
sistent with the sequential program from which it was detivBy
the same token, our notion of transparent execution doessaernd
automatically to injecting claims where necessary: a @ogthat
fails to claim a future when required may still lead to traansmcy
violations of the kind described by Pratikalgs al in our imple-
mentation. We believe both forms of transparency are inapbrt
Although we expect that futures are primarily useful forgpimg
concurrent tasks that exhibit relatively little to modesasng, it is
nonetheless critical that safety violations be detectednihey do
occur.

rently executing tasks and to revoke fragments of compariatfter
detecting violations of the (logical) serial execution @rdTo the
best of our knowledge however, ParaTran has never been-imple
mented to run on a real system and the available simulatzritse
do not include the potential costs of such an implementatame
of the major goals of our work was a thorough performance-eval
uation an implementation based on a realistic languageu&rac
environment.

Another approach to parallelizing sequential programbérpres-
ence of side-effects has been explored in the context ofdte J
parallel programming language [39]. A Jade programmer s re

The ParaTran project [29] was an attempt to parallelizing se sponsible for delimiting code fragments (tasks) that cdaddexe-

quential Lisp programs in presence of side-effects. Likeiou
plementation of safe futures, ParaTran used optimisticewancy
control techniques to monitor data accesses performed figuco

cuted concurrently and explicitly specifying invariantssdribing
how different tasks access shared data. The run-time systéen
responsible for exploiting available concurrency andfyerg data

access invariants in order to preserve the semantics ofeitial s
program. Violations of data access invariants result intione er-
rors.

7. CONCLUSIONS

In this paper, we have presented a detailed studsat#futures
for Java. Futures provide a simple API for concurrent prognéng
that allows a concurrent program to be constructed ofteputiir
only a small rewrite of a sequential one. Unfortunatelyufas as
currently specified in Java are not treated as a semanttcatigpar-
ent annotation, thus significantly weakening their utilRyogram-
mers who use futures must reason about subtle interactiongm
future-encapsulated computations, in much the same wayrthst
reason about the interaction of threads in a typical mhréaded
Java program. Safe futures obviate the need for such rewsoni
by guaranteeing their injection into a sequential programschot
violated any existing data dependencies. Furthermoregdkeof
providing this added level of safety is not prohibitive. Témal-
uation of our prototype implementation indicates that fesucan
be used to exploit concurrency even for applications witllesd
mutation rates on shared data.

Our implementation leverages two general techniques tlagt m

have wider applicability: object versioning and task reatgm.
For example, object versioning can be used to implement ergen
checkpointing facility since each version is tagged witloatext,
a general dynamic region of code. Task revocation is thesliasi
implementing optimistic concurrency-based transactioplémen-
tations [22, 23, 46] for Java, and the validation mechaniseduo
determine if safety violations between a future and its iooat
tion have occurred can easily be generalized to capturatiooks
of properties such as atomicity or isolation for multitrded ap-
plications that use language-level transactions or thidl lypon
transactional memory [24].

Acknowledgments

This work is supported by the National Science Foundatiafeun
grants Nos. CCR-9711673, STI-0334141, 11S-9988637, ang-CC
0085792, by the Defense Advanced Research Program Agety, a
by gifts from Sun Microsystems, IBM, and NEC. We also thar th
reviewers for their detailed comments and suggestions.

8. REFERENCES

[1] ALDRICH, J., CHAMBERS, C., SRER, E. G.,AND EGGERS S. J.
Static analyses for eliminating unnecessary synchraoizditom
Java programs. IRroceedings of the International Static Analysis
SymposiungVenice, ltaly, Sept.), A. Cortesi and G. Filé, Eds.
vol. 1694 ofLecture Notes in Computer Scien&pringer, 1999,
pp. 19-38.

[2] ALDRICH, J., SRER, E. G., GHHAMBERS, C.,AND EGGERS S. J.
Comprehensive synchronization elimination for J&eience of
Computer Programming 42-3 (2003), 91-120.

[3] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., @CCHI, A.,
HUMMEL, S. F., LEBER, D., NGO, T., MERGEN, M., SHEPHERD,
J. C.,AND SMITH, S. Implementing Jalapefio in Java. In
OOPSLA99 [36], pp. 314-324.

[4] ARNOLD, M., FINK, S. J., QROVE, D., HIND, M., AND SWEENEY,
P. F. Adaptive optimization in the Jalapefio JVMRroceedings of
the ACM Conference on Object-Oriented Programming Systems
Languages, and ApplicatioriMinneapolis, Minnesota, Oct ACM
SIGPLAN Notices 3510 (Oct. 2000), pp. 47-65.

[5] BERNSTEIN, A. Program analysis for parallel processifigEE
Transactions on Computers 15 (Oct. 1966), 757-762.

[6] BLANCHET, B. Escape analysis for object-oriented languages:
Application to java. In OOPSLA99 [36], pp. 20-34.

(7]
8

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

BOGDA, J.,AND HOLZLE, U. Removing unnecessary
synchronization in Java. In OOPSLA'99 [36], pp. 35-46.
BoYAPATI, C., LEE, R.,AND RINARD, M. C. Ownership types for
safe programming: preventing data races and deadlocks. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicat{Sesttle,
Washington, Nov.)ACM SIGPLAN Notices 371 (Nov. 2002),

pp. 211-230.

BURKE, M. G., CHol, J.-D., ANK, S. J., ROVE, D., HIND, M.,
SARKAR, V., SERRANO, M. J., SREEDHAR, V. C., SRINIVASAN,
H., AND WHALEY, J. The Jalapefio dynamic optimizing compiler
for Java. InProceedings of the ACM Java Grande Conferegan
Francisco, California, June). 1999, pp. 129-141.

CAREY, M. J., DEWITT, D. J., KaNT, C.,AND NAUGHTON, J. F.
A status report on the OO7 OODBMS benchmarking effort. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicat{®astland,
Oregon, Oct.)ACM SIGPLAN Notices 290 (Oct. 1994),

pp. 414-426.

CAREY, M. J., DEWITT, D. J.,AND NAUGHTON, J. F. The OO7
benchmark. IrProceedings of the ACM International Conference on
Management of Dat@/Nashington, DC, May)ACM SIGMOD
Record 222 (June 1993), pp. 12-21.

CHol, J.-D., QUPTA, M., SERRANO, M., SREEDHAR, V. C.,AND
MIDKIFF, S. Escape analysis for Java. In OOPSLA99 [36],

pp. 1-19.

CHol, J.-D., LEE, K., LoGINOV, A., O’CALLAHAN , R., SARKAR,
V., AND SRIDHARAN, M. Efficient and precise datarace detection
for multithreaded object-oriented programsRroceedings of the
ACM Conference on Programming Language Design and
Implementatior(Berlin, Germany, JuneACM SIGPLAN Notices 37
5 (May 2002), pp. 258-269.

CLARKE, D. G., POTTER, J. M.,AND NOBLE, J. Ownership types
for flexible alias protection. liProceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications(Vancouver, Canada, OctACM SIGPLAN Notices 33
10 (Oct. 1998), pp. 48-64.

FLANAGAN, C.,AND FELLEISEN, M. The semantics of future and
its use in program optimizations. Bonference Record of the ACM
Symposium on Principles of Programming Languazmn
Francisco, California, Jan.). 1995, pp. 209-220.

FLANAGAN, C.,AND FELLEISEN, M. The semantics of future and
an applicationJ. Funct. Program. 91 (2005), 1-31.

FLANAGAN, C.,AND FREUND, S. N. Type-based race detection for
Java. InProceedings of the ACM Conference on Programming
Language Design and Implementati(/ancouver, Canada, June).
ACM SIGPLAN Notices 3% (June 2000), pp. 219-232.
FLANAGAN, C.,AND FREUND, S. N. Atomizer: a dynamic
atomicity checker for multithreaded programsQaonference Record
of the ACM Symposium on Principles of Programming Languages
(Venice, ltaly, Jan.). 2004, pp. 256—267.

FLANAGAN, C.,AND QADEER, S. Types for atomicity. In
Proceedings of the 2003 ACM SIGPLAN International Workstrop
Types in Language Design and Implementatidew Orleans,
Louisiana, Jan.). 2003, pp. 1-12.

FLATT, M., KRISHNAMURTHI, S.,AND FELLEISEN, M. Classes
and mixins. InProceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Language€3M Press,
1998, pp. 171-183.

HALSTEAD, JR., R. H. Multilisp: A language for concurrent
symbolic computationACM Trans. Program. Lang. Syst. Z (Oct.
1985), 501-538.

HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. IfProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications(Anaheim, California, Nov.)ACM SIGPLAN Notices
38,11 (Nov. 2003), pp. 388—402.

HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER III,
W. N. Software transactional memory for dynamic-sized data
structures. IrProceedings of the Annual ACM Symposium on
Principles of Distributed Computin(Boston, Massachusetts, July).
2003, pp. 92-101.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

HERLIHY, M. P.,AND MoOss J. E. B. Lock-free garbage collection
on multiprocessordEEE Transactions on Parallel and Distributed
Systems 3 (May 1992), 304-311.

HOSKING, A. L., AND Moss J. E. B. Object fault handling for
persistent programming languages: A performance evahuain
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicat{@veshington,
DC, Sept.)ACM SIGPLAN Notices 280 (Oct. 1993), pp. 288-303.
IGARASHI, A., PIERCE, B. C.,AND WADLER, P. Featherweight
Java: A minimal core calculus for Java and GEM Trans.
Program. Lang. Syst. 23 (May 2001), 396—450.

JENSEN, E. H., HAGENSEN, G. W.,AND BROUGHTON, J. M. A
new approach to exclusive data access in shared memory
multiprocessors. Tech. rep., Lawrence Livermore National
Laboratories, 1987.

JSR166: Concurrency utilities.
http://java.sun.com/j2se/1.5.0/docs/guide/concuyén

KATz, M. Paratran: A transparent, transaction based runtime
mechanism for parallel execution of scheme. Tech. rep.,
Massachusetts Institute of Technology, Cambridge, MA, UB¥89.
KELSEY, R., QLINGER, W. D., AND REES, J. Revise®l report on
the algorithmic language SchenfCM SIGPLAN Notices 33
(Sept. 1998), 26-76.

KRANZ, D., HALSTEAD, JR., R. H.,AND MOHR, E. Mul-T: A
high-performance parallel Lisp. Rroceedings of the ACM
Conference on Programming Language Design and Implementat
(Portland, Oregon, June)\CM SIGPLAN Notices 24 (July 1989),
pp. 81-90.

Liskov, B., AND SHRIRA, L. Promises: Linguistic support for
efficient asynchronous procedure calls in distributedesyst In
Proceedings of the ACM Conference on Programming Language
Design and Implementatiofitlanta, Georgia, JunepACM SIGPLAN
Notices 237 (July 1988), pp. 260—267.

MELLOR-CRUMMEY, J. On-the-fly detection of data races for
programs with nested fork-join parallelism. Rtoceedings of the
ACM/IEEE Conference on Supercomputiidbuquerque, New
Mexico, Nov.). 1991, pp. 24-33.

MOHR, E., KRANZ, D. A., AND HALSTEAD, JR., R. H. Lazy task
creation: A technique for increasing the granularity ofghiat
programs. IrProceedings of the ACM Conference on Lisp and
Functional ProgrammingNice, France, June). 1990, pp. 185-197.
O’CALLAHAN , R.,AND CHolI, J.-D. Hybrid dynamic data race
detection. IProceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programmir{@an Diego,
California, June). 2003, pp. 167-178.

Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicat{@ever,
Colorado, Nov.)ACM SIGPLAN Notices 340 (Oct. 1999).
PRATIKAKIS, P., SPACCO, J.,AND HICKS, M. W. Transparent
proxies for java futures. IRroceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications(Vancouver, Canada, OctACM SIGPLAN Notices 39
10 (Oct. 2004), pp. 206—223.

RAJWAR, R.,AND GOODMAN, J. R. Transactional lock-free
execution of lock-based programs.Pmoceedings of the ACM
International Conference on Architectural Support for ramming
Languages and Operating Syste{8sn Jose, California, OctACM
SIGPLAN Notices 3710 (Oct. 2002), pp. 5-17.

RINARD, M. C., SCALES, D. J.,AND LAM, M. S. Jade: A
high-level, machine-independent language for paralleg@mming.
IEEE Computer 266 (1993), 28-38.

SAVAGE, S., BURROWS M., NELSON, G., SOBALVARRO, P.,AND
ANDERSON T. Eraser: a dynamic data race detector for
multithreaded program#&CM Trans. Comput. Syst. 1% (Nov.
1997), 391-411.

SHAVIT, N., AND TOUITOU, D. Software transactional memory. In
Proceedings of the Annual ACM Symposium on Principles of
Distributed ComputindOttawa, Canada, Aug.). 1995, pp. 204-213.
SMITH, L. A., BULL, J. M.,AND OBDRZALEK, J. A parallel Java
Grande benchmark suite. Rroceedings of the ACM/IEEE
Conference on Supercomputifi@enver, Colorado, Nov.). 2001, p. 8.

[43]

[44]

[45]

[46]

UNGUREANU, C.,AND JAGANNATHAN, S. Concurrency analysis
for Java. InProceedings of the International Static Analysis
SymposiungSanta Barbara, California, Jun./Jul.), J. Palsberg, Ed.
vol. 1824 ofLecture Notes in Computer Scien@900, pp. 413-432.
VON PRAUN, C.,AND GROSS T. R. Object race detection. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicat{@asmpa,
Florida, Oct.) ACM SIGPLAN Notices 381 (Nov. 2001),

pp. 70-82.

VON PRAUN, C.,AND GROSS T. R. Static conflict analysis for
multi-threaded object-oriented programsProceedings of the ACM
Conference on Programming Language Design and Implenientat
(San Diego, California, June). 2003, pp. 115-128.

WELC, A., JAGANNATHAN, S.,AND HOSKING, A. L.
Transactional monitors for concurrent objectsPhoceedings of the
European Conference on Object-Oriented ProgramngiDglo,
Norway, June), M. Odersky, Ed. vol. 3086laécture Notes in
Computer ScienceSpringer-Verlag, 2004, pp. 519-542.

