
Reducing Resource Redundancy for Concurrent Error Detection Techniques in
High Performance Microprocessors

Sumeet Kumar
ECE Department

Binghamton University
Binghamton, NY 13902

skumar1@binghamton.edu

Aneesh Aggarwal
ECE Department

Binghamton University
Binghamton, NY 13902
aneesh@binghamton.edu

Abstract

With reducing feature size, increasing chip capacity, and increas-
ing clock speed, microprocessors are becoming increasingly suscep-
tible to transient (soft) errors. Redundant multi-threading (RMT) is
an attractive approach for concurrent error detection and recovery.
However, redundant threads significantly increase the pressure on the
processor resources, resulting in dramatic performance impact.

In this paper, we propose reducing resource redundancy as a
means to mitigate the performance impact of redundancy. In this
approach, all the instructions are redundantly executed, however, the
redundant instructions do not use many of the resources used by an
instruction. The approach taken to reduce resource redundancy is
to exploit the runtime profile of the leading thread to optimally al-
locate resources to the trailing thread in a staggered RMT architec-
ture. The key observation used in this approach is that, even with a
small slack between the two threads, many instructions in the lead-
ing thread have already produced their results before their trailing
counterparts are renamed. We investigate two techniques in this ap-
proach (i) register bits reuse technique that attempts to use the same
register (but different bits) for both the copies of the same instruction,
if the result produced by the instruction is of small size, and (ii) reg-
ister value reuse technique that attempts to use the same register for
a main instruction and a distinct redundant instruction, if both the
instructions produce the same result. These techniques, along with
some others, are used to reduce redundancy in register file, reorder
buffer, and load/store buffer. The techniques are evaluated in terms of
their performance, power, and vulnerability impact on an RMT pro-
cessor. Our experiments show that the techniques achieve about 95%
performance improvement and about 17% energy reduction. The vul-
nerability of the RMT remains the same with the techniques.

Keywords: Concurrent Error Detection, Reducing Redun-
dancy, Register File, Redundant Multi-threading

1 Introduction

With the current trends in transistor size, voltage and clock
frequency, microprocessors are becoming increasingly sus-
ceptible to hardware failures. Hardware errors in the cur-
rent technology are predominantly transient errors [4, 18]
that occur randomly due to various reasons such as electro-
magnetic influences, alpha particle radiations, power supply
fluctuations due to ground bounce, crosstalk or glitches, and

partially defective components and loose connections. Cur-
rent trends suggest that transient errors will be an increas-
ing burden for microprocessor designers [23, 11]. Transient
hardware errors are troublesome because they elude most of
the current testing methods. A popular approach to detect
transient errors is to use redundant multi-threading (RMT)
[14, 6, 4, 19, 1, 13, 15, 16, 21, 22, 7]. In this approach, the
same application is run multiple times and the errors are de-
tected by corroborating the redundant results. Studies [22, 7]
have shown that a staggered RMT, where one thread slacks be-
hind the other thread, results in better performance because the
trailing thread does not incur many of the branch mispredic-
tion and the load miss penalties incurred by the leading thread.

Running multiple threads places a significant pressure on
the processor resources, resulting in a considerable perfor-
mance loss. In this paper, we propose reducing resource re-
dundancy to mitigate the performance impact of RMT. In this
approach, full instruction redundancy is provided for full er-
ror coverage, however, many redundant instructions do not use
all the resources used by an instruction. This reduces the pres-
sure on the resources, thus improving performance and reduc-
ing energy consumption. In addition, we observed that re-
ducing redundancy in just one resource simply shifts the pres-
sure from the optimally allocated resource to another resource,
and does not result in significant performance improvement.
Hence, in this paper, we attempt to simultaneously reduce
redundancy in multiple resources to achieve significant im-
provement. The key observation used in reducing the redun-
dancy is that many instructions in the leading thread produce
their results before the trailing thread is renamed. This enables
us to exploit the leading thread’s runtime profile for reducing
redundancy in the trailing thread. These techniques are very
well suited particularly for a staggered RMT execution.

The first technique in this approach — register bits reuse
(RBR) — exploits the sizes of the results produced by the lead-
ing instructions for optimal resource allocation. If the value
produced by a leading instruction is narrow, the renamer al-
locates the same register (as used by the leading instruction)
to its trailing counterpart. In this technique, the lower bits of
the register hold the leading instruction’s result, and the higher
bits of the register hold the trailing instruction’s result, thus ef-
fectively reducing the use of additional registers by the redun-
dant trailing instructions. We also discuss novel ways of defin-

ing a narrow width value, which result in a significant number
of narrow values (even floating-point values). We extend the
RBR technique to also reduce the redundant allocation of re-
order buffer (ROB) entries to the trailing thread. This is pos-
sible because many instructions have exactly the same ROB
entry values for the leading and the trailing counterparts when
these instructions use the same register mapping. Even with
reducing the redundancy in the register file and the ROB, we
observed that the load/store buffer (LSB) became a bottleneck
for many benchmarks. Hence, we propose a novel technique
to reduce the pressure on the LSB and obtain an average per-
formance improvement of about 62%. We also evaluate the
techniques in terms of their energy and vulnerability impact
and observe an average of about 17% in energy. The vulnera-
bility of the RMT remains almost the same.

For the normal-sized results, we investigate register value
reuse (RVR) technique that exploits data value locality ob-
served in instructions’ results. In this technique, if two leading
instructions produce the same value, then the trailing coun-
terpart of the second leading instruction is assigned the reg-
ister of the first leading instruction. This technique further
reduces the register file pressure, especially for the floating-
point benchmarks, resulting in overall performance improve-
ment of about 96%.

The rest of the paper is organized as follows. Section 2
discusses the background and provides the motivation for our
techniques. Section 3 discusses the RBR technique. Section 4
presents the experimental results and analysis. Section 5 dis-
cusses further enhancements to the RBR technique. Section
6 presents sensitivity study for the RBR technique. Section 7
presents the implementation details and experimental results
for the RVR technique. Section 8 presents related work. Fi-
nally, in Section 9, we conclude.

2 Background and Motivation

2.1 Background

In this paper, we consider a reliable microprocessor con-
figuration running one redundant thread for concurrent error
detection, shown in Figure 1. The threads are fetched indepen-
dent of each other, using multiple PCs. One thread is always
ahead of the other by a few instructions (staggered execution)
[22]. However, instructions record a bit indicating whether
they are leading or trailing instructions. The threads are de-
coded and renamed concurrently. In the rename stage, differ-
ent map tables are used for the two threads. Once renamed,
the instructions are dispatched to the issue queue, ROB, and
load/store buffer (for load and store instructions). The threads
are then executed concurrently. The results of the multiple
copies of an instruction are compared for error detection when
the instructions commit. Since, we use a unified register file, at
commit, the instructions also update the backend map-tables.
To reduce the register file port requirements for error detec-
tion, we use an additional value buffer, which also stores the
results stored in the register file and from which the values are
read for comparison at commit time [7].

The entries for the instructions of the two threads are fixed
in the ROB and the LSB, to facilitate finding multiple copies
of an instruction at commit. In our processor, only the leading
load and store instructions access the memory, which is as-

commit
Fetch Decode Rename Writback compare/

Register

File

Dcache

F
et

ch
 B

u
ff

er

Is
su

e
Q

u
eu

e

F
U

s

Map
Table

Map
Table

LSQ

ROB

Backend
map−tables

ldg

tlg

ldg

tlg

ldg

tlg

Ldg

Tlg

tlg ld
g

ldg

ldg

tlg

ldg
ldg

tlg
tlg

Ldg

Tlg

ldg −− Leading thread
tlg −− Trailing thread

Figure 1. Diagram of a Reliable Processor

sumed to be transient fault tolerant (by using Error Detection
and Correction Codes). The value loaded by the leading load
instruction is also forwarded to the register allocated to the
trailing load instructions, using a separate buffer to store the
loaded values [7]. However, the addresses of the loads and the
stores (and the value to be stored for the stores) are generated
multiple times, and checked during commit for any errors.

Deadlocks are avoided by keeping counters that count the
number of trailing instructions in the pipeline. If any resource
is full without any trailing instructions, then a potential dead-
lock is avoided by squashing the younger leading instructions
and fetching the trailing ones, irrespective of the slack condi-
tion. The slack between the threads depends on the size of the
various buffers (such as ROB, LSB, RF, etc.) provided in the
processor. We measured the IPCs with slacks of 32, 64, 96,
and 128 instructions. We found that the IPC is the best for a
slack of 64 instructions. For the rest of the paper, we choose
an instruction slack of 64 instructions between the threads.

2.2 Motivation

Performance degrades because the resources (such as
ROB, issue queue, LSB, and register file entries, and dis-
patch/issue/commit slots) are shared among the threads. To
motivate the resource redundancy reduction techniques, we
measured the IPCs (presented in Figure 2) of 3 configura-
tions — base single-thread execution (BST), base redundant
multi-threading with one redundant thread (RMT), and RMT
where the trailing instructions do not consume any registers,
LSB, and ROB entries (RMT-TNR). The IPC reduces dramat-
ically from BST to RMT. For RMT-TNR, the IPC increases
by about 150%, compared to RMT. Drop in IPC from BST
to RMT-TNR is due to redundancy in other resources such as
the dispatch/issue slots, issue queue entries, etc. An important
observation that can be made from Figure 2 is that the differ-
ence in IPC of the RMT and the RMT-TNR configurations is
not the same for all the benchmarks. The difference in IPC
between the RMT and the RMT-TNR configurations depends
on the IPC of the benchmark and the actual resource pressure
observed during program execution. If the IPC is lower, then
other shared resources such as the issue queue can also be-
come a bottleneck. If the register/ROB/LSB pressure is lower,
then avoiding allocation of these resources (RMT-TNR) may
not benefit significantly.

As discussed in introduction, it may not be sufficient to re-
duce the redundancy in just one resource. Figure 3(a) shows

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

0.5

1

1.5

2

2.5

3

IP
C

BST
RMT
RMT-TNR

Figure 2. IPCs for 3 configurations showing the benefits
from reducing resource redundancy for trailing instructions

the normalized percentage distribution of cycles (out of the to-
tal cycles where decode/dispatch was attempted) in which the
instructions were stalled due to unavailability of register file,
LSB and ROB buffer. When measuring the stalls, if multiple
resources are not available, register file is given the highest
priority, followed by ROB and then by LSB. The measure-
ments are made when the redundant instructions do not al-
locate registers (Rep-NoReg), ROB entries (Rep-NoROB), or
LSB entries (Rep-NoLSB). Normalization is performed with
respect to the Rep-NoLSB configuration. The rest of the hard-
ware parameters are shown in Table 1. As seen in Figure 3(a),
if the pressure on a resource is alleviated, the stalls shift from
that resource to another. For instance, for gcc, the stalls are
due to LSB entries if the trailing instructions are not allocated
either ROB entries or registers, and the stalls shift to integer
registers if the trailing instructions are not allocated LSB en-
tries. Figure 3(b) further gives the Instructions per Cycle (IPC)
count for the four – Rep-NoReg, Rep-NoROB, Rep-NoLSB,
and RMT-TNR – configurations. Figure 3(b) shows that the
RMT-TNR configuration performs better than the other three
configurations for most of the benchmarks. For some bench-
marks (such as mesa, parser, and vpr), we observed that
RMT-TNR performed slightly worse, primarily due to a reduc-
tion in branch mispredictions and load-alias misspeculations.
Figures 3(a) and (b) show that it is imperative to have a com-
prehensive technique that attempts to reduce the redundancy
in multiple resources.

3 Reducing Resource Redundancy

3.1 Reducing Register Redundancy with Register
Bits Reuse (RBR)

Previous studies [8, 9, 2] have shown that many narrow-
sized data values are produced in a program. Traditionally,
values are categorized as narrow only if their leading bits are
all zeros or ones. However, this categorization will fail to in-
clude most of the floating-point values because of the IEEE
754 standard used for their representation. Intuitively, for a
floating-point value, the least significant portion of the signif-
icand may have a higher probability of being all zeros (for
instance, a value

�����
). Hence, in our studies, any value whose

at least 16 (for a 32-bit word) leading or trailing bits are zeros
or ones is categorized as narrow. We observed, there are a con-
siderable number of values with at least 16 trailing zero bits
and non-zero bits in the upper 16 bits. For instance, bzip2

had about 10% values with at least 16 trailing zeros. Overall,
about 50% of the results could be categorized as narrow.

If a leading instruction produces a narrow result, the re-
sult can be compressed into the lower 16 bits of a register. In
such a case, the upper 16 bits of the register can be used to
store the trailing instruction’s result, avoiding a separate reg-
ister for the redundant trailing instruction. Figure 4 illustrates
the working of the RBR technique for the instruction ��� that
produces a narrow value

�	��
������
�
�
�

. In Figure 4(a), by the

time the trailing counterpart of ��� (�����) is renamed, ��� has al-
ready produced a value and stored it in the register ����� . When
����� produces the result

�	�
������
�
�
�

, the value stored in the

����� is
����
������
�����

.
To pass the leading instruction’s result’s size and its register

identifier to the trailing instruction, we use an additional size
bit for each ROB entry in the leading thread’s ROB section
(ROBs 1 - N in Figure 4(b)) and an additional replica pointer
for the ROB (Figure 4(b)). The size bit indicates the size of
the instruction’s result, and the replica pointer points to the
ROB entry whose trailing instruction will be next renamed.
When leading instructions are dispatched, the corresponding
size bits are reset. Since, the dispatch is in-order, a single port
(with multiple bit-lines activated) is enough to reset the bits.
When a leading instruction produces a narrow result, it sets
its size bit. In this case as well, a single port is enough to set
the appropriate bits for all the instructions producing narrow
results in a cycle. Hence, the size bits bit-vector requires 2
write ports and a single read port. The trailing instructions
that are getting renamed in a cycle read the size bits following
the bit pointed to by the replica pointer. The rename pointer
is then incremented.

The register to be allocated to the trailing instructions (if
their leading counterparts produce a narrow result) can be
determined from the ROB entries pointed to by the replica
pointer. Note that, each ROB entry holds the register identi-
fier used by an instruction to update the backend map tables at
commit. However, this will necessitate an increase in the num-
ber of read ports into the register identifier portion of the ROB.
This increase in the number of read ports can be avoided as we
will discuss in Section 3.2. If the size bit is set, the same regis-
ter is allocated to the trailing instruction, else another register
is sought. The replica pointer is updated as the instructions
are committed or squashed. Figure 4(b) shows the renaming
and register allocation for instructions � � and � ��� that produce
a narrow result. Each ROB entry for the trailing instruction is
also provided with a check bit which is set (at dispatch) if the
trailing instruction reuses the register of the leading instruc-
tion. The check bit is used to guarantee the correct function-
ing of the RBR technique. At commit, the identifiers of the
registers allocated to the two instructions are compared and
the check bit of the trailing instruction is checked. If the reg-
ister identifiers match and the check bit is set, or the register
identifiers mismatch and the check bit is reset, then the correct
operation is assumed. A single check bit is enough to detect
errors caused by single event upsets (SEUs).

Width, location, and value bit-vectors (each of size equal
to the number of physical registers) are used to appropriately
read and write the registers, as shown in Figure 4(c). For a
leading instruction’s register, the width bit is set if the result is
narrow, the location bit is set if the result has non-significant

bzip2
equake gcc

mcf
parser

vortex vpr
ammp

applu art mesa swim
wupwise apsi

mgrid

0

20

40

60

80

100

No
rm

ali
ze

d P
erc

en
tag

e

Decode / Dispatch Attempted
No Store Queue
No Load Queue
No ROB Entry
No Floats
No Ints

XYZ

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

0.5

1

1.5

2

2.5

IP
C

RMT RepNoReg
RMT RepNoROB
RMT RepNoLSB
RMT-TNR

(b)

Figure 3. (a) Percentage Distribution of decode/dispatch stalls for (X) No LSB (RepNoLSB); (Y) No ROB (RepNoROB); and (Z)
No Register (RepNoReg); (b) IPCs for the different configurations

data in the front, and the value bit is set if the non-significant
data is all ones. For example, in Figure 4(c), the width, lo-
cation, and value bits for

����
������
�
�
�

are “101”. To miti-

gate faulty execution because of errors in these status bits, a
parity bit is used to detect errors in the width, location, and
value bits. RBR’s functions correctly even if a trailing instruc-
tion is renamed before the leading instruction generates a nar-
row result. Since the copies of instructions are committed and
squashed simultaneously, the registers used by these instruc-
tions are de-allocated simultaneously.

value bits
Width, location,

101

Allocated register

ix

ixR

10

10

P10 0xfa25 0xfa25
ix: result = 0xfa25ffff

Time

ixR: replica renamed

ix: renamed to P10

Register P10

xxxxxxxx

xxxxfa25

 to P10
xxxxfa25

ixR: result = 0xfa25ffff fa25fa25

(a) (b) (c)
Physical RF

Replica pointer

N+1 − Z
ROBs

thread
Trailing

thread

ROBs
1−N

Leading
1 N

1

size bits

Ldg. ROB head

Ldg. ROB tail

parity bits

 0

1

Tlg. ROB head

Tlg. ROB tail

check bits
N+1 Z

Figure 4. Example Illustrating the RBR technique

The RBR technique reduces the register file pressure and
the energy consumption in the register file, by reducing both
the size and the number of values read from and written into
the register file. It also reduces the energy consumption in the
additional value buffer (refer Section 2.1) because if the check
bit of the trailing instruction’s ROB entry is set, then a single
register is read from the additional value buffer.

3.2 Reducing ROB Redundancy with RBR
The ROB entries of the same instruction in the two threads

differ only in the register mapping information. The map-
ping information stored in the ROB entry can only be the cur-
rent mapping (for checkpointed branch misprediction recov-
ery) or both current and previous mappings (for ROB-walk
based branch misprediction recovery). With the RBR scheme,
it is possible that the ROB entries of the same instruction in
the two threads may be the same. We experiment with a more
pathological case of ROB-walk based branch misprediction
recovery, for which both the current and the previous map-
pings of an instruction should be the same for their ROB en-
tries to be exactly similar. For instance, if the definer and the

redefiner of a register produce narrow results, then the trailing
counterpart of the redefiner will have exactly the same ROB
entry as the leading instruction. ROB allocation for the trail-
ing counterpart can be avoided in this case. To implement this
scheme, an additional map bit is maintained in the map table
for the trailing instructions. If a trailing instruction is using
the same mapping as its leading counterpart, then the map bit
is set. For a trailing instruction, if the map bit is set and the
current mapping is also the same its leading counterpart, then
that instruction is not allocated an ROB entry. On a branch
misprediction, all the map bits are reset. To further reduce the
redundancy in ROB allocation, control type instructions (such
as branch and jump instructions) are also allocated a single
ROB entry for their leading and trailing counterparts.

This scheme will necessitate that the ROB entries are pro-
tected using parity bits, as an error in an ROB entry may not
detected because that ROB entry may be used by both the
copies of an instruction. The parity bits are generated after re-
name and before dispatch, in parallel to other pipeline stages.
To cover faults that may occur after rename but before parity
generation, the ROB entry is written by the leading instruc-
tion, whereas the parity bit for the entry is generated for the
trailing instruction and written into the parity bits buffer. Par-
ity bit generation is required for only those trailing instruc-
tions that do not use a separate ROB entry, thus limiting the
additional energy as well. Each parity bit buffer entry is also
provided with a valid-parity bit which also signifies whether a
separate ROB entry is used by the trailing instruction. At com-
mit, if the valid-parity bit is set, then the corresponding parity
bit detects errors in the ROB entry. The map and valid-parity
bits may be duplicated to avoid faulty execution on errors in
these bits. ROB redundancy reduction will also save energy
by reducing the number of writes and reads from the ROB.

Reduction in the ROB entries that are read at commit can
facilitate increasing the commit width. However, to limit the
increase in ROB read ports (refer Section 3.1), we limit the
commit width (from a maximum of four leading and four trail-
ing instructions) to a maximum of four instructions. This will
commit four distinct instructions if the copies of all the four in-
structions share the ROB entries. If only two or three instruc-
tions (out of the four instructions) share their ROB entries,
then only three distinct instructions can be committed. The
determination of the number of instructions to be committed
is performed one cycle prior to the commit of the instructions.

3.3 Reducing LSB Redundancy

Traditionally, LSB is implemented in a way that load in-
structions broadcast their addresses in the store buffer and
store instructions broadcast their addresses in the load buffer.
These broadcasts are followed by comparisons to detect any
load alias misspeculation and store-to-load forwarding. The
trailing load and store instructions simply write their addresses
(and value for the store instruction) into the LSB entry allo-
cated to them. However, if the leading load and store instruc-
tions have already produced their addresses by the time their
trailing counterparts are dispatched, then the same broadcast
and compare hardware can be used to perform the compar-
isons for error detection. To detect whether a leading memory
instruction has generated its address, a LSB pointer similar to
the replica pointer is used to point to the next memory in-
struction whose trailing counterpart will be dispatched. On
dispatch of trailing memory instructions, if the valid bits of
the LSB entries of their leading counterparts are set, then the
trailing instructions are not allocated LSB entries.

In this technique, a trailing load instruction (whose lead-
ing counterpart has already generated its address) generates
its address on the store’s address generation unit (AGU). This
results in its address being broadcasted in the load buffer
and compared with the leading counterpart’s entry in the load
buffer. A trailing store instruction is executed in a similar fash-
ion. In case there is a mismatch in the addresses generated
by the two counterparts, the instruction is marked as being
faulty. If the leading load instruction has not have generated
the address by the time its trailing counterpart is dispatched,
the trailing load instruction is made dependent on the leading
load instruction to serialize their execution. This is possible
because most of the load instructions have a single register
operand. If a load instruction has two register operands, then
the dispatch is stalled till the leading counterpart produces its
address. However, a trailing store instruction is allocated a
separate store buffer entry if its leading counterpart has not
produced its address. This scheme replaces the write and read
of the address of the trailing instructions, with a single broad-
cast of its address, thus saving energy as well.

This technique may remove all the redundancy in the load
buffer due to trailing instructions. However, store instructions
also have to store the value in the store buffer entry to support
store-to-load forwarding. Hence, allocation of store buffer en-
tries to the trailing store instructions can only be avoided for
the instructions that store a narrow value, so that the space
for the value can be shared among the instructions from both
the threads. Note that, this technique will require parity and
valid-parity bits to protect the store buffer entries’ addresses
(not the values) once the comparison has been performed.

3.4 Limited RBR

To reduce the additional width, location, value, and parity
bits required for each register in the RBR technique, we pro-
pose a limited RBR technique where a value is narrow if its
significant part is 14 bits or less. In this case, each 32-bit reg-
ister can either hold a normal value or two narrow values and
the duplicated location and value bits for the two values. The
width bit has to be provided and duplicated outside of the reg-
ister to determine the size of the values. In limited RBR, the
number of additional bits reduce from four to two.

4 Experimental Results

4.1 Experimental Setup

The hardware parameters for the base RMT superscalar
processor are given in Table 1. Our base pipeline (for the BST
configuration) consists of 8 front-end stages. For the RMT
configuration without the RBR technique, one pipeline stage
is inserted before the commit stage to check the values. For
the RBR technique, one pipeline stage is inserted after execu-
tion and before writeback to check the size of the result val-
ues. Another pipeline stage is inserted after the register read
to re-construct the correct values from the compressed values
read from the register file. Overall, the branch misprediction
penalty increases by 1 cycle because of the additional pipeline
stage before the register read.

We use a modified SimpleScalar simulator [3], simulating
a 32-bit PISA architecture. In our simulator, we use a uni-
fied physical and architectural register file. Two registers are
allocated to an instruction producing a long or a double re-
sult value (requiring 64 bits for representation). For bench-
marks, we use 6 SPEC2000 integer (vpr, mcf, parser,
bzip2, vortex, and gcc), and 9 FP (wupwise, ammp,
swim, equake, applu, art, apsi, mgrid, and mesa)
benchmarks. The statistics are collected for 500M instructions
after skipping the first 1B instructions.

For the RBR technique, the number of ROB, Load buffer,
and Store buffer entries for the trailing instructions are re-
duced to 32, 0, and 5 respectively. The remaining entries are
provided for the leading instructions. Note that this distribu-
tion of entries may not be the best possible distribution (which
can be determined empirically), because the trailing instruc-
tions may stall due to too few entries provided for them. We
use a single parity bit each for the ROB entry, store buffer en-
try, and the additional status bits in the register file to protect
from a single event upset (SEU). The number of parity bits
can be increased to protect from multi-bit upsets.

4.2 Results

Figure 5(a) shows the IPC results of the RBR and Limited
RBR techniques, compared to RMT and RMT-TNR configu-
rations. We also experiment with two more configurations –
RMT-Add and RMT-Add-Ltd – where the additional bits re-
quired for each structure in the RBR technique are used to
increase the capacity of the structures in the base RMT con-
figuration. For instance, the width, location, value, and parity
bits are used to increase the number of registers by 16 in the
RMT-Add configuration and the additional width bits increase
the number of registers by eight in the RMT-Add-Ltd configu-
ration. Depending on the additional bits, the ROB size can be
increased by 10 entries. Similarly, the load buffer increases
by one entry and the store buffer increases by two entries.
Figure 5(b) shows the IPCs of RBR and Limited RBR com-
pared to RMT-Add and RMT-Add-Ltd. Note that an increase
in the structures’ sizes will significantly impact their access
time, which is not affected in the RBR technique, where the
bits are used as separate status bits.

As can be seen from Figure 5(a), IPC difference between
RBR and Limited RBR techniques is negligible. However,
RBR technique increases the IPC of the RMT configuration
by about 62% with a maximum reaching 144% for apsi. As

Parameter Value Parameter Value
Fetch/Decode/ 8 instructions FP FUs 3 ALU,
Commit Width 1 Mul/Div

Unified 128 INT/128 FP entries, Int. FUs 4 ALU, 2 AGU
Phy. Register File 2-cycle acc. lat. 1 Mul/Div

1-cycle inter-subsystem lat.
Issue Width 5/3 INT/FP instructions Issue Queue 96 INT/64 FP Instructions

Branch Predictor Gshare 4K entries BTB Size 4K entries, 2-way assoc.
L1 - I-cache 32K, direct-map, L1 - D-cache 32K, 4-way assoc.,

2 cycle latency 2 cycle latency, 2 r/w ports
Memory Latency 100 cycles first word L2 - cache unified 512K,

2 cycle/inter-word 8-way assoc., 10 cycles
ROB size 128 leading Load buffer size 30 leading, 10 trailing

64 trailing Store buffer size 30 leading, 10 trailing

Table 1. Baseline Processor Hardware Parameters for the Experimental Evaluation

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

0.5

1

1.5

2

2.5

IP
C

RMT-TNR
RMT
RBR
RBR-Limited RBR

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

0.5

1

1.5

2

2.5

IP
C

RMT Add
RBR
RMT Add - Ltd
Limited RBR

(b)

Figure 5. (a) IPCs for RMT, RMT-TNR, RBR, and Limited RBR configurations; (b) IPCs for RBR,Limited RBR, RMT-Add, RMT-
Add-Ltd configurations

expected, we observe that the techniques perform better for
integer benchmarks, where more narrow values are encoun-
tered. The IPC with RBR is better than that for RMT-TNR
for gcc and vpr because the stalls in these benchmarks are
almost reduced to that of RMT-TNR, because of a high per-
centage of narrow values. However, lower branch mispredic-
tion and load-alias misspeculation gives slightly better results
for the RBR technique. Figure 5(b) shows that limited RBR
is significantly better than RMT-Add-Ltd, where the additional
hardware in limited RBR is instead used to increase the size of
the structures. However, when the number of registers are in-
creased by 16, RMT-Add performs slightly better than RBR for
art, swim, wupwise, and mgrid because of fewer narrow
values encountered in these benchmarks.

The performance improvement obtained from the RBR
technique is not equal for all the benchmarks, because it de-
pends on the amount by which the pressure is reduced. For
the benchmarks that are register constrained, the performance
improvement obtained from the RBR technique also depends
on the type of registers for which the pressure is reduced. For
instance, if a benchmark is floating-point register constrained
and the techniques reduce the integer register pressure, then
the techniques are not expected to be very effective. For in-
stance, consider applu and swim in Figure 6. Figure 6
presents the reduction in register, ROB, and store buffer redun-
dancy. Load buffer redundancy reduction is 100% and hence
not shown. The bars in Figure 6 present the percentage of trail-
ing instructions (out of those that require a resource) for which
separate allocation of that resource was avoided. For instance,

bar 1 shows the percentage of integer result producing trailing
instructions for which integer register allocation was avoided.
Applu and Swim are constrained by floating-point registers.
The RBR scheme is able to save more than 40% of integer reg-
isters for these two benchmarks, whereas only about 15% of
floating point registers. Hence, RBR scheme does not perform
that well for these two benchmarks.

Overall, for about 45% of result producing instructions of
the trailing thread register allocation was avoided, for about
50% of trailing instructions ROB allocation was avoided, for
about 50% of trailing store instructions store buffer allocation
was avoided. The absence of the bar for floating-point regis-
ters is due to the absence of floating-point instructions.

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

20

40

60

80

100

Pe
rc

en
tag

e

Integer Registers Saved
Float Registers Saved
ROB Saved
Store Buffer Saved

Figure 6. Percentage Savings of Integer and Floating-point
registers, ROB and Store buffer entries for the trailing thread
with RBR

4.3 Power Results

We use the cacti tool [17] to perform the energy measure-
ments for the register file, ROB, LSB, and the additional value
buffer. For the measurements, we measure the energy con-
sumption for each access and the type of access and multiply it
by the number of such accesses obtained from the simulations.
Energy consumption in the register file and additional value
buffer (AVB) will reduce because for many instructions, fewer
bit-lines are activated to write and read smaller values from
the register file. When instructions that share a single regis-
ter commit, a single register is read from the AVB also saving
energy by reducing the number of commit-time reads. How-
ever, additional energy is consumed in the additional width,
location, value and parity bits. Energy consumption in the
ROB and LSB is reduced primarily because of fewer writes
and reads from these structures. However, some of the energy
saved in the LSB is compensated by the additional broadcast
and compare for the trailing instructions. Additional energy
is also consumed in the ROB and the LSB from parity and
valid-parity bits. Figure 7 shows the percentage savings in
dynamic energy consumption (w.r.t RMT) obtained in the reg-
ister file, ROB, LSB, and the additional value buffer, respec-
tively. These measurements also include the energy consumed
in the additional bits. As seen in Figure 7, about 10% energy
savings is achieved in the register file, about 25% in the ROB,
about 30% in the load buffer, about 10% in the store buffer,
and about 18% in the additional value buffer. Figure 7 shows
that, in general, energy savings is more in integer benchmarks
than the floating-point benchmarks, which is expected.

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid Average

0

10

20

30

40

50

Pe
rc

en
tag

e E
ne

rg
y S

av
in

gs

Register File
ROB
Load Buffer
Store Buffer
Additional Value Buffer

Figure 7. Percentage energy saving in RF, ROB, Load/Store
Buffer, and AVB for the RBR configuration

4.4 Load Value Buffer

In staggered execution, the values loaded by the leading
thread are forwarded to the trailing thread using a load value
buffer. The load value buffer size will depend on the average
number of load instructions in the slack. In the RBR tech-
nique, if the leading load instruction loads a narrow value by
the time its trailing counterpart has been renamed, then the
two instructions will share the same register. Hence, to re-
duce the size of the load buffer required, when a leading load
instruction loads a narrow value and its trailing counterpart
has not been renamed, the value is replicated in the register
and no load value buffer entry is allocated for that value. We
call this technique load value buffer reduction (LVBR). The

replica pointer is used to determine whether a trailing coun-
terpart of a leading load instruction has been renamed or not.
The trailing load instruction is accordingly notified. For the
measurement of the load buffer size required, we measured
the average number of load instructions in the slack of 64 in-
structions for each benchmark. For the RMT configuration, the
average number of load instructions that require a load buffer
entry (across all the benchmarks) is about 30, and with LVBR
scheme, this number reduces by about 46%.

We performed experiments with a 32-entry load value
buffer in the RMT configuration, a 32-entry load value buffer
in the RBR configuration, and a 16-entry load value buffer in
the RBR-LVBR technique. We observed that the IPC reduc-
tion was about 5% in going from RBR to RBR-LVBR tech-
nique. However, the reduction in power consumption in the
load value buffer was about 65%. The structure of the load
value buffer assumed was a fully associative buffer with a reg-
ister identifier field and a loaded value field. The trailing load
instruction broadcasts the register identifier of the leading load
instruction, and on a match reads the value. On a mismatch,
the trailing load instruction waits to be woken up by the lead-
ing load instruction. The structure and the working of the load
value buffer will remain the same in the RMT and the RBR-
LVBR techniques. The reduction in energy consumption is
significantly greater than the reduction in size because the sav-
ings are achieved from both the reduction in size and accesses.

4.5 Vulnerability Impact of RBR

As discussed in the previous sections, with the addition
of parity bits and the duplication of selective status bits, the
RBR will be able to detect all the single event upsets (SEUs)
that result in a single bit flip. However, the probability of
a multi-bit error in the same ROB entry, store buffer entry,
and width, location, and value bits going undetected may in-
crease slightly for the RBR technique. In addition, there is a
possibility that an error may not be detected if a leading in-
struction erroneously produces a smaller-sized value, and its
trailing counterpart trailing instruction only writes half of its
result bits into the upper half of the register. To address this
issue, if an instruction marked as producing a small-sized re-
sult, produces a normal-sized value, then the error is detected
by tagging the instruction as faulty in the ROB.

We measure the vulnerability of the RMT architecture in
terms of the number of errors that are incurred in the execu-
tion of a program. Of course, these errors will be detected in
the RMT architecture. If all the errors are assumed to be in-
dependent of each other, the number of errors will be given
by ����� �����	��� , where �
� is the probability of an error in
a committed instruction and ��� is the number of committed
instructions. ��� remains the same in the base RMT and RMT
with RBR. Hence the vulnerability of these two configurations
depends on ��� . �
� will be given by ���� �
��� �
����� �
��� ,
where ��� is the probability that an error occurs, ����� is the
probability that the instruction � is in the processor when the
error occurred, and ����� is the probability that the error oc-
curred in the hardware being used by the instruction � . This
equation assumes that all the three events are independent. To
first order approximation, � � will be
�
��������������! ��#"$��%�&'(�!�����!
where, A is the area of the processor, �)� is the number of

cycles spent by an instruction in the pipeline, �� is the total
cycles taken by the program, and % is the width of the pro-
cessor. We assume that � almost remains constant when going
from RMT to RBR. Hence, we measured the average number
of cycles spent by an instruction in the pipeline and the to-
tal cycles spent for executing the code, for the RMT and the
RBR configurations. We observed that the number of cycles
for which a committed instruction remains in the pipeline re-
duces by about 33% for the RBR configuration, while the total
number of cycles reduce by about 35%, suggesting that the
probability of an instruction incurring an error remains almost
the same.

5 Violating the Slack
In all the experiments so far, the slack between the leading

and the trailing instructions has been fixed at 64 instructions.
In such situations, if the leading thread stalls due to unavail-
ability of resources, the trailing thread also stalls even if it had
resources available. For instance, a leading instruction stalled
because of a filled load buffer can stall a trailing instruction
that does not require a load buffer entry. Such cases become
much more prominent in the RBR technique where the trailing
instructions may not even require any additional resources.
Hence, we experimented with RMT and RBR configurations
that were allowed to violate the slack condition if the trailing
instructions could go forward. Note that the slack is violated
only if the leading instructions are stalled. Figure 8 shows
that IPCs of the RMT and the RBR configurations with and
without the violating the slack condition. It can be seen from
Figure 8, that the performance of the RMT configuration does
not improve when violation of the slack condition is allowed,
whereas, the performance of the RBR technique increases by
about 7%.

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

0.5

1

1.5

2

2.5

IP
C

RMT
RMT-Slack Violation
RBR
RBR-Slack Violation

Figure 8. IPCs for RMT and RBR configurations with and
without slack violation

6 Sensitivity Study
In this section, we measure the IPCs of the RMT and the

RBR configurations as the register file size is changed to 96
and 164, the ROB size is changed to 128 and 256, and the
Load/store buffers are changed to 32 and 24 entries. In these
experiments, all the other hardware parameters remain the
same. For instance, when changing the register file size, ROB
and LSB are also kept at default values. When ROB size is
varied, the difference in the number of leading and trailing en-
tries is maintained at 64 for RMT, and the trailing entries are

halved for RBR. When the LSB size is varied, the 3:1 ratio in
the number of leading and trailing entries is also maintained
for RMT, and the store buffer entries are halved for RBR. Fig-
ure 9 presents the integer and floating-point benchmarks’ av-
erage IPC, as the resource sizes are varied. When the ROB is
increased beyond 192 entries, the IPCs of both the RMT and
the RBR configurations remain the same, as ROB is no longer
a bottleneck. However, for 128-entry ROB, the average inte-
ger IPC reduces slightly for RMT whereas it remains the same
for RBR. When the LSB entries are reduced, the RMT IPC re-
duces whereas the RBR remains almost the same. As the num-
ber of registers are varied from 164 to 128, RMT IPC reduces
much faster than RBR IPC. In fact for the integer benchmarks,
the RBR IPC almost remains the same. However, when they
are reduced from 128 to 96, RBR IPC reduces faster than RMT
IPC. This is because at register file size of 96, registers start to
become a bottleneck for the RBR technique as well, whereas at
register file size of 128, the registers are not much of a bottle-
neck. This is especially true for the integer benchmarks. For
RMT, the registers are a bottleneck at both 96 and 128, and
hence the decrease in IPC in going from 128 to 96 is not large.

7 Register Value Reuse (RVR)
RBR technique reduces redundancy only if the results gen-

erated by instructions are narrow. We investigate register
value reuse (RVR) technique to reduce redundancy even for
normal-sized values. The RVR technique can only reduce re-
dundancy in the register file. We also observed that about 19%
of the normal results generated by instructions were repeated
when considering the previous eight unique normal results. In
the RVR technique, if a leading instruction produces a normal
result that is already present in another register (written to by
another leading instruction), then the trailing counterpart of
that instruction is renamed to the register already holding the
value. Figure 10 explains the RVR technique. As seen in Fig-
ure 10, instructions � � , � � , and ��� generate the same normal
result

�
, where � � is the first instruction that generates

�
. If

��� generates the result by the time ��� � (trailing instruction of
���) is renamed, ��� � can be renamed to the register used by
��� (i. e. � " �). Note that the leading instruction has already
broadcast its register identifier in the issue queue (to wake up
dependent instructions) by the time the trailing counterpart is
renamed to that register.

The RVR technique will not increase the vulnerability of
the processor to SEUs. Consider that an error occurs in one
of the instructions � � and � � � in Figure 10, whereas ��� and
��� � compute correct results. In RVR technique, there are two
cases: (i) register used by � � is not overwritten by ��� � by the
time � � and � ��� commit, and (ii) register used by � � is over-
written by ��� � by the time � � and � � � commit. In the first
case, the error will be detected when the results of � � and � ���
are compared at commit time. In the second case, if an error
occurred in ����� , then the error will again be detected when
the results of � � � (which overwrites the result of ���) and �����
are compared at commit time. If ��� errs (i. e. ��� erroneously
produced a result equal to that of � � and � �), the error is again
detected when � � � and ��� � are compared at commit.

In this paper, we employ the RVR technique on top of the
RBR technique. To compare the result values of different lead-
ing instructions and also to forward the register identifiers to

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

IP
C

RBR
RMT

(a)

Registers 96 128 164

ROB 128 192 256

LSB 24 32 40

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

IP
C

RBR
RMT

ROB 128 192 256

Registers 96 128 164

LSB 32 32 40

(b)

Figure 9. IPCs for RMT and RBR as the Register File, ROB and LSB sizes are varied for (a) Integer; (b) Floating-Point benchmarks

i1: produces a normal result X
 (destination renamed to P10)

Time

ix: produces the same result X
 (Destination renamed to P20)

iy: produces the same result X
 (Destination renamed to P30)

i1R: Destination renamed to P15

ixR: Destination renamed to P10

ixR renamed
after ix produces

a result

iyR: Destination reanmed to P20

iyR renamed
after iy produces

a result

Leading instructions Trailing Instructions

Figure 10. Example Illustrating the Basic Idea behind the
Register Value Reuse technique

i1: produces a normal result X
 (destination renamed to P10)

 (Destination renamed to P20)
ix: produces the same result X

Time

ixR: Destination renamed to P10

i1R: Destination renamed to P15
Replica pointerix

ixR

10
thread
ROB
section

thread
ROB
section

i1

i1R xx

candidate for
register reuse

xx

xx

ROB

Register Value
Register
identifier

valid
Type

Result of i1 10 1 1

CAM Buffer after execution of i1

CAM Buffer after execution of ix

Result of i1 1 120

Ldg ROB head

Leading

Ldg ROB tail

TrailingTlg ROB head

Tlg ROB tail

Figure 11. Example Illustrating the RVR technique

the trailing counterparts, we use a small CAM (Context Ad-
dressable Memory) buffer. The buffer is accessed when the
leading instructions produce a value and when a leading re-
definer instruction of a register commits. When a redefiner
instruction commits, the entry holding the register it redefines
is invalidated. When leading instructions produce normal re-
sults, unique results are compared with the values in the CAM
buffer, and on a match the register identifiers in the ROB (can-
didate register identifier in Figure 11), and the CAM buffer
are updated accordingly. If there is no match, then the least
recently filled entry is updated. When a trailing instruction
is renamed, it obtains the reuse candidate through the replica
pointer. Figure 11 illustrates the working of the RVR tech-
nique when instructions � � and ��� produce the same result.
When instruction � � writes back its result, the CAM buffer is
updated with � � ’s result. Consequently, when � � writes the

result, the CAM buffer entry is updated with the register iden-
tifier of � � and the ROB entry of � � records register � ��� as a
reuse candidate for � � � . To handle register deallocation accu-
rately in the RVR technique, 2 register usage bit-vectors (each
of size equal to the number of physical registers) are used, one
for the leading instructions and the other for the trailing. A
register is deallocated only when its bit in both the bit-vectors
is reset. A parity bit-vector is required to protect these two
bit-vectors. As explained earlier in the section, any errors in
the CAM buffer or the additional bits in the ROB will not re-
sult in a faulty detection and the error will be detected. This
technique will not hamper in the working of RBR.

The only potential problem in this technique will arise if a
register gets recorded as a candidate for reuse, but is deallo-
cated and reallocated before it is reused. To handle these sit-
uations, we use a candidate valid bit-vector (with one bit for
each physical register), where the bits are set when a physical
register becomes a reuse candidate for reuse and reset when
the register is reused. However, if a leading instruction allo-
cates a register with the candidate valid bit set, the instruction
does not access the CAM buffer even if it produces a normal
value. When reusing a register for a trailing instruction, the
candidate valid bit should be “1”, otherwise another register
is sought.
Results: In this section, we present the IPC results of RMT-
TNR, RBR, and RBR+RVR configurations in Figure 12. We
use a fully associative 8-entry CAM structure for RVR. As
seen in the figure, the RVR technique results in further per-
formance improvement, an average of about 20% (over the
RBR technique), especially for the floating point benchmarks
that have a larger percentage of normal values.

bzip2 equake gcc mcf parser vortex vpr ammp applu art mesa swim wupwise apsi mgrid

0

0.5

1

1.5

2

2.5

IP
C

RMT TNR
RBR
RBR + RVR

Figure 12. IPCs of RMT-TNR, RBR, and RBR + RVR

8 Related Work

Techniques that simultaneously execute multiple copies of
the same instructions have been proposed for concurrent er-
ror detection and recovery [14, 1, 13, 15, 16, 21, 22, 7]. Ray,
Hoe, and Falsafi [14] use the same superscalar datapath to ex-
ecute the multiple copies of an instruction for fault-tolerance.
Austin proposes a very different fault-tolerant scheme [1]
which comprises of an aggressive out-of-order superscalar
processor checked by a simple in-order checker processor.
The fault-tolerant architectures in [15, 16, 22, 7] use the inher-
ent hardware redundancy in simultaneous multithreading and
chip multiprocessors for concurrent error detection. Patel and
Fung [13] propose transforming the input operands between
redundant computations to expose a persistent fault.

Smolens et. al. [20] study the performance impact of re-
dundant execution. They focus their studies on the issue logic
and the ROB, as they do not allocate registers to the trailing
instructions. However, their techniques may be susceptible to
errors in the pipeline frontend, such as errors in rename.

Packing multiple values in a register has been discussed
using speculation techniques for a single threaded by Oguz
et. al. [12]. The techniques discussed in this paper are
non-speculative because when running the trailing thread at a
slack, the information from the leading thread is readily avail-
able and can be exploited. Exploiting value locality in the
register file for a single threaded processor in [2] can be dif-
ficult to implement, especially in the presence of exceptions,
unless only a small subset of a priori decided values are used.
In our proposal, value locality is exploited to avoid redundant
register allocation, eliminating many of the implementation
difficulties (such as reference counters, updating the renaming
of dependent instructions, etc.) when used for a single thread.

Shubhendu, et. al. [10] suggest that “dead” values reduce
the vulnerability of an architecture to soft failures. However,
they do not explore the possibility of utilizing the “dead” val-
ues to improve the performance of a reliable processor.

9 Conclusion

Ensuring reliability in systems using redundant threads
place a significant pressure on the processor resources, espe-
cially the register file, ROB, and LSB, thus impacting the per-
formance. In this paper, we investigate techniques reduce re-
source redundancy in Register File, ROB, and LSB. The tech-
niques in this paper are based on a key observation: in stag-
gered execution, the leading instructions usually produce their
results before their trailing counterparts are renamed. The reg-
ister bits reuse technique allocates a single register to both
copies of an instruction, if the result produced by the instruc-
tion is narrow. To enhance the number of narrow width values
produced in a program, we propose a novel way of defining
a narrow value as one that has either leading or trailing ze-
ros or ones. The RBR technique is extended to also avoid the
redundancy in ROB entries for many trailing instructions. In-
novative scheme is also proposed to reuse the load/store buffer
hardware to avoid redundancy in LSB entries.

We observed that the RBR technique produces about 62%
performance improvement over the base RMT configuration.
The power consumption reduces by about 10-30% in the var-
ious hardware structures. We also proposed reusing the regis-

ters for normal values. In this case if two leading instructions
produce the same normal result, then the trailing counterpart
of the second is renamed to the register used by the first lead-
ing instruction. This technique improves the performance to
about 95% more than the base case.

References

[1] T. Austin, “DIVA: a reliable substrate for deep submicron mi-
croarchitecture design,” Proc. Micro-32, 1999.

[2] S. Balakrishnan, et. al., “Exploiting Value Locality in Physical
Register Files,” Proc. Micro-36, 2003.

[3] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Ver-
sion 2.0,” Computer Arch. News, 1997.

[4] Compaq Computer Corp., “Data integrity for Compaq Non-
Stop Himalaya servers,” http://nonstop.compaq.com, 1999.

[5] G. Hinton, et al, “A 0.18-um CMOS IA-32 Processor With a
4-GHz Integer Execution Unit,” IEEE Journal of Solid-State
Circuits, Vol. 36, No. 11, Nov. 2001.

[6] J. G. Holm, and P. Banerjee, “Low cost concurrent error detec-
tion in a VLIW architecture using replicated instructions” Proc.
ICPP-21, 1992.

[7] M. Gomaa, et. al., “Transient-Fault Recovery for Chip Multi-
processors,” Proc. ISCA-30, 2003.

[8] G. Loh, “Exploiting data-width locality to increase superscalar
execution bandwidth,” Proc. Micro-35, 2002.

[9] S. Kumar, P. Pujara and A. Aggarwal, “Bit-Sliced datapath for
energy-efficient high performance microprocessors,” Workshop
on PACS, 2004.

[10] S. Mukherjee, et. al., “A Systematic methodology to compute
the architectural vulnerability factors for a high-performance
microprocessor,” Micro-36, 2003.

[11] S. Mukherjee, et. al., “A Systematic Methodology to Compute
the Architectural Vulnerability Factors for a High-Performance
Microprocessor,” Proc. Micro-36, 2003.

[12] O. Ergin, et. al., “Register Packing: Exploiting Narrow-Width
Operands for Reducing Register File Pressure,” Proc. Micro-
37, 2004.

[13] J. H. Patel, and L. T. Fung, “Concurrent error detection in
ALU’s by recomputing with shifted operands,” IEEE Transac-
tions on Computers, 31(7):589-595, July 1982.

[14] J. Ray, J. Hoe, and B. Falsafi, “Dual use of superscalar datap-
ath for transient-fault detection and recovery,” Proc. Micro-34,
2001.

[15] S. Reinhardt, and S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” Proc. ISCA-27, June 2000.

[16] E. Rotenberg, “AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors,” Proc. 29th Intl. Symp. on
Fault-Tolerant Computing Systems, 1999.

[17] P. Shivakumar, and N. Jouppi, “CACTI 3.0: An Integrated
Cache Timing Power, and Area Model,” Technical Report, DEC
Western Research Lab, 2002.

[18] D. P. Siewiorek and R. S. Swarz, “Reliable Computer Systems
Design and Evaluation,” The Digital Press, 1992.

[19] T. J. Slegel, et al. “IBM’s S/390 G5 microprocessor design,”
IEEE Micro, 19(2):12-23, March/April 1999.

[20] J.Smolens, et. al., “Efficient Resource sharing in Concurrent
error detecting Superscalar microarchitectures ,” Proc. Micro-
37, 2004.

[21] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream
processors: Improving both performance and fault tolerance,”
In Proc. Micro-33, December 2000.

[22] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault
recovery using simultaneous multithreading,” Proc. ISCA-29,
2002.

[23] C. Weaver, et. al., “Techniques to Reduce the Soft Error Rate
of a High Performance Microprocessor,” Proc. ISCA-31, 2004.

