
Static Program Analysis via 3-Valued Logic
�

Thomas Reps
�
, Mooly Sagiv

�
, and Reinhard Wilhelm

�

�
Comp. Sci. Dept., University of Wisconsin; reps@cs.wisc.edu�

School of Comp. Sci., Tel Aviv University; msagiv@post.tau.ac.il�
Informatik, Univ. des Saarlandes;wilhelm@cs.uni-sb.de

Abstract. This paper reviews the principles behind the paradigm of “abstract interpretation
via � -valued logic,” discusses recent work to extend the approach, and summarizes on-
going research aimed at overcoming remaining limitations on the ability to create program-
analysis algorithms fully automatically.

1 Introduction
Static analysis concerns techniques for obtaining information about the possible states
that a program passes through during execution, without actually running the program
on specific inputs. Instead, static-analysis techniques explore a program’s behavior for
all possible inputs and all possible states that the program can reach. To make this
feasible, the program is “run in the aggregate”—i.e., on abstract descriptors that repre-
sent collections of many states. In the last few years, researchers have made important
advances in applying static analysis in new kinds of program-analysis tools for identi-
fying bugs and security vulnerabilities [1–7]. In these tools, static analysis provides a
way in which properties of a program’s behavior can be verified (or, alternatively, ways
in which bugs and security vulnerabilities can be detected). Static analysis is used to
provide a safe answer to the question “Can the program reach a bad state?”

Despite these successes, substantial challenges still remain. In particular, pointers
and dynamically-allocated storage are features of all modern imperative programming
languages, but their use is error-prone:
� Dereferencing NULL-valued pointers and accessing previously deallocated stor-

age are two common programming mistakes.
� Pointers and dynamically-allocated storage allow a program to build up complex

graph data structures. Even when some simple data structure is intended, one or
more incorrect assignments to pointers, or indirect assignments through pointers,
can cause bugs whose symptoms are hard to diagnose.

Because tools for finding bugs and detecting security vulnerabilities need answers
to questions about pointer variables, their contents, and the structure of the heap,4 the
usage of pointers in programs is a major obstacle to the goal of addressing software
reliability by means of static analysis. In particular, the effects of assignments through
pointer variables and pointer-valued fields make it hard to determine the aliasing rela-
tionships among different pointer expressions in a program. When less precise pointer
information is available, the effectiveness of static techniques decreases.

Although much work has been done on algorithms for flow-insensitive points-to
analysis [8–10] (including algorithms that exhibit varying degrees of context-sensitivity
[11–15]), all of this work uses a very simple abstraction of heap-allocated storage: All
nodes allocated at site 	 are folded together into a single summary node
�� . Such
an approach has rather severe consequences for precision. If allocation site 	 is in a

Supported by ONR contract N00014-01-1-0796, the Israel Science Foundation, and the A. von
Humboldt Foundation.

4 The term “heap” refers to the collection of nodes in, and allocated from, the free-storage pool.

loop, or in a function that is called more than once, then 	 can allocate multiple nodes
with different addresses. A points-to fact “p points to
 � ” means that program vari-
able p may point to one of the nodes that
 � represents. For an assignment of the form
p->selector1 = q, points-to-analysis algorithms are ordinarily forced to perform
a “weak update”: that is, selector edges emanating from the nodes that p points to are
accumulated; the abstract execution of an assignment to a field of a summary node can-
not “kill” the effects of a previous assignment because, in general, only one of the nodes
that
 � represents is updated on each concrete execution of the assignment statement.

Such imprecisions snowball as additional weak updates are performed (e.g., for
assignment statements of the form r->selector2 = p->selector1), and the
use of a flow-insensitive algorithm exacerbates the problem. Consequently, most of the
literature on points-to analysis leads to almost no useful information about the structure
of the heap. One study [16] of the characteristics of the results obtained using one of
the flow-insensitive points-to-analysis algorithms reports that

Our experiments show that in every points-to graph, there is a single node (the
“blob”) that has a large number of outgoing flow edges. In every graph, the
blob has an order of magnitude more outgoing edges than any other node.

Such imprecision, in turn, leads to overly pessimistic assessments of the program’s
behavior. Moreover, most of the representations of pointer relationships that have been
proposed in the literature on points-to analysis cannot express even as simple a fact
as “x points to an acyclic list”. Such representations are unable to confirm behavioral
properties, such as (i) when the input to a list-insert program is an acyclic list, the output
is an acyclic list, and (ii) when the input to a list-reversal program that uses destructive-
update operations is an acyclic list, the output is an acyclic list. Instead, most points-to-
analysis algorithms will report that a possibly cyclic structure can arise. For programs
that use two lists, most points-to-analysis algorithms will report that at the end of the
program the two lists might share list elements (even when, in fact, the two lists must
always remain disjoint).

The failings of conventional pointer-analysis algorithms discussed above are just
symptomatic of a more general problem: in general, tools for finding bugs and detecting
security vulnerabilities need answers to questions about a wide variety of behavioral
properties; these questions can only be answered by tracking relationships among a
program’s runtime entities, and in general the number of such entities has no fixed
upper bound. Moreover, the nature of the relationships that need to be tracked depends
on both the program being analyzed and the queries to be answered.

The aim of our work [17] has been to create a parametric framework for program
analysis that addresses these issues. A parametric framework is one that can be instan-
tiated in different ways to create different program-analysis algorithms that provide an-
swers to different questions, with varying degrees of efficiency and precision. The key
aspect of our approach is the way in which it makes use of

�
-valued and � -valued logic:�

-valued and � -valued logical structures—i.e., collections of predicates—are used to
represent concrete and abstract stores, respectively; individuals represent entities such
as memory cells, threads, locks, etc.; unary and binary predicates encode the contents of
variables, pointer-valued structure fields, and other aspects of memory states; and first-
order formulas with transitive closure are used to specify properties such as sharing,
cyclicity, reachability, etc. Formulas are also used to specify how the store is affected
by the execution of the different kinds of statements in the programming language.

The analysis framework can be instantiated in different ways by varying the predi-
cate symbols of the logic, and, in particular, by varying which of the unary predicates
control how nodes are folded together (this is explained in more detail in Sect. 2). The
specified set of predicates determines the set of properties that will be tracked, and con-

sequently what properties of stores can be discovered to hold at different points in the
program by the corresponding instance of the analysis.

As a methodology for verifying properties of programs, the advantages of the � -
valued-logic approach are:

1. No loop invariants are required.
2. No theorem provers are involved, and thus every abstract execution step must

terminate.
3. The method is based on abstract interpretation [18], and satisfies conditions that

guarantee that the entire process always terminates.
4. The method applies to programs that manipulate pointers and heap-allocated data

structures. Moreover, analyses are capable of performing strong updates during
the abstract execution of an assignment to a pointer-valued field.

5. The method eliminates the need for the user to write the usual proofs required
with abstract interpretation—i.e., to demonstrate that the abstract descriptors that
the analyzer manipulates correctly model the actual heap-allocated data structures
that the program manipulates.

A prototype implementation that implements this approach has been created, called
TVLA (Three-Valued-Logic Analyzer) [19, 20].

Points (1) and (2) may seem counterintuitive, given that we work with an undecid-
able logic (first-order logic plus transitive closure—see footnote 7), but they are really
properties shared by any verification method that is based on abstract interpretation, and
hence are consequences of point (3). Points (4) and (5) may be equally surprising—even
to many experts in the field of static analysis—but are key aspects of this approach:
� Point (4) has a fundamental effect on precision. In particular, our approach is ca-

pable of confirming the behavioral properties mentioned earlier, i.e., (i) when the
input to a list-insert program is an acyclic list, the output is an acyclic list, and (ii)
when the input to a list-reversal program that uses destructive-update operations
is an acyclic list, the output is an acyclic list. In addition, when a program uses
multiple lists that always remain disjoint, our approach can often confirm that fact.

� Point (5) is one of the keys for making the approach accessible for users. With
the methodology of abstract interpretation, it is often a difficult task to obtain an
appropriate abstract semantics; abstract-interpretation papers often contain com-
plicated proofs to show that a given abstract semantics is sound with respect to
a given concrete semantics. With our approach, this is not the case: the abstract
semantics falls out automatically from a specification of the concrete semantics
(which has to be provided in any case whenever abstract interpretation is em-
ployed); the soundness of all instantiations of the framework follows from a single
meta-theorem ([17, Theorem 4.9]).

The remainder of the paper is organized as follows: Sect. 2 summarizes the frame-
work for static analysis from [17]. Sect. 3 describes several applications and extensions.
Sect. 4 discusses related work.

2 The Use of Logic for Program Analysis

Modeling and abstracting the heap with logical structures. In the static-analysis
framework defined in [17], concrete memory configurations—or stores—are modeled
by logical structures. A logical structure is associated with a vocabulary of predicate
symbols (with given arities): ����� eq ��� � �	�
�	������� is a finite set of predicate sym-
bols, where ��� denotes the set of predicate symbols of arity � (and eq ��� �). A log-
ical structure supplies a predicate for each of the vocabulary’s predicate symbols. A

typedef struct node �
int data;
struct node *n;�
*List;

Predicate Intended Meaning�������
	������� Do ��	 and ��� denote the same memory cell?������� Does pointer variable q point to memory cell � ?������	�������� Does the n-field of ��	 point to ��� ?��� �����
	������� Is the data-field of ��	 less than or equal to that of ��� ?
(a) (b)

Table 1. (a) Declaration of a linked-list datatype in C. (b) Core predicates used for rep-
resenting the stores manipulated by programs that use type List. (We write predicate
names in italics and code in typewriter font.)

concrete store is modeled by a � -valued logical structure for a fixed vocabulary � of
core predicates. Core predicates are part of the underlying semantics of the language
to be analyzed; they record atomic properties of stores. Tab. 1 gives the definition of
a C linked-list datatype, and lists the predicates that would be used to represent the
stores manipulated by programs that use type List, such as the store shown in Fig. 1.

NULL
x

y
5 2 39

Fig. 1. A possible store, consisting of a
four-node linked list pointed to by x and y.

� -valued logical structures then represent
memory configurations: the individuals
are the set of memory cells; a nullary
predicate represents a Boolean variable
of the program; a unary predicate rep-
resents either a pointer variable or a
Boolean-valued field of a record; and a binary predicate represents a pointer field of
a record.5

The � -valued structure � , shown in the upper-left-hand corner of Fig. 2, encodes the
store of Fig. 1. � ’s four individuals, ��� , � � , � ! , and �#" , represent the four list cells.

The following graphical notation is used for depicting � -valued logical structures:$ An individual is represented by a circle with its name inside.$ A unary predicate % is represented by having a solid arrow from % to each individ-
ual � for which %�&�� ')(+* , and by the absence of a % -arrow to each individual �-,
for which %�&�� ,�'.(0/ . (If predicate % is / for all individuals, % is not shown.)$ A binary predicate 1 is represented by a solid arrow labeled 1 between each pair
of individuals � 2 and �43 for which 15&� 2767�438'.(9* , and by the absence of a 1 -arrow
between pairs � ,2 and � ,3 for which 15&� ,2 67� ,3 ':(;/ .

Thus, in structure � , pointer variables x and y point to individual � � , whose n-field
points to individual � � ; pointer variables t and e do not point to any individual.

Often we only want to use a restricted class of logical structures to encode stores.
To exclude structures that do not represent admissible stores, integrity constraints can
be imposed. For instance, the predicate <�&�=�' of Fig. 2 captures whether pointer variable
x points to memory cell = ; < would be given the attribute “unique”, which imposes the
integrity constraint that <>&=5' can hold for at most one individual in any structure.

The concrete operational semantics of a programming language is defined by spec-
ifying a structure transformer for each kind of edge that can appear in a control-flow
graph. Formally, the structure transformer ?A@ for edge B is defined using a collection of

5 To simplify matters, our examples do not involve modeling numeric-valued variables and
numeric-valued fields (such as data). It is possible to do this by introducing other predi-
cates, such as the binary predicate CEDGF (which stands for “data less-than-or-equal-to”) listed
in Tab. 1; CEDGF captures the relative order of two nodes’ data values. Alternatively, numeric-
valued entities can be handled by combining abstractions of logical structures with previously
known techniques for creating numeric abstractions [21].

Structure
Before

unary preds. binary preds.
indiv. � � � �

� � � � � �

� � � � � �

� 	 � � � �

�
 � � � �

n � � � � � 	 �

� � � � � �

� � � � � �

� 	 � � � �

�
 � � � �

eq � � � � � 	 �

� � � � � �

� � � � � �

� 	 � � � �

�
 � � � �

x // GFED@ABC� � � // GFED@ABC� � � // GFED@ABC� 	 � // GFED@ABC�

� y

OO

abstracts to �

unary preds. binary preds.
indiv. � � � �

� � � � �

��� � � � �

n � ���

� � � ��

��� � � ��

eq � ���

� � �

� � � � ��

x // ?>=<89:;� � // ONMLHIJKGFED@ABC���
���

� y

OO

Statement y = y->n y = y->n

Predicate
Update
Formulas

�� �� ��� � �� �

�� �� �� � � �� � �� � �� � �� � � � �

�� �� ��� � �� �

�� �� ��� � �� �

� � �� � � � � �� � �� � � � � �

�� �� �� � �� �

�� �� �� � � �� � �� � �� � �� � � � �

�� �� �� � �� �

�� �� �� � �� �

� � �� � � � � �� � �� � � � � �

Structure
After

unary preds. binary preds.
indiv. � � � �

� � � � � �

� � � � � �

� 	 � � � �

�
 � � � �

n � � � � � 	 �

� � � � � �

� � � � � �

� 	 � � � �

�
 � � � �

eq � � � � � 	 �

� � � � � �

� � � � � �

� 	 � � � �

�
 � � � �

x // GFED@ABC� � � // GFED@ABC� � � // GFED@ABC� 	 � // GFED@ABC�

� � y

OO

abstracts
to �

unary preds. binary preds.
indiv. � � � �

� � � � � �

� � � � � �

� � � � � � �

n � � � � ��� �

� � � � �

� � � � � ��

��� � � � ��

eq � � � � ��� �

� � � � �

� � � � �

� � � � � � ��

x // GFED@ABC� � � // GFED@ABC� � � // ONMLHIJKGFED@ABC� � �
���

� � � y

OO

embeds
into �

unary preds. binary preds.
indiv. � � � �

� � � � �

� � � � �� � �

n � � �

� � � ��

��� � � ��

eq � � �

� � �

��� � � ��

x // ?>=<89:;� � // ONMLHIJKGFED@ABC���
���

� � y

OO

Fig. 2. The top row illustrates the abstraction of -valued structure ! to " -valued structure # with $&% ' (') '* + -abstraction. The boxes in
the tables of unary predicates indicate how individuals are grouped into equivalence classes; the boxes in the tables for , and* - indicate
how the “truth-blurring quotients” are performed. The commutative diagram illustrates the relationship between (i) the transformation on

 -valued structures (defined by predicate-update formulas) for the concrete semantics of y = y->n, (ii) abstraction, and (iii) a sound
abstract semantics for y = y->n that is obtained by using the same predicate-update formulas to transform " -valued structures.

predicate-update formulas, � ��� � �
�
�	�
� � ��� ���	��
 � �� � �
�
�	��� � ��� , one for each core predi-
cate � � � � (e.g., see [17]). These define how the core predicates of a logical structure�

that arises at the source of � are transformed to create structure
���

at the target of
� ; they define the value of predicate � in

� �
—denoted by � � in the update formulas of

Fig. 2—as a function of predicates in
�

. Edge � may optionally have a precondition
formula, which filters out structures that should not follow the transition along � .
Canonical abstraction. To create abstractions of

�
-valued logical structures (and hence

of the stores that they encode), we use the related class of � -valued logical structures
over the same vocabulary. In � -valued logical structures, a third truth value, denoted by��� �

, is introduced to denote uncertainty: in a � -valued logical structure, the value � ���� �
of predicate � on a tuple of individuals

�� is allowed to be
��� �

.

Definition 1. The truth values � and
�

are definite values;
��� �

is an indefinite value.
For � � ��� � � ��� � ��� � � � � , the information order is defined as follows: � ��� � � iff � � ��� �
or � � � ��� �

. The symbol � denotes the least-upper-bound operation with respect to � .

The abstract stores used for program analysis are � -valued logical structures that, by
the construction discussed below, are a priori of bounded size. In general, each � -valued
logical structure corresponds to a (possibly infinite) set of

�
-valued logical structures.

Members of these two families of structures are related by canonical abstraction.
The principle behind canonical abstraction is illustrated in the top and bottom rows

of Fig. 2, which show how
�
-valued structures

�
and

���
are abstracted to � -valued

structures and � � , respectively. The abstraction function is determined by a subset !
of the unary predicates. The predicates in ! are called the abstraction predicates. Given
! , the act of applying the corresponding abstraction function is called ! -abstraction.
The canonical abstraction illustrated in Fig. 2 is �	" �$# ��% ��� � -abstraction.

Abstraction is driven by the values of the “vector” of abstraction predicates for
each individual & —i.e., for

�
, by the values " � &'� , # � &(� , % � &(� and � � &(� , for & �

� � � � � � � � � � �*) � —and, in particular, by the equivalence classes formed from the indi-
viduals that have the same vector of values for their abstraction predicates. In

�
, there

are two such equivalence classes: (i) � � � � , for which " , # , % , and � are
�
,
�
, � , and

� , respectively, and (ii) � � � � � � � �) � , for which " , # , % , and � are all � . (The boxes in
the table of unary predicates for

�
show how individuals of

�
are grouped into two

equivalence classes.) All of the members of each equivalence class are mapped to the
same individual of the � -valued structure. Thus, all members of � � � � � � � �) � from

�
are

mapped to the same individual in , called � � ;6 similarly, all members of � � � � from
�

are mapped to the same individual in , called � .
For each non-abstraction predicate �,+ of

�
-valued structure

�
, the corresponding

predicate �*- in � -valued structure is formed by a “truth-blurring quotient”. The value
for a tuple

��*. in � - is the join (�) of all �/+ tuples that the equivalence relation on
individuals maps to

��/. . For instance,
� In

�
,
0+ � � � � � � � equals � ; therefore, the value of
 - � � � � � is � .

� In
�

,
1+ � � � � � � � ,
0+ � � � � � � � , and
1+ � �2) � � � � all equal � ; therefore, the value of

 - � � � � � � is � .

� In
�

,
 + � � � � � � � and
 + � � � � �) � both equal � , whereas
 + � � � � � � � equals
�
; there-

fore, the value of
 - � � � � � � is
��� �

(�3��� �).
6 The names of individuals are completely arbitrary: what distinguishes 465 is the value of its

vector of abstraction predicates.

� In
�

,
0+ � � � � � � � and
0+ � � � � �*) � both equal
�
, whereas
1+ � � � � � � � ,
0+ � � � � �*) � ,

0+ � � � � � � � ,
0+ � � � � � � � ,
0+ � �*) � � � � ,
0+ � �*) � � � � , and
0+ � �*) � �2) � all equal � ; there-
fore, the value of
 - � � � � � � � is

��� �
(� ��� �).

In the upper-left-hand corner of Fig. 2, the boxes in the tables for predicates
 and � �
indicate these four groupings of values.

In a
�
-valued structure, the � � predicate represents the equality relation on indi-

viduals. In general, under canonical abstraction some individuals “lose their identity”
because of uncertainty that arises in the � � predicate. For instance, � � - � � � � ��� �

be-
cause � in represents a single individual of

�
. On the other hand, � � represents three

individuals of
�

and the quotient operation causes � � - � � � � � � � to have the value
� � �

.
An individual like � � is called a summary individual.

A � -valued logical structure is used as an abstract descriptor of a set of
�
-valued

logical structures. In general, a summary individual models a set of individuals in each
of the

�
-valued logical structures that represents. The graphical notation for � -valued

logical structures (cf. structure of Fig. 2) is derived from the one for
�
-valued struc-

tures, with the following additions:
� Individuals are represented by circles containing their names. (In Figs. 3 and 4,

we also place unary predicates that do not correspond to pointer-valued program
variables inside the circles.)

� A summary individual is represented by a double circle.
� Unary and binary predicates with value

� � �
are represented by dotted arrows.

Thus, in every concrete structure
��

that is represented by abstract structure of Fig. 2,
pointer variables x and y definitely point to the concrete node of

��
that � represents.

The n-field of that node may point to one of the concrete nodes that � � represents; � � is
a summary individual, i.e., it may represent more than one concrete node in

��
. Possibly

there is an n-field in one or more of these concrete nodes that points to another of the
concrete nodes that � � represents, but there cannot be an n-field in any of these concrete
nodes that points to the concrete node that � represents.

Note that � -valued structure also represents
� the acyclic lists of length � or more that are pointed to by x and y.
� the cyclic lists of length � or more that are pointed to by x and y, such that the

back-pointer is not to the head of the list, but to the second, third, or later element.
� some additional memory configurations with a cyclic or acyclic list pointed to by
x and y that also contain some garbage cells that are not reachable from x and y.

That is, is a finite representation of an infinite set of (possibly cyclic) concrete lists,
each of which may also be accompanied by some unreachable cells. Later in this sec-
tion, we discuss options for fine-tuning an abstraction. In particular, we will use canon-
ical abstraction to define an abstraction in which the acyclic lists and the cyclic lists
are mapped to different � -valued structures (and in which the presence or absence of
unreachable cells is readily apparent).

Canonical abstraction ensures that each � -valued structure has an a priori bounded
size, which guarantees that a fixed-point will always be reached by an iterative static-
analysis algorithm. Another advantage of using

�
- and � -valued logic as the basis for

static analysis is that the language used for extracting information from the concrete
world and the abstract world is identical: every syntactic expression—i.e., every logical
formula—can be interpreted either in the

�
-valued world or the � -valued world.7

7 Formulas are first-order formulas with transitive closure: a formula over the vocabulary ����
eq �	� � ��
�
�
��	���� is defined as follows (where �����	� � ��� ��� stands for the reflexive transitive

The consistency of the
�
-valued and � -valued viewpoints is ensured by a basic theo-

rem that relates the two logics. This explains Point (5) mentioned in Sect. 1: the method
eliminates the need for the user to write the usual proofs required with abstract interpre-
tation. Thanks to a single meta-theorem (the Embedding Theorem [17, Theorem 4.9]),
which shows that information extracted from a � -valued structure by evaluating a
formula � is sound with respect to the value of � in each of the

�
-valued structures

that represents, an abstract semantics falls out automatically from the specification
of the concrete semantics. In particular, the formulas that define the concrete semantics
when interpreted in

�
-valued logic define a sound abstract semantics when interpreted

in � -valued logic (see Fig. 2). Soundness of all instantiations of the analysis framework
is ensured by the Embedding Theorem.

Program analysis via � -valued logic. A run of the analyzer carries out an abstract in-
terpretation to collect a set of � -valued structures at each program point. This involves
finding the least fixed-point of a certain set of equations. Because canonical abstraction
ensures that each � -valued structure has an a priori bounded size, there are only a fi-
nite number of sets of � -valued structures. This guarantees that a fixed-point is always
reached. The structures collected at program point � describe a superset of all the ex-
ecution states that can occur at � . To determine whether a property always holds at � ,
one checks whether it holds in all of the structures that were collected there.

unary preds. binary preds.
indiv. � � � � �	��
 � ����� � � � � � �
��� � � � � � ���� � � � � � ���� � � � � � �

n � � ��� ��� � �
��� � � � �
��� � � � ���� � � � ���� � � � �

eq � � ��� ��� � �
��� � � � �
��� � � � ���� � � � ���� � � � �

x //_^]\XYZ[� �
� ��
 �

� //_^]\XYZ[���
� ��
 �

� //_^]\XYZ[���
� ��
 �

� //_^]\XYZ[� �
� ��
 �

� y

OO

abstracts
to��������� �

unary preds. binary preds.
indiv. � � � � �!��
 � ��� � � � � � �
��" � � � � � �

n � ��"
� � �$#&%
��" � �$#&%

eq � ��"
� � �
��" � �	#�%

x //_^]\XYZ[�
�!��
 � � //_^]\XYZ[WVUTPQRS� "

�	��
 �
�tt

' y

OO

Fig. 3. The abstraction of
�
-valued structure

�
to � -valued structure (when we use

��" ��# �$% ��� ��)	�
 * ������ -abstraction. In contrast with , � , and � � from Fig. 2, (repre-
sents only acyclic lists of length � or more (with no garbage cells).

Instrumentation predicates. Unfortunately, unless some care is taken in the design of
an analysis, there is a danger that as abstract interpretation proceeds, the indefinite value��� �

will become pervasive. This can destroy the ability to recover interesting informa-
tion from the � -valued structures collected (although soundness is maintained). A key
role in combating indefiniteness is played by instrumentation predicates, which record
auxiliary information in a logical structure. They provide a mechanism for the user to
fine-tune an abstraction: an instrumentation predicate � of arity � , which is defined by
a logical formula +-, �� � �
�	�
��� � ��� over the core predicate symbols, captures a property
that each � -tuple of nodes may or may not possess. In general, adding additional in-
strumentation predicates refines the abstraction, defining a more precise analysis that
is prepared to track finer distinctions among nodes. This allows more properties of the
program’s stores to be identified during analysis.

The introduction of unary instrumentation predicates that are then used as abstrac-
tion predicates provides a way to control which concrete individuals are merged to-
gether into summary nodes, and thereby to control the amount of information lost by

closure of � �	� � � � � �):
�/. � ��01. Formulas �
�2. Variables

043 3 �6587:9;7�� �	� � ��
�
�
 � �=< � 7 �$>?0 � � 7 �$0 �A@ 0 � � 7 �$0 �CB 0 � �
7 �$D �E3F0 ��� 7 ��G��-3H0 ��� 7�� � �	� � � � ���

abstraction. Instrumentation predicates that involve reachability properties, which can
be defined using transitive closure, often play a crucial role in the definitions of abstrac-
tions (cf. Fig. 3). For instance, in program-analysis applications, reachability properties
from specific pointer variables have the effect of keeping disjoint sublists or subtrees
summarized separately. This is particularly important when analyzing a program in
which two pointers are advanced along disjoint sublists. Tab. 2 lists some instrumenta-
tion predicates that are important for the analysis of programs that use type List.

� ���������	�
���	������
���
� �
�
� �	� � � � ��� Is � � reachable from � � along n-fields? � � �	� � ��� ���� �� � �	� � Is � reachable from pointer variable x along n-fields? � � � 3�� �	� � ��� � �	� � � � �� �	� � Is � on a directed cycle of n-fields? � � � 3�� �	��� � � ��� � �	� � � � �

Table 2. Defining formulas of some commonly used instrumentation predicates. Typi-
cally, there is a separate predicate symbol) �
 * for every pointer-valued variable x.

From the standpoint of the concrete semantics, instrumentation predicates represent
cached information that could always be recomputed by reevaluating the instrumenta-
tion predicate’s defining formula in the current store. From the standpoint of the abstract
semantics, however, reevaluating a formula in the current (� -valued) store can lead to
a drastic loss of precision. To gain maximum benefit from instrumentation predicates,
an abstract-interpretation algorithm must obtain their values in some other way. This
problem, the instrumentation-predicate-maintenance problem, is solved by incremen-
tal computation; the new value that instrumentation predicate � should have after a
transition via abstract state transformer � from state to � is computed incrementally
from the known value of � in . An algorithm that uses � and � ’s defining formula
+ , �� � �
�	�
�	� � � � to generate an appropriate incremental predicate-maintenance formula
for � is presented in [22].

The problem of automatically identifying appropriate instrumentation predicates,
using a process of abstraction refinement, is addressed in [23]. In that paper, the input
required to specify a program analysis consists of (i) a program, (ii) a characterization
of the inputs, and (iii) a query (i.e., a formula that characterizes the intended output).
This work, along with [22], provides a framework for eliminating previously required
user inputs for which TVLA has been criticized in the past.

Other operations on logical structures. Thanks to the fact that the Embedding The-
orem applies to any pair of structures for which one can be embedded into the other,
most operations on � -valued structures need not be constrained to manipulate � -valued
structures that are images of canonical abstraction. Thus, it is not necessary to per-
form canonical abstraction after the application of each abstract structure transformer.
To ensure that abstract interpretation terminates, it is only necessary that canonical ab-
straction be applied as a widening operator somewhere in each loop, e.g., at the target
of each back-edge in the control-flow graph.

Unfortunately, the simple abstract semantics obtained by applying predicate-update
formulas to � -valued structures can be very imprecise. For instance, in Fig. 2, y = y->n
sets y to point to the next element in the list. In the abstract semantics, the evaluation in
structure of predicate-update formula # � �� � �"!

� �$# # ��� � �&%
 ��� � � � � causes # -
' � � � �
to be set to

��� �
. Consequently, all we can surmise in � is that y may point to one of

the cells that summary node � � represents. In contrast, the canonical abstraction of
� �

is � � , which demonstrates that the abstract domain is capable of representing a more
precise abstract semantics than the -to- � transformation illustrated in Fig. 2.

In [24], it is shown that for a Galois connection defined by abstraction function �
and concretization function � , the best abstract transformer for a concrete transformer
� , denoted by � � , can be expressed as: � � �����1����� . This defines the limit of precision
obtainable using a given abstract domain; however, it is a non-constructive definition: it
does not provide an algorithm for finding or applying � � .

To help prevent an analysis from losing precision, several other operations on logical
structures are used to implement a better approximation to the best transformer [17]:
� Focus is an operation that can be invoked to elaborate a � -valued structure—

allowing it to be replaced by a set of more precise structures (not necessarily
images of canonical abstraction) that represent the same set of concrete stores.

� Coerce is a clean-up operation that may “sharpen” a � -valued structure by setting
an indefinite value (

� � �
) to a definite value (� or

�
), or discard a structure entirely

if the structure exhibits some fundamental inconsistency (e.g., it cannot represent
any possible concrete store).

The transformers used in TVLA make use of Focus, Coerce, and incremental predicate-
maintenance formulas to implement a better approximation to the best transformer than
the -to- � transformation of Fig. 2. In particular, TVLA is capable of “materializing”
non-summary nodes from summary nodes. For instance, given , TVLA’s transformer
for y = y->nwould create structure � � (among others)—in essence, materializing � �
out of � � . Materialization permits the abstract execution of an assignment to a pointer-
valued field of a newly created non-summary node to perform a strong update.

Dynamically allocated storage. One way to model the semantics of x = malloc()
is to model the free-storage list explicitly [22], so as to exploit materialization:

GFED@ABC� � � // ?>=<89:;/.-,()*+�
�

��

freelist

OO
x = freelist;
freelist = freelist->n;

x // GFED@ABC� � � // GFED@ABC� � � // ONMLHIJKGFED@ABC� �
�

��

freelist

OO

A malloc is modeled by advancing the pointer freelist into the list, and returning
the memory cell that it formerly pointed to. A free is modeled by inserting, at the
head of freelist’s list, the cell being deallocated.

3 Applications and Extensions
Interprocedural analysis. The application of canonical abstraction to interprocedural
analysis of programs with recursion has been studied in both [25] and [26]. In [25], the
main idea is to expose the runtime stack as an explicit “data structure” of the concrete
semantics; that is, activation records are individuals, and suitable core predicates are
introduced to capture how activation records are linked together to form a stack. Instru-
mentation predicates are used to record information about the calling context and the
“invisible” copies of variables in pending activation records on the stack.

The analysis in [26] is based on logical structures over a doubled vocabulary �	� � � ,
where � � � � � ��
 � � � � and � denotes disjoint union. This approach creates a
finite abstraction that relates the predicate values for an individual at the beginning of
a transition to the predicate values for the individual at the end of the transition. Such
two-vocabulary � -valued structures are used to create a summary transformer for each
procedure � , and the summary transformer is used at each call site at which � is called.

Checking multithreaded systems. In [27], it is shown how to apply � -valued logic
to the problem of checking properties of multithreaded systems. In particular, [27] ad-
dresses the problem of state-space exploration for languages, such as Java, that allow

dynamic creation and destruction of an unbounded number of threads (as well as dy-
namic storage allocation and destructive updating of structure fields). Threads are mod-
eled by individuals, which are abstracted using canonical abstraction—in this case, the
collection of unary thread properties that hold for a given thread. The use of this naming
scheme automatically discovers commonalities in the state space, but without relying
on explicitly supplied symmetry properties, as in, for example, [28]. The analysis algo-
rithm given in [27] builds and explores a � -valued transition system on-the-fly. Unary
core predicates are used to represent the program counter of each thread object; Focus
is used to implement nondeterministic selection of a runable thread.

Numeric abstractions. The abstractions described in Sect. 2 are capable of represent-
ing pointer variables, their contents, and the structure of the heap, but have no direct
way of representing the actual data items that are stored in the nodes of data struc-
tures. Recent work [21] has coupled canonical abstraction with a variety of previously
known numeric abstractions: intervals, congruences, polyhedra [29], and various re-
strictions on polyhedral domains (such as difference constraints [30, 31] and

�
-variable

constraints [32]). These overapproximate the states that can arise in a program using
sets of points in a � -dimensional space. However, when canonical abstraction is used
to create bounded-size representations of memory configurations, the number of nodes
in an abstract descriptor is different at different points in the program; for numeric ab-
stractions, this means that the number of axes changes from program point to program
point—i.e., there is not a fixed value of � . To capture numeric properties in such a sum-
marizing framework, an analysis needs to be able to capture the relationships among
values of groups of numeric objects, rather than relationships among values of individ-
ual numeric objects [21].

Best abstract transformers. As mentioned in Sect. 2, for a Galois connection
�
� � �,� , a

non-constructive definition of the best abstract transformer � � for concrete transformer
� can be expressed as � � � � �1� � � . This defines the limit of precision obtainable
using a given abstract domain, but does not provide an algorithm for finding or applying
� � . Graf and Saı̈di [33] showed that decision procedures can be used to generate best
abstract transformers for abstract domains that are finite Cartesian products of Boolean
values. (The use of such domains is known as predicate abstraction.)

The ability to perform abstract interpretation using best abstract transformers could
play a key role in combating indefiniteness in � -valued structures. It would ensure that
an abstract interpretation computes answers that are precise up to the inherent limita-
tions of the abstraction in use. In recent work, we have made a start towards this goal.
In particular, we have defined two approaches to computing best transformers for ap-
plications that use canonical abstraction [34, 35].

Applications. Some of the problems to which the � -valued-logic approach has been
applied include the following: In [36], TVLA was used to establish the partial cor-
rectness of bubble-sort and insert-sort routines for sorting linked lists. The abstraction-
refinement method of [23] was used to extend this work to address stability and anti-
stability properties of sorting routines. TVLA has also been used to demonstrate the
total correctness of a mark-and-sweep garbage collector operating on an arbitrary heap.
In Java, once an iterator object ��� is created for a collection � � , ��� may be used only
as long as � � remains unmodified, not counting modifications made via ��� ; otherwise
a “concurrent modification exception” is thrown. In [37], TVLA was used to create a
verification tool for establishing the absence of concurrent modification exceptions.

In the area of multithreaded systems, the � -valued-logic approach has been used to
establish the absence of deadlock for a dining-philosophers program that permits there
to be an unbounded number of philosophers [27], as well as to establish the partial

correctness of two concurrent queue algorithms; these results were obtained without
imposing any a priori bound on the number of allocated objects and threads [38].

4 Related Work
Predicate abstraction. Canonical abstraction is sometimes confused with predicate
abstraction, which has been used in a variety of systems [33, 39, 6, 40]. At one level,
predicate abstraction and canonical abstraction use essentially the same mechanism:
� Predicate abstraction can be used to abstract a possibly-infinite transition system

to a finite one: concrete states of the transition system are grouped into abstract
states according to the values of a vector of properties. The transition relation is
quotiented by the equivalence relation induced on concrete states.

� Canonical abstraction is used to abstract a possibly-infinite logical structure to a
finite � -valued one: concrete individuals are mapped to abstract individuals ac-
cording to the values of a vector of unary abstraction predicates; all other predi-
cates are quotiented by the equivalence relation induced on concrete individuals.

However, as used in [17], canonical abstraction is applied to encodings of stores as
logical structures, and machinery is developed to use � -valued structures to define a
parametric abstract domain for abstract interpretation. Predicate abstraction has also
been used to define a parametric abstract domain [41]. Thus, an alternative comparison
criterion is to consider the relationship between the two parametric abstract domains:
� Predicate abstraction yields a parametric abstract domain based on finite Cartesian

products of Booleans (i.e., nullary predicates). An abstract value consists of a
finite set of finite-sized vectors of nullary predicates [41].

� Canonical abstraction yields a parametric abstract domain based on � -valued log-
ical structures. An abstract value consists of a finite set of finite-sized � -valued
structures [17].

A special case of canonical abstraction occurs when no abstraction predicates are used
at all, in which case all individuals are collapsed to a single individual. When this
is done, in almost all structures the only useful information remaining resides in the
nullary core and instrumentation predicates. Predicate abstraction can be seen as go-
ing one step further, and retaining only the nullary predicates. From this point of view,
canonical abstraction is strictly more general than predicate abstraction.

Red Green Yellow Red Go Red Red=0

(a) (b) (c)
Fig. 4. (a) Transition diagram for a stoplight; (b) transition diagram abstracted via the
method of [42] when green and yellow are mapped to go; (c) transition diagram ab-
stracted via canonical abstraction, using red

��� � as the only abstraction predicate.

Existential abstraction. Canonical abstraction is also related to the notion of existen-
tial abstraction used in [43, 42]. However, canonical abstraction yields � -valued predi-
cates and distinguishes summary nodes from non-summary nodes, whereas existential
abstraction yields

�
-valued predicates and does not distinguish summary nodes from

non-summary nodes. Fig. 4 shows the transition diagram for a stoplight—an example
used in [42]—abstracted via the method of [42] (Fig. 4(b)) and via canonical abstrac-
tion, using red

��� � as the only abstraction predicate (Fig. 4(c)). With existential abstrac-
tion, soundness is preserved by restricting attention to universal formulas (formulas in
ACTL

�

). With canonical abstraction, soundness is also preserved by switching logics,

although in this case there is no syntactic restriction; we switch from
�
-valued first-

order logic to � -valued first-order logic. An advantage of this approach is that if � is
any formula for a query about a concrete state, the same syntactic formula � can be
used to pose the same query about an abstract state.

One-sided versus two-sided answers. Most static-analysis algorithms provide
�
-valued

answers, but are one-sided: an answer is definite on one value and conservative on the
other. That is, either � means � , and

�
means “maybe”; or

�
means

�
, and � means

“maybe”. In contrast, by basing the abstract semantics on � -valued logic, definite truth
and definite falseness can both be tracked, with

��� �
capturing indefiniteness. (To de-

termine whether a formula � holds at � , it is evaluated in each of the structures that
are collected at � . The answer is the join of these values.) This provides insight into
the true nature of the one-sided approach. For instance, an analysis that is definite with
respect to

�
is really a � -valued analysis that conflates � and

��� �
(and uses � in place of��� �

). (It should be noted that with a two-sided analysis, the answers � and
�

are definite
with respect to the concrete semantics as specified, which may itself overapproximate
the behavior of the actual system being modeled.)

Acknowledgments. We thank our many students and collaborators.

References
1. Havelund, K., Pressburger, T.: Model checking Java programs using Java PathFinder. Softw.

Tools for Tech. Transfer 2 (2000)
2. Wagner, D., Foster, J., Brewer, E., Aiken, A.: A first step towards automated detection of

buffer overrun vulnerabilities. In: Network and Dist. Syst. Security. (2000)
3. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-specific,

programmer-written compiler extensions. In: Op. Syst. Design and Impl. (2000) 1–16
4. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng, H.: Bandera:

Extracting finite-state models from Java source code. In: Int. Conf. on Softw. Eng. (2000)
439–448

5. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic programming errors.
Software–Practice&Experience 30 (2000) 775–802

6. Ball, T., Rajamani, S.: The SLAM toolkit. In: Int. Conf. on Computer Aided Verif. Volume
2102 of Lec. Notes in Comp. Sci. (2001) 260–264

7. Chen, H., Wagner, D.: MOPS: An infrastructure for examining security properties of soft-
ware. In: Conf. on Comp. and Commun. Sec. (2002) 235–244

8. Andersen, L.O.: Binding-time analysis and the taming of C pointers. In: Part. Eval. and
Semantics-Based Prog. Manip. (1993) 47–58

9. Steensgaard, B.: Points-to analysis in almost-linear time. In: Princ. of Prog. Lang. (1996)
32–41

10. Das, M.: Unification-based pointer analysis with directional assignments. In: Prog. Lang.
Design and Impl. (2000) 35–46

11. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using instantia-
tion constraints. In: Prog. Lang. Design and Impl. (2000) 253–263

12. Cheng, B.C., Hwu, W.: Modular interprocedural pointer analysis using access paths: Design,
implementation, and evaluation. In: Prog. Lang. Design and Impl. (2000) 57–69

13. Foster, J., Fähndrich, M., Aiken, A.: Polymorphic versus monomorphic flow-insensitive
points-to analysis for C. In: Static Analysis Symp. (2000) 175–198

14. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analyses using binary
decision diagrams. In: Prog. Lang. Design and Impl. (2004) To appear.

15. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: Prog. Lang. Design and Impl.
(2004) To appear.

16. M.Das, Liblit, B., Fähndrich, M., Rehof, J.: Estimating the impact of scalable pointer anal-
ysis on optimization. In: Static Analysis Symp. (2001) 260–278

17. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst. 24 (2002) 217–298

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: Princ. of Prog. Lang. (1977)
238–252

19. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Static
Analysis Symp. (2000) 280–301

20. : (TVLA system) “http://www.math.tau.ac.il/ � rumster/TVLA/”.
21. Gopan, D., DiMaio, F., N.Dor, Reps, T., Sagiv, M.: Numeric domains with summarized

dimensions. In: Tools and Algs. for the Construct. and Anal. of Syst. (2004) 512–529
22. Reps, T., Sagiv, M., Loginov, A.: Finite differencing of logical formulas for static analysis.

In: European Symp. On Programming. (2003) 380–398
23. Loginov, A., Reps, T., Sagiv, M.: Abstraction refinement for � -valued-logic analysis. Tech.

Rep. 1504, Comp. Sci. Dept., Univ. of Wisconsin (2004)
24. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Princ. of

Prog. Lang. (1979) 269–282
25. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In: Comp.

Construct. Volume 2027 of Lec. Notes in Comp. Sci. (2001) 133–149
26. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interprocedural shape

analysis. Tech. Rep. 1505, Comp. Sci. Dept., Univ. of Wisconsin (2004)
27. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic. In:

Princ. of Prog. Lang. (2001) 27–40
28. Emerson, E., Sistla, A.: Symmetry and model checking. In Courcoubetis, C., ed.: Int. Conf.

on Computer Aided Verif. (1993) 463–478
29. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among variables of a

program. In: Princ. of Prog. Lang. (1978)
30. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In: Auto-

matic Verification Methods for Finite State Systems. (1989) 197–212
31. Miné, A.: A few graph-based relational numerical abstract domains. In: Static Analysis

Symp. (2002) 117–132
32. Simon, A., King, A., Howe, J.: Two variables per linear inequality as an abstract domain. In:

Int. Workshop on Logic Based Prog. Dev. and Transformation. (2002) 71–89
33. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: Int. Conf. on Com-

puter Aided Verif. Volume 1254 of Lec. Notes in Comp. Sci. (1997) 72–83
34. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer. In: Verif.,

Model Checking, and Abs. Interp. (2004) 252–266
35. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract operations for

shape analysis. In: Tools and Algs. for the Construct. and Anal. of Syst. (2004) 530–545
36. Lev-Ami, T., Reps, T., Sagiv, M., Wilhelm, R.: Putting static analysis to work for verification:

A case study. In: Int. Symp. on Softw. Testing and Analysis. (2000) 26–38
37. Ramalingam, G., Warshavsky, A., Field, J., Goyal, D., Sagiv, M.: Deriving specialized pro-

gram analyses for certifying component-client conformance. In: Prog. Lang. Design and
Impl. (2002) 83–94

38. Yahav, E., Sagiv, M.: Automatically verifying concurrent queue algorithms. In: Workshop
on Software Model Checking. (2003)

39. Das, S., Dill, D., Park, S.: Experience with predicate abstraction. In: Int. Conf. on Computer
Aided Verif., Springer-Verlag (1999) 160–171

40. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Princ. of Prog. Lang.
(2002) 58–70

41. Ball, T., Podelski, A., Rajamani, S.: Boolean and Cartesian abstraction for model checking
C programs. In: Tools and Algs. for the Construct. and Anal. of Syst. (2001) 268–283

42. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Int. Conf. on Computer Aided Verif. (2000) 154–169

43. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. Trans. on Prog. Lang.
and Syst. 16 (1994) 1512–1542

