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Since the early 1960’s, researchers have built a number of programming languages and
environments with the intention of making programming accessible to a larger number
of people. This article presents a taxonomy of languages and environments designed to
make programming more accessible to novice programmers of all ages. The systems are
organized by their primary goal, either to teach programming or to use programming to
empower their users, and then, by each system’s authors’ approach, to making learning
to program easier for novice programmers. The article explains all categories in the
taxonomy, provides a brief description of the systems in each category, and suggests
some avenues for future work in novice programming environments and languages.
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1. INTRODUCTION programmers. Since the early 1960’s, re-

searchers have built a number of program-

Learning to program can be very difficult
for beginners of all ages. In addition to
the challenges of learning to form struc-
tured solutions to problems and under-
standing how programs are executed, be-
ginning programmers also have to learn a
rigid syntax and rigid commands that may
have seemingly arbitrary or perhaps con-
fusing names. Tackling all of these chal-
lenges simultaneously can be overwhelm-
ing and often discouraging for beginning

ming languages and environments with
the intention of making programming ac-
cessible to a larger number of people. This
article presents a taxonomy of these lan-
guages and environments and discusses
the challenges they address.

For the purposes of this article, we de-
fine programming as the act of assem-
bling a set of symbols representing com-
putational actions. Using these symbols,
users can express their intentions to the
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computer and, given a set of symbols, a
user who understands the symbols can
predict the behavior of the computer. This
definition excludes many of the “Program-
ming by Demonstration” systems [Cypher
1993] where the computer observes the
user’s actions and uses internal heuris-
tics to generate a program for the user. In
these systems, the user cannot accurately
predict what program will be produced.

In this article, we describe the high-level
organization of our taxonomy, present the
taxonomy, and briefly describe all of the
categories and systems within those cat-
egories. We then present two additional
tables: a table of the most influential
systems and a system comparison table.
The system comparison table compares
all systems in our taxonomy based on
1) what programming constructs they sup-
port, and 2) their approaches to making
programming more accessible to novice
programmers. Finally, we summarize the
approaches and discuss some possible
avenues for future work in this area.
Appendix A contains a complete list of the
systems included in the taxonomy, their lo-
cations within the taxonomy, and pointers
to associated Web pages.

2. TAXONOMY

In creating a programming environment
for novices, one of the first questions
that must be answered is why novices
need to program. There are a variety of
possible motivations for learning to pro-
gram: to pursue programming as a ca-
reer path, to learn how to solve problems
in a structured and logical way, to build
software customized for personal use, to
explore ideas in other subject areas, and
so on. The systems in this taxonomy (see
Figure 1) fall into two large groups: sys-
tems that attempt to teach programming
for its own sake and those that attempt to
support the use of programming in pursuit
of another goal such as teaching cognitive
modeling to psychology students. Because
these two goals place very different con-
straints on systems, the taxonomy is or-
ganized first by the system goals, either
teaching or using programming, and, sec-
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ond, by the primary aspect of program-
ming that the system attempts to simplify.
Each system appears in the taxonomy only
once. However, many of the systems in the
taxonomy have built on the ideas of earlier
systems. Consequently, a system that was
influenced by natural language program-
ming may not be classified with other nat-
ural language systems if supporting nat-
ural language programming was not the
systems’ primary contribution.

3. TEACHING SYSTEMS

These systems were designed with the
goal of helping people learn to program.
Most of the systems in this category are (or
include) simple programming tools that
provide novice programmers with expo-
sure to some of the fundamental aspects
of the programming process. After gain-
ing experience with a teaching system,
students are expected to move to more
general-purpose, commercially available
languages. A few systems attempt to pro-
vide support in learning a more general
language from the start. Because students
interacting with teaching systems are ex-
pected to transition to general-purpose
languages, many teaching systems are in-
tentionally similar to general-purpose lan-
guages. For example, knowing that a stu-
dent will eventually have to do “for loops”
in a Java-style, the designers of teach-
ing languages are less likely to intro-
duce a different style of looping. Because
general-purpose languages are not always
designed with beginners in mind, the sys-
tems in this category are juggling two pos-
sibly conflicting goals: making it easier
for beginners to get started programming,
and giving students a background that
makes it easy for them to transition from
the teaching system to a general-purpose
language.

The teaching systems focus on several
areas that can be difficult for novice pro-
grammers. The majority of the systems
in this category address the mechanics
of programming: both expressing inten-
tions to the computer and understand-
ing the actions of the computer [Norman
1986]. Other systems attempt to place
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3 Teaching Systems
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programming in a context that is acces-
sible and motivating to a wider audi-
ence of people either by providing concrete
reasons for programming or by support-
ing novice programmers working together
and learning from one another.

3.1. Mechanics of Programming

The systems in this category are designed
around the hypothesis that the primary
barrier in learning to program lies in the
mechanics of writing programs. To suc-
cessfully write a program, users must un-
derstand several topics: how to express in-

structions to the computer (e.g., syntax),
how to organize these instructions (e.g.,
programming style), and how the com-
puter executes these statements. Systems
in this category attempt to make it easier
for beginners to learn one of these three
skills.

3.1.1. Expressing  Programs. In  most
general-purpose languages, users create
programs by typing sentences into a text
editor. Beginning programmers often
have trouble translating their intentions
into syntactically correct statements that
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the computer can understand. The sys-
tems in this category explore two possible
avenues for making this process easier
for beginning programmers: improve the
language so that beginners can more
easily learn it or find alternate ways
for beginners to communicate their
instructions to the computer.

Simplify Entering Code. Many
general-purpose languages have been in-
fluenced by the need for sufficient power to
tackle arbitrary programming tasks and a
desire to make the programming language
easier to implement, making the result-
ing languages unnecessarily difficult for
beginning programmers. The systems in
this category examine three approaches to
making languages more approachable for
beginning programmers: 1) simplifying
the language, 2) tailoring the language
for a specific, small domain of program-
ming problems, and 3) preventing syntax
errors.

(1) Simplify the Language. General-
purpose languages typically include a
large variety of syntactic elements that
can be particularly difficult for beginners
because these syntactic elements don’t
have an obvious meaning. The languages
in this category use a few simple obser-
vations to decrease the number of po-
tentially confusing syntactic elements en-
countered by beginning users while trying
to maintain as much similarity as possible
to general-purpose languages. General-
purpose languages often contain unneces-
sary syntax, use commands whose names
are unfamiliar or have different mean-
ings in the programming language than
in standard English, have inconsistent
uses for syntactic elements, or include
features inappropriate for beginning pro-
grammers. Using these observations, it is
possible to make a language syntactically
easier for beginners to handle without
fundamentally changing the common con-
trol structures found in general-purpose
languages. Consequently, when a student
moves from one of these languages to a
general-purpose language, they should be
able to transfer their knowledge from the
teaching language.

ACM Computing Surveys, Vol. 37, No. 2, June 2005.
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FORTRAN: BASIC:
do30i=1,10 100 FORI=1TO 10
m=m-+] IIOLETS=S+1
30 continue 120 NEXT I

Fig.2. A forloop tocompute the sum of the numbers
from 1 to 10 written in Fortran and Basic.

BASIC: DartvoutH CoLLEGE, 1963
[Kurtz 1981]. Basic was designed to
teach Dartmouth’s non-science students
about computing through programming.
Fortran and Algol, the commonly used
languages at the time, were both large
and complex. Kemeny and Kurtz believed
that the students would “balk at the
seemingly pointless detail” [Kurtz 1981].
After considering using subsets of Fortran
or Algol, Kemeny and Kurtz agreed they
would have to create their own lan-
guage. The Basic (Beginners All-purpose
Symbolic Instruction Code) language
was designed to support a small set of
instructions and remove unnecessary
syntax. The environment was designed to
have rapid turnaround time and sacrifice
computer time for user time (in 1963, the
computer science community was arguing
against high-level languages because the
compilation time was seemingly wasted
computation).

Statements in Basic consist of three
parts: a line number (e.g., 110), an oper-
ator (e.g., LET), and an operand (e.g., S =
S + 1). All commands begin with an En-
glish word to make the language easier
for the novice; the designers believed that
LET S = S + I would be easier for stu-
dents to understand than S = S + L
Figure 2 shows a simple summation loop
in both Fortran and Basic. While the state-
ments have a similar structure, the Ba-
sic program uses language more suitable
for a novice, removes elements like labels
(e.g., 30) that require a more detailed un-
derstanding of the program counter, and
does not depend on spacing for syntactic
meaning.

SP/k: UNIVERSITY OF ToroNTO, 1977 [Holt
etal. 1977]. SP/k is a subset of PL/1 chosen
for teaching introductory programming.
The features of the SP/k language were
chosen to remove redundant constructs,
inconsistencies in the language that go
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against students’ intuitions (in PL/1, the
expression 25 + 1/3 evaluates to 5.3333),
constructs that are easily misused such
as pointers, and constructs like concurrent
programming that are suited for advanced
programmers. The difficulty of compiling
constructs was also considered. The re-
sult of pruning was a simpler language
for introductory programming that both
students and teachers generally preferred
over Fortran. The authors also provided an
order for introducing programming con-
structs as a sequence of subsets of SP/k.
SP/1 introduces expressions and output.
By SP/8, students have learned all of SP/k.
By introducing things gradually, students
can master a small piece of the language
at a time, allowing them to devote more
time to problem solving than memorizing
the features of the language.

TuriNng: UNIVERSITY OF ToRoNTO, 1988
[Holt and Cordy 1988]. The Turing lan-
guage was developed as both a general-
purpose and instructional language for
the Computer Science Department at
the University of Toronto. Consequently,
while the designers intended that Turing
be used in teaching programming, the
language design was influenced by a de-
sire to help expert programmers by in-
cluding powerful programming features.
The Turing language contains all the fea-
tures of Pascal (see Section 3.1.2) and
adds dynamic arrays, modules, and vary-
ing length strings. In addition, Turing
simplifies the syntax by removing the re-
quirement for headers declaring the name
of the program and semicolons at the end
of each statement.

BLUE LANGUAGE: UNIVERSITY OF MONASH,
1996 [Kolling and Rosenberg 1996]. Blue
is an object-oriented language designed to
be taught as a first language. After using
Blue for a year, students are expected to
move to an industrial language such as
C++. The designers of the language used
four criteria in creating Blue: there should
be only one way to do everything; the
language should cleanly reflect the the-
oretical model; the language should be
readable so students can learn by reading
examples; and the language should explic-
itly support software engineering mecha-
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nisms like pre- and post-conditions. The
Blue language is a pure object-oriented
language that supports single inheritance,
garbage collection, and strong static typ-
ing. Classes are defined in single files with
a structure that clearly reflects which rou-
tines others can call and which routines
are internal to the class by placing rou-
tines in separate internal and interface
areas within the file. Routine definitions
include explicit pre- and post-conditions.
Blue provides a single loop structure that
consists of a set of statements followed by
a list of conditions that should cause the
loop to exit, which can be used to create
loops that function like traditional for and
while loops. Each loop exit condition can
include statements to execute if the loop
exits on that particular condition. The de-
signers of the language also created an
environment for beginning programmers
that will be discussed separately.

JJ: CALIFORNIA STATE UNIVERSITY AND
CALIFORNIA INSTITUTE OF TECHNOLOGY, 1998
[Motil and Epstein 1998]. Full fea-
tured, general-purpose languages force
beginning students to focus on the syntax
rather than the problem they are trying
to solve in writing a program. JJ (Junior
Java) is a language designed to remove
much of the syntactic complexity in or-
der to allow students to focus on the con-
cepts of programming. It removes much of
the punctuation such as braces and semi-
colons and has only one way to do any-
thing; there is one integer type, one way
to create a comment, and so on. The lan-
guage also provides an easy migration to
Java after the first half of the semester.
Students can either do this by hand or the
environment can convert their JJ code to
Java automatically. Figure 3 shows an ex-
ample of computing weekly pay in JJ and
the equivalent code in Java. Due to lack of
adoption, the designers of JJ have moved
towards improving students’ classroom
experiences with Java by providing bet-
ter compilation error messages and al-
lowing students to program over the
Web.

GRAIL: MonasH UNIvErsITY, 1999
[McIver 1999, 2001]. Grail was developed
in response to the hypothesis that “it is the

ACM Computing Surveys, Vol. 37, No. 2, June 2005.
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Computing weekly pay in JJ:

The same code in Java:

Output "“The pay is "
Outputln pay

If (hours <= 40) then if (hours <= 40) {
Set pay = 10 * hours pay = 10 * hours;
Else } else |
Set pay = pay =
400 + 15* (hours - 40) 400 + 15 * (hours - 40);
EndIf } // EndIf

System.out.print (“The pay is “ );
System.out.println( pay );

Fig. 3. A short segment of code to compute a worker’s weekly pay shown in both JJ and

Java. Note the line-by-line correspondence.

IF (condition)
THEN statement
ELSE statement

An If-statement template in the Cornell Program Synthesizer:

Fig. 4. This is an If-statement template as it appeared in the Cornell Pro-
gram Synthesizer. The words “condition” and “statement” are placeholders
the user replaces with a condition (such as k < 1) or a programming state-

ment, respectively.

unfamiliarity of ‘hieroglyphics’ (i.e. the
language syntax) and the sheer com-
plexity of the full theory that are the
primary stumbling blocks for the novice”
[McIver 2001]. Three guiding principles
governed the design of GRAIL: maintain
a consistent syntax; use terms that novice
programmers are likely to be familiar
with and avoid standard programming
terms that have different meanings in En-
glish; and include only constructs that are
fairly simple and have a “single, obvious
syntax” [Mclver 2001]. These guidelines
led to an imperative language with many
small differences from commonly used
teaching languages such as Pascal (see
Section 3.1.2). The list of changes is too
long to reproduce here but we list a few
to give the reader a feel for the kinds of
changes made for the Grail language.
Rather than using “*” for multiplication,
Grail uses “x” because it is a symbol
that novice programmers will understand
from mathematics classes. Values are
assigned using an arrow indicating where
the answer will be placed since a = b
is ambiguous. Mclver removed pointers
because they are difficult to use correctly;
using pointers, it is very easy for begin-
ners to create problems they cannot easily
understand or explain. The full details

ACM Computing Surveys, Vol. 37, No. 2, June 2005.

of the Grail language can be found in
Mclver’s thesis.

(2) Prevent Syntax Errors. One of the
largest and most frustrating challenges
for novice programmers is syntax. The sys-
tems in this category are programming
environments for existing languages such
as Pascal and Fortran that are designed
to prevent users from making syntax er-
rors using the hierarchical structure of
programs.

CoRNELL PROGRAM SYNTHESIZER: CORNELL
UnNiversiTY, 1981 [Reps and Teitelbaum
1989; Teitelbaum and Reps 1981]. The
Cornell Program Synthesizer was a struc-
ture editor designed to prevent students
from making syntax errors. Using the syn-
thesizer, students constructed programs
by adding predefined templates for state-
ments in a programming language (see
Figure 4). A template often contains
placeholders for statements, conditions, or
phrases. These are essentially blanks for
the user to fill in. To prevent syntax errors,
the system presented only templates that
would be syntactically valid at the cur-
sor’s current location. Students could use
the arrow keys to move to the next or
previous place in their program where
they could add, remove, or edit a tem-
plate based on the abstract syntax tree.
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While the designers of the Cornell Pro-
gram Synthesizer originally wanted to re-
quire programs to always be syntactically
valid, they found this requirement made
certain kinds of edits, such as changing a
variable name, extremely difficult. In re-
sponse, they changed the Cornell Program
Synthesizer to allow syntactically invalid
statements but highlight them to draw the
user’s attention.

GNOME: CARNEGIE MELLON UNIVERSITY,
1984 [Miller et al. 1994]. The Gnome
environments were an attempt to make a
structure editor for novice programmers
that was more versatile than the Cornell
Program Synthesizer. Gnome displayed
programs hierarchically, encouraging stu-
dents to think about programs as hierar-
chical collections of procedures. Students
navigated through their programs using
arrow keys that corresponded to move-
ments in the abstract syntax tree; Gnome
displayed program segments in the famil-
iar textual form. When the programmer
attempted to move the cursor after an edit,
Gnome analyzed the program, reported
any syntax errors, and prevented the
programmer from moving on until the
program was syntactically correct. The
programmer could also request an analy-
sis of the program at any time. While this
environment prevented syntax errors, it
actually required students to think more
about syntax than they previously had:
they needed to have a mental model of the
syntax tree to navigate through the sys-
tem; the abstract syntax representation
sometimes differed from the textual repre-
sentation (particularly with mathematical
equations); and the requirement for syn-
tactic correctness sometimes prevented
students from making desired changes in
the program because the fastest route to
a correct program required intermediate
stages that were not syntactically correct.
Gnome environments were created for
Karel the Robot, Pascal, Fortran, and
Lisp.

MacGNOME: CARNEGIE MELLON UNIVER-
sity, 1986 [Miller et al. 1994]. The
MacGnome project attempted to cleanly
integrate the structure-editing capabili-
ties of Gnome with the text-editing model
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present in traditional programming ed-
itors. The Gnome project demonstrated
that students have difficulty navigating
in the abstract syntax tree. To allevi-
ate this problem, MacGnome allowed stu-
dents to navigate using point and click
with a mouse. In Gnome, students of-
ten had trouble modifying code because of
the requirement to maintain syntactic cor-
rectness. Rather than requiring syntactic
correctness at all times, the MacGnome
project editors converted the syntax tree
into a textual representation to allow edit-
ing without syntactic constraints. Once
the user finished editing, it converted the
modified code back to tree representation
using an incremental parser. By allow-
ing students to edit code textually, the
MacGnome environment could not pre-
vent syntax errors. However, MacGnome
detected and reported all syntax errors
as soon as the code was parsed, allowing
students to correct them before moving to
other sections of the program. The novice
programming environments produced as a
result of the MacGnome project are called
Genies.

Find Alternatives to Typing Programs. De-
spite the attempts to make programming
languages simpler and more understand-
able, many novices still struggle with syn-
tax, for example, remembering the names
of commands, the order of parameters,
whether or not they are supposed to use
parentheses or braces, and so on. An-
other large set of systems are designed
around the belief that to enable novices
to understand what programming really
is, we need to bypass the syntax problems
altogether. The systems in this category
represent three major approaches to by-
passing syntax: creating objects that rep-
resent code that can be moved around and
combined in different ways, using actions
of the user within the interface to define
programs, and providing multiple mecha-
nisms for creating programs.

(1) Construct Programs Using Graph-
ical or Physical Objects. The systems in
this group use graphical or physical ob-
jects to represent elements of a program
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such as commands, control structures, or
variables. These objects can be moved
around and combined in different ways to
form programs. Novice programmers need
only to recognize the names of commands
and the syntax of the statements is en-
coded in the shapes of the objects, prevent-
ing them from creating syntactically incor-
rect statements.

TORTIS Sror MacHINE: MIT ARTIFICIAL
INTELLIGENCE LaB, 1976 [Perlman 1976].
The Tortis Slot Machine is a physical
interface that allows young children to
control a robotic turtle inspired by the
Logo turtle (see Section 4.1.2). Since the
robotic turtle is very slow, a simulated on-
screen graphical version is provided for
more advanced students. The Slot Ma-
chine consists of a set of command cards
and rectangular boxes (called rows) that
represent procedures and contain slots for
command cards. Children created Slot Ma-
chine programs by placing cards in slots
of the rows and having the turtle exe-
cute the cards in order. The Slot Machine
provided several uniquely colored rows so
that children could create different proce-
dures in each row. Children could call their
procedures using a colored card that in-
structed the Slot Machine to execute the
cards in the row corresponding to that
color.

PicT: UNIVERSITY OF WASHINGTON, 1984
[Glinert and Tanimoto 1984]. Pict allows
novice programmers to create simple pro-
grams by connecting graphical icons that
represent commands. Pict allows users to
build programs that do simple numeric
calculation using the addition and sub-
traction of integers, variable assignment,
and Boolean tests. To create a program,
users select relevant icons (commands)
from a menu screen area and position
them on a workspace screen area using
a joystick. After positioning icons on the
workspace, the user can connect a pair
of icons together by clicking on the two
endpoints in turn. When a user runs a
program, Pict animates the execution of
the program by moving a white box along
the execution path of the program. Users
can run a Pict program at any point in
its development. If the running program
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reaches a point where its behavior has
not been specified, it will halt and notify
the user that additional programming is
necessary.

PraAy: UNIVERSITY OF WASHINGTON, 1986
[Tanimoto and Runyan 1986]. Play is a
system designed to allow preliterate chil-
dren to create graphical plays using an
iconic language. Stories consist of a lin-
ear sequence of actions that is displayed
at the top of the screen, above the story’s
stage, as a sequence of icons similar to
a comic strip. The character, what the
character should do, and one additional
piece of information—typically a direction
to move—all selected from menus, spec-
ify each action in the story. Play also pro-
vides a character editor where children
can draw additional images of their char-
acters and compose those images to cre-
ate new animations. Play does not allow
children to use more complicated control
structures such as loops and conditionals
or define procedures.

SHOw AND TELL: WASHINGTON UNIVERSITY
AND BELL LaBs, 1990 [Kimura et al. 1990].
Show and Tell is a dataflow-based visual
language designed for children. A program
in Show and Tell consists of a series of con-
nected boxes. A box can represent a value
or an operation on values. The program
includes boxes that represent basic arith-
metic functions, system input and out-
put, and some special purpose boxes that
play sounds or act as timers, and so forth.
Children can build procedures by draw-
ing their own icon for a box and defining
what should happen in the procedure us-
ing other boxes. Procedures can call them-
selves. Because boxes are not permitted
to form cycles or loops, users cannot con-
struct for and while loops. However, Show
and Tell provides an iteration box that pro-
vides bounded iteration, in other words,
the function will continue repeating un-
til a boundary value is reached. If two
connecting boxes contain different values
(e.g., 2 and 3), they and their parent box
are marked “inconsistent” and become in-
visible to the other boxes. By checking for
consistency and inconsistency in particu-
lar boxes, children can represent simple
Boolean conditions.
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Fig. 5. A view of the My Magic Castle courtyard. The user is creating the rule “Nicky
should dance when it meets the horse.”

My MAakE BELIEVE CasTLE [Loco CoMm-

PUTER SYSTEMS INCORPORATED 1995]. My
Make Believe Castle is a play program
for children ages 4-7 that contains activ-
ities designed to help develop children’s
problem-solving abilities, critical think-
ing, sequential planning, and memory.
The castle consists of a number of rooms,
each containing an activity. In the court-
yard of the castle, characters such as the
dragon, prince, princess, and horse move
around. When the user clicks on them
with a particular tool, they will dance, slip
on banana peels, do somersaults, and so
forth. After children have played in the
courtyard space, they are introduced to a
very simple, rule-based programming sys-
tem. Editors for each character allow chil-
dren to specify which action a character
should take when it meets another spe-
cific character. A typical rule might be
“Nicky dances when it meets the horse”
(see Figure 5). Rules are specified graph-
ically; children select the action using
icons and the character that should trig-
ger the action by selecting a picture of that
character.

THINKIN’ THINGS COLLECTION 3- HALF TIME
[EpMARK CorporaTION 1995] Half Time is
one of the activities in the computer game
Thinkin’ Things Collection 3. The activity
revolves around creating a half-time show
(see Figure 6). Users can select characters
from the top left and drag them onto the
field; each half-time show can have a to-
tal of thirty characters of three types (such
as tuba, percussion, and trumpet players).
At the bottom of the screen, there is a
line for each of the three types of char-
acters in which users can drop instruc-
tions for how they want them to perform.
The available instructions are similar to
those of the Logo (see Section 4.1.2) turtle:
move forward, turn left and right, turn
randomly, pause, pen down and up, and
so on. Programs are created by dragging
the icons for instructions (shown below the
football field) into the lines for a particular
type of character. Counted loops are sup-
ported but no other block statements are
available.

LogoBrocks: MIT Mepia LaB, 1996
[Begel 1996]. LogoBlocks is a graphi-
cal programming language designed for
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Fig. 6. A screenshot of Half-Time from Thinkin Things Collection 3.

the Programmable Brick, a precursor to
the commercial Lego Mindstorms system
[1998], developed by the MIT Media Lab
(see Figure 7). In LogoBlocks, labeled,
graphical shapes represent commands in
BrickLogo, an extension of Logo (see Sec-
tion 4.1.2) that provides commands for
the Programmable Brick. These graphical
blocks can be dragged off a tool palette on
the side of the screen to a main work area
where they can be placed next to other
blocks to form programs. Like many vi-
sual programming environments, changes
to programs may require the user to move
existing statements to make room for new
ones. The parts in the palette can take sev-
eral forms, for example, a block marked ‘A’
specifies the motor A as the recipient of
commands following it, but, by clicking on
the ‘A’ block, the user can turn it into a ‘B’
or an ‘AB’block. Commands and condition-
als also have multiple forms; the blocks in
the tool palette represent kinds of objects
rather than all available objects. Com-
mands and conditionals requiring argu-
ments have shapes with cutouts for plac-
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ing the arguments so that it is clear both
that the command requires an argument,
and the type of the argument which is
specified by the shapes of blocks that will
fit into the cutout. LogoBlocks includes
support for procedures; users can attach
commands to purple procedure blocks and
name their procedures.

Per Parxk Brocks: MIT Mebpia Las,
1998 [Cheng 1998]. Pet Park Blocks is
a graphical programming language, in-
spired by LogoBlocks, which was devel-
oped for the Pet Park collaborative en-
vironment (described in Section 3.2.1).
Animations are represented by notched
squares that fit together. Conditionals are
represented by squares with half oval
cutouts where conditions can be added.
Like LogoBlocks, programming constructs
are kept in a palette from which users
can drag them onto an active area.
Pet Park Blocks provides a button that
allows users to see their Blocks pro-
gram as a textual program. This allows
users to gradually transition to text-based
programming.
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00 0 Logoliocks - /User/rahulb/Documents / media -Lab Brsckiofteare | Logolio

Fig. 7. A LogoBlocks program that waits for a light sensor to get a reading of less than 10 and

then turns motor A on for 20 seconds.

DrapE: UNIVERSITEIT UTRECHT, 2000
[Overmars 2000]. Drape is a programming
environment that allows users to draw pic-
tures (see Figure 8). There is a collection of
pictorial icons on the left side of the inter-
face that represent different commands
similar to the Logo (see Section 4.1.2) tur-
tle commands—pen up, pen down, move
in different directions, move in shapes,
and so on. The icons can be dragged to
the lines at the bottom of the screen that
represent the program; commands are
executed from left to right. There are
extra lines associated with their own
icons that can serve as procedure calls.
The system does have support for some
predefined blocks such as repeat 10 times
(shown as x 10). However, to apply the
repeat 10 to more than a single object, the
sequence needs to be enclosed in brackets
which introduces the possibility for syntax
errors in the form of mismatched braces.

Eiectronic  Brocks: UNIVERSITY OF
QUEENSLAND, 2000 [Wyeth and Purchase
2000]. Unlike the graphical objects used
to construct programs in other systems,

Electronic Blocks are physical Lego blocks
designed to allow young children (ages
3-8) to create Lego forms with interest-
ing behaviors (see Figure 9). Preschool
children can build block towers that flash
when they talk or cars that move when
a flashlight shines on them. Three types
of blocks are provided: sensor blocks
that can detect light, sound, and touch;
logic blocks that can compute AND, NOT,
TOGGLE, and DELAY; and action blocks
that can produce light, sound, and motion.
The syntax of Electronic Blocks is very
simple; the only requirements are that
each stack includes a sensor block and
an action block and that the action block
be at the bottom of that stack. Action
blocks are smooth on the bottom so they
cannot be placed on top of other block
types.

ALICE 2: CARNEGIE MELLON UNIVERSITY
[2003].  Alice is a programming sys-
tem for building 3D virtual worlds, typi-
cally short animated movies or games. In
Alice, users construct programs by drag-
ging and dropping graphical command
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Fig. 8. DRAPE drawing and programming environment allows children to draw pictures.

tiles and selecting parameters from drop-
down menus. Figure 10 shows an Alice
screen as a user creates a simple ani-
mation. To add to the current animation,
the user drags a graphical tile, labeled
with the name of the desired action, from
the selected object’s methods, in this case
the IceSkater’s methods displayed in the
lower-left panel. When the user drops the
tile, the system automatically cascades
to menus that allow the user to select
valid parameters for the chosen method.
In Figure 10, the user has just dragged
and dropped IceSkater turn from the panel
and has chosen to have IceSkater turn
right one full turn. Students can also add
standard programming control structures
such as if-statements and loops by drag-
ging if and loop tiles from the top bar.
Where many no-typing programming sys-
tems present users with only a few of the
standard programming constructs, Alice
allows students to gain experience with all
of the standard constructs taught in in-
troductory programming classes without
making syntax errors

ACM Computing Surveys, Vol. 37, No. 2, June 2005.

Maacic Forest: LocgoTroN [2002]. Magic
Forest (see Figure 11) allows children ages
four and up to play with, change, and cre-
ate Activities that consist of 2D-sprites
that can move around, change appear-
ance, and react to simple events. Each
sprite can be given a set of Rules (rep-
resented by a scroll containing stones),
a combination of an event and a list of
things that should happen, in order, af-
ter that event occurs. Both events and
actions are represented by graphical
stones that can be identified by their icons,
making it possible for children to learn
how to use Magic Forest without needing
to know how to read. Magic Forest sup-
ports a variety of events, such as mouse-
based events, events based on the relative
positions of objects, and message-passing
events. Actions might change the direction
or speed of an object, the appearance of
an object, send a message, play sounds,
or update the score. To add a new rule
to a sprite, a child selects an event from
a scrolling list of available event stones,
clicks on it to pick it up, and then drops
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Fig. 9. Electronic Blocks: the three sensing blocks are pictured on the
left, the logic blocks in the middle, and the action blocks on the right.

ggm.mz (04/16/2002 11:11PM) - C:\Documents and Settings\pratt\Desktop'treeWorld
File Edit Tools Help

Behaviors | create new behavior

World:  When the world starts, do my first animation

A/
-4~
ri‘n.. ny .'
‘Do in order| “Do together] “If 2" “Loop 2" times|“:While “2" [“For all [ Wait  print |/
| create new parameter
f——-

# IceSkater | move

% IceSkater | turn

| move forward — | 1meter — | more... |

: IceSkater | roll

# IceSkater | resize
IceSkater  point at

IceSkater.ThighL. = turn forward — 1/4 reyolutinns - :more... \

IceSkater  stand up |

IceSkater | move to

IceSkater | orient to

IceSkater = set point of view to

 IceSkater | play sound

IceSkater | set pose

Fig. 10. Building my first animation in Alice. In my first animation, IceSkater moves forward
while she raises her leg. Then, if IceSkater is close to a hole in the ice, she falls through it.

it onto a scroll associated with that sprite.
The child can then attach action tiles to
the end of the event. As in Logoblocks,
some tiles can have multiple forms; a
single tile can be used to increase the
speed, heading, or size of an object. Chil-
dren can click on a tile to change which

form it takes (increase speed, heading, or
size).

(2) Create Programs Using Interface
Actions. The systems in the previous cat-
egory used the metaphor of constructing
programs by arranging physical or graph-
ical objects, while the systems in this
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Fig. 11.

category use interface actions (such as
button presses or motion through space)
or sequences of interface actions as the
building blocks of programs. Since most
of these interfaces are on physical objects,
the interfaces either tend to provide a lim-
ited number of commands or require the
user to perform interface actions (such as
pressing buttons) in a specific sequence,
introducing the possibility for sequences of
actions that do not correspond to valid pro-
gram instructions.

TORTIS—Butrton Box: MIT ARTIFICIAL
INTELLIGENCE LaB, 1976 [Perlman 1976].
The Tortis Button Box is a physical inter-
face that allows young children to control
a robotic turtle inspired by the Logo tur-
tle. The Button Box provides a set of four
boxes for controlling the turtle that can be
given to a child gradually. The first box
provides buttons that move and turn the

ACM Computing Surveys, Vol. 37, No. 2, June 2005.

Magic Forest allows children to control the actions and appearances of 2D-characters. This
activity has five characters: a witch, a cat, and three spiders. The witch has two rules controlling
her behavior. The top one (blue tile on a scroll) allows the user to move the witch around the scene.
The second says that when the witch touches another object, she should make a sound (e.g., laugh).
The witch also has an empty scroll to which the user can add new behaviors by selecting events and
actions from the brown window at the top of the screen and placing them together on her scroll.

turtle, pick up or put down the pen, turn
a light on and off, and sound a horn. The
second box adds numbers so that a child
can repeat a command multiple times by
pressing a number, followed by a com-
mand. The third box adds a program area
where children can get the turtle to “re
member” commands and then play back
remembered commands. The fourth and fi-
nal box creates four procedures (named by
colors) that can call each other. The button
box system did not allow students to edit
programs after creating them, making the
gradual modification of programs difficult.

RoaMER: VALIANT TECHNOLOGIES, 1989
[Catlin 1989]. Roamer is a programmable,
mobile robot that has capabilities similar
to those of the Logo turtle: the Roamer
can move forward and back, turn left and
right, wait, and make sounds. Programs
are entered using a set of buttons with
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icons for the commands and a number pad
to indicate how far to move or turn and
what sound to play. Buttons are also pro-
vided for creating procedures and repeat-
ing statements. The Roamer can remem-
ber up to 59 instructions in either the main
program (the GO program) or numbered
procedures that can be called from the GO
program or each other. An expansion set
allows users to add on sensors, two-state
outputs, and a stepper motor, allowing a
greater variety of programs.

LEGOSHEETS: UNIVERSITY OF COLORADO,
1995 [Gindling et al. 1995]. LegoSheets at-
tempts to provide a gentle introduction to
programming for the MIT Programmable
Brick by beginning with manual control
of the elements of the brick and grad-
ually progressing to writing programs.
Users are presented with a simulated ver-
sion of the Programmable Brick in which
the parts can be manipulated; users can
change the speed of a motor connected to
the simulated brick by typing in a value
or using arrow buttons to increase or de-
crease the value. Once users are comfort-
able with manipulating the values of mo-
tors and observing the values of sensors
in response to different types of actions,
they can double click on the representa-
tion of a motor or sensor and bring up a
rule editor for that object. The rule edi-
tor provides buttons to add conditionals
or initial values to control the behavior of
the brick. Conditionals are provided in a
template form where users only have to
type the names of objects they want to use
and arithmetic operations. There are also
buttons for increasing and decreasing the
priority of the current rule.

CurryBoT: MIT MEepia La, 2000 [Frei
et al. 2000]. Curlybot is an educational
toy for children aged four years and older.
It consists of a two-wheeled vehicle with
electronics that allow it to record its mo-
tions. The Curlybot has a single button
and a single LED. The LED is used to in-
dicate whether it is in record mode (red)
or playback mode (green). When a child
wants to record a motion, he or she pushes
the button, demonstrates the motion, and
then pushes the button again, which stops
recording and starts replaying the mo-

C. Kelleher and R. Pausch

tion. The motion is repeated until the but-
ton is pushed again, turning Curlybot off.
While Curlybot cannot provide the com-
plexity of a full programming language, it
does allow children to gain intuition about
repeated motions. The designers describe
how sensors could be added to Curlybot to
allow children access to if and while state-
ments, but these additions have not been
implemented.

(3) Provide Multiple Mechanisms for
Creating Programs. Entering programs
as text can be much harder than alterna-
tives such as direct manipulation or form-
filling but often gives the student more
power. In a system that provides multi-
ple mechanisms for specifying programs
and represents the resulting program in
all program formats, students can use an
easier method of program specification to
help in learning a more complex, more
powerful one. The system in this cate-
gory provides multiple methods, includ-
ing standard text, for specifying programs
so that students can leverage the simpler
methods tolearn to program in a standard,
textual format.

LeoGco: UNIVERSITY OF CANTERBURY, 1997
[Cockburn and Bryant 1997]. Leogo (see
Figure 12) is a system that produces
drawings similar to the Logo turtle (see
Section 4.1.2). However, rather than
concentrating on one method for creating
programs, it provides three: a typed syn-
tax similar to Logo, a direct manipulation
interface in which the turtle is dragged
around and his actions are recorded, and
an iconic language which contains tem-
plates for defining structures and using
common turtle commands. Motions are ex-
pressed in all code styles simultaneously;
when the turtle is dragged forward 15
units, the text window shows forward 15,
and the iconic window shows forward 15
in icons so it is possible to learn some
of the iconic and typed languages using
direct manipulation.

3.1.2. Structuring Programs. These sys-
tems concentrate on the structure of code
and how it is organized rather than on
the syntax of short segments of code. This
section includes systems that have tried
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Fig. 12. The Leogo interface showing iconic, direct manipulation, and textual programming.

new paradigms for programming. There
are two groups here—ones that are chang-
ing the paradigm, and ones that are try-
ing to make changed paradigms more
understandable.

New Programming Models. These sys-
tems explore new paradigms for organiz-
ing code.

PascaL: INsTITUT FUR COMPUTERSYSTEME,
1970 [Wirth 1993]. The first version of
Pascal was created in 1970 for use in
teaching programming, particularly sys-
tems programming. At the time, the
other available languages were Fortran,
Cobol, and Algol, none of which supported
the Structured Programming proposed by
Dijkstra [1969]. Pascal was introduced in
beginning programming classes in 1971
to enable professors to teach Structured
Programming to their students in their
first course. Although Pascal was designed
with teaching in mind, the improvements
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in the language can be seen as general im-
provements in programming languages.
Algol, one of the primary influences, had
ambiguities in the ways nested ifs could be
interpreted; Pascal removed these. In ad-
dition, Pascal added new basic types and
the ability to define special purpose types
through record statements.

SmavLrraLk: Xerox PARC, 1971 [Kay
1993]. The first version of Smalltalk was
created in 1971 at Xerox PARC as the
language for the KiddyKomputer, Alan
Kay’s original name for a portable com-
puter designed for use by a child. Where
Basic attempted to provide a simpler pro-
gramming language by reducing the num-
ber of commands and removing unneces-
sary syntax, the Learning Research Group
(LRG) at PARC concentrated on the model
of programming. The group wanted to cre-
ate a programming language with a sim-
ple model of execution and a method of
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programming that could accommodate
a wide variety of programming styles.
Smalltalk was based around three ideas:
(1) everything is an object, (2) objects have
memory in the form of other objects, (3)
and objects can communicate with each
other through messages.

PravgrounDp: ArpLE COMPUTER, 1989
[Fenton and Beck 1989]. Playground is
an object-oriented programming envi-
ronment designed to allow children to
create their own graphical objects and
give them behavior. The programming
model was based on a biological metaphor
in which all objects are independent
“organisms”; the model was influenced
both by Minsky’s Society of Mind [1986]
and by classical ethology (the study and
description of animal behavior). Each
object has its own sensors, effectors, and
processing elements so it can act inde-
pendently. Programming in Playground is
rule-based; rules describe both the action
and the circumstances under which it
should occur. Students specify rules for
each object using a natural-language-
influenced scripting language. One of the
suggested projects for the system is a
virtual aquarium with different species of
fish and plankton that feed on each other.
A fish might have a rule that caused it
to eat an algae cell if it saw one and was
hungry. A larger fish might eat a smaller
fish.

Kara: ETH Zurich, 2001 [Hartmann
et al. 2001]. Kara is a graphical program-
ming language based on Karel the Robot
that uses finite state machines to orga-
nize procedures (see Figure 13). Kara can
move, turn, pick up and place clovers,
and detect tree stumps and clovers—these
commands and questions are represented
graphically. In each state, the user can ask
questions of Kara’s current position and,
based on the answers to these questions,
supply a sequential list of instructions and
the name of the next state in the ma-
chine. The finite-state machine diagram
of the program is provided to show the
structure of the program and to allow the
user to select a preexisting state to edit.
The use of the simple finite-machine model
for programming allows the Kara environ-
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ment to be completely graphical; no typ-
ing is necessary which is an advantage for
beginning programmers. In addition, to
aid the transition from introductory pro-
gramming in Kara to real programming,
the authors have supplied JavaKara, an
environment that provides a transition
to Java; MultiKara, an environment that
introduces concurrent programming; and
TuringKara, an environment that allows
students to experiment with Turing ma-
chines in a two-dimensional plane.

Making New Models Accessible. Some pro-
gramming styles, such as object-oriented
programming, can be difficult for begin-
ners to understand but can be helpful ei-
ther in organizing larger programs or rep-
resenting particular types of behaviors.
Rather than requiring novice program-
mers to learn multiple styles of program-
ming, the systems in this category attempt
to make these more complex, but ulti-
mately helpful, styles of programming ac-
cessible to novice programmers.

LiveworLp: MIT Mepia La, 1994
[Travers 1994]. Liveworld is an object-
oriented programming environment
built to improve on Playground (see
Section 3.1.2). In Playground, creating
and interacting with graphical elements
is very simple, but interacting with the
rules and attributes that govern the
behavior of the objects is much more
difficult. Liveworld attempts to create
a graphical interface for the rules and
attributes of objects so they are more
accessible to novice programmers. The
interface is similar to a hierarchical
browser (see Figure 14); parts of objects
can be opened, revealing the details of
those objects. The user can dive down
and change the Lisp code controlling
the behavior of objects or simply use the
objects, depending upon how much detail
the user of the system wants to see. This
allows novice programmers to use more
complicated objects as black boxes which
would have been difficult in Playground.

BrLue EnviRoONMENT AND Brurd: UNi-
VERSITY OF SYDNEY, 1996 [Kolling and
Rosenberg 1996b], [Kolling et al. 2003].
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Fig.13. A screenshot of Kara showing a finite-state machine with three
states: enter, exit, and stop. Below the state machine are Kara’s instruc-
tions based on whether there are tree stumps beside her. Each line con-
tains instructions for a given scenario. For example, if there is a stump
on Kara’s right and not on her left, she should move forward and go to

state enter.

The Blue environment and Blued are
development environments designed to
support object-oriented programming in
the Blue language and Java, respec-
tively. The authors of the Blue environ-
ment and Blued believe that Integrated
Development Environments (IDEs) for
object-oriented language should encour-
age users to develop and test individual
classes rather than requiring users to al-
ways create complete programs. Yet, most
common Integrated Development Envi-
ronments (IDEs) for object-oriented lan-
guages such as Java and C++ still re-
quire students to build full programs that
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have a single entry point. In contrast,
the Blue environment and Blued provide
users with a class-testing bench which
they can use to instantiate individual
objects, call their methods, and inspect
their internal data. This allows users to
test individual objects outside of the con-
text of the running program, better sup-
porting an object-based design. The Blue
environment and Blued also support
object-oriented programming by explicitly
representing the relationship between the
objects in a graphical tree. Users can click
on a particular class to view the code for
that class. Compiling and debugging are
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Fig. 14.

(a) A simple world in Liveworld containing two objects, an oval and a turtle. The

turtle is open so that the user can see its details. (b) An example of Lisp code used in

Liveworld to turn a turtle.

also supported in the environment, simi-
lar to other commercially available IDEs.

KaREL++: Pack UNIVERSITY, 1997 [Bergin
et al. 2001]; KareL J RoBot: PackE UNIVER-
siTY, 2000 [Bergin et al. 1996]; J. KAREL:
UNIVERSITY OF WATERLOO, 2004 [Becker
2004]. Karel J Robot, J. Karel, and
Karel++ are versions of Karel the Robot
that concentrate on preparing students
for object-oriented programming rather
than procedural programming. Karel J
Robot and J Karel use Java-style syntax;
Karel++ uses C++ style syntax. Rather
than creating procedures to teach Karel
to turn right, students subclass a ba-
sic robot to create a right-turning robot.
These systems all leverage off the success
of the original Karel the Robot to attempt
to introduce object-oriented programming
early so that thinking and programming
in an object-oriented manner will seem
more natural to students.

3.1.3. Understanding Program Execution. A
syntactically correct program may not per-
form the actions that the student au-
thor intended. For beginning program-
mers, understanding how programs are
executed and how to find mistakes in their
programs can be difficult. The systems in
this category try to help students under-
stand what happens during the execution
of programs either by placing program-
ming into a concrete setting or by pro-
viding a physically-based model of how
programs are executed in more general-
purpose languages.

Tracking Program Execution. ATARI
2600 BASIC: Atar1, 1979 [Robinett 1979].
The Atari Basic Cartridge allowed chil-
dren to write short programs in a vari-
ant of the Basic language and watch them
as they executed (see Figure 15). Atari
Basic divided the screen into six regions:
the Program region which displayed the
child’s program; the Stack region which
displayed expressions as they were evalu-
ated; the Variables region which displayed
each variable and its current value; the
Output region, which displayed all pro-
gram output; the Graphics region, a 2D-
graphical region with sprites; and the
Status region which displayed the current
execution speed of the interpreter and the
amount of remaining memory. Atari Ba-
sic contained simple support for observing
what was happening as the program ex-
ecuted, similar to the supports found in
many debuggers. As a child’s program ran,
several parts of the display changed to re-
flect the current state of the program: a
program cursor showed the current line of
code being executed; the stack updated as
expressions were added or evaluated; the
values of variables changed as appropri-
ate; sprites might move in the graphics re-
gion; and the program might play a sound.

Make Programming Concrete: Actors
in Microworlds. Most introductory pro-
grams in general-purpose languages are
fairly abstract; the computer performs
arithmetic operations on numbers and
stores the results in invisible registers,
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Fig. 15. A simple program in Atari 2600 BASIC. The areas of the screen
update to show the current position and state of the program.

making it difficult for students to under-
stand and correct problems in their pro-
grams. The microworld, inspired by the
Logo turtle (see Section 4.1.2), attempts to
make programming more concrete by in-
troducing students to programming con-
structs through controlling the behavior
of an actor in a simple, physically-based
world. The actors usually perform only
a few actions, resulting in small lan-
guages that students can master more
quickly than general-purpose languages.
Microworld-based systems also typically
include simulators that allow students
to watch the progress of their programs.
These simulators require the states of mi-
croworlds to be graphically visible. Using
microworlds, students can quickly gain fa-
miliarity with many of the control struc-
tures like if-statements and loops, allow-
ing them to devote more time and energy
to mastering the syntax and new com-
mands when they move on to general-
purpose languages.

KaReL: CARNEGIE MELLON UNIVERSITY,
1981 [Pattis 1981]. Karel the Robot
is one of the most widely-used mini-
languages, originally designed for use at
the beginning of a programming course
before the introduction of a more general-
purpose language. Karel is a robot that in-
habits a simple grid world (see Figure 16)
with streets running east-west and av-
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enues running north-south. Karel’s world
can also contain immovable walls and
beepers. Karel can move, turn, turn him-
self off, and sense walls half a block from
him and beepers on the same corner as
him. A Karel simulator allows students
to watch the progress of their programs,
step-by-step. Unlike many of the systems
discussed in this article, Karel is sup-
ported by a short textbook, making it eas-
ier for teachers to incorporate Karel into
their classes.

Students can create procedures using
Define-New-Instruction (see Figure 16),
but variables and data structures are not
supported in the language. The syntax
was designed to be similar to Pascal (see
Section 3.1.2) to ease the transition from
Karel to Pascal after the first few weeks
of an introductory programming course.
There are a number of other robot-based
micro-worlds that are described in a sur-
vey of mini-languages [Brusilovsky et al.
1997].

JoseF THE RoBOT: Acapia UNIVERSITY,
1983 [Tomek 1983]. Like Karel, Josef is
intended to introduce programming to be-
ginners using a robot, Josef, in a simu-
lated world. Josef lives in Wolfville which
is represented by an ASCII map; users
can replace the map of Wolfville with one
of their own choosing. He knows how to
turn left and right, and move forward. The
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Bepper

World
Borders

Streets

BEGINNING-OF-PROGRAM
DEFINE-NEW-INSTRUCTION
turnright AS
ITERATE 3 TIMES
turnleft;

BEGINNING-OF-EXECUTION
turnright;
ITERATE 2 TIMES

move;
turnleft;
ITERATE 2 TIMES

move;
turnleft;
ITERATE 2 TIMES

move;
turnleft;
move;
pickbeeper;
turnoff;

END-OF-EXECUTION

END-OF -PROGRAM

Fig. 16. Left, a simple Karel world with Karel in a room and a beeper outside the door. On the right,
a program that will move Karel to the beeper’s location and have him pick up the beeper.

user can also set the speed at which Josef
moves. However, unlike Karel, Josef can
say and listen for text strings, enabling
input-output programs. Additionally, he
can drop text markers (e.g., the string cat)
similar to Karel’s beepers anywhere in his
world. Unlike Karel, Josef was intended
for use in a full semester of programming
for non-Computer Science majors. To sup-
port a full semester of use, it includes
many more programming constructs than
Karel such as parameters, variables, and
recursion.

TurRINGAL: UNIVERSITY OF PITTSBURGH,
1991 [Brusilovsky 1991]. Turingal is a
micro-world-based language in which the
actor is a Turing machine and the world
is the infinite tape designed to give stu-
dents exposure to the standard program-
ming constructs as well as the classic
Turing machine. The instructions in the
language allow the actor to move left and
right along the infinite tape as well as
read and write symbols on the tape. Like
Karel, the basic instructions are easy to
visualize. The Turingal language supports
conditional, loop and case statements and

procedures so that students can gain
experience with them in a visual set-
ting. The language uses Pascal syntax
(see Section 3.1.2) to ease the transition
from Turingal to Pascal. In support of a
computer literacy course for Russian high
school students, Brusilovsky also created
Tortoise, a micro-world based on Turingal
which uses a two-dimensional field of sym-
bols to make it more attractive to younger
students [Brusilovsky et al. 1997].

Models of Program Execution. Rather
than creating a language that has a
simple, physical interpretation, the sys-
tems in this category provide physically-
based metaphors for explaining actions in
a more general-purpose language. These
metaphors can help students both to
imagine the execution of their programs
and perhaps more clearly understand
why their programs do not perform as
expected.

TooNTALK: ANIMATED PROGRAMS, 1996
[Kahn 1996]. ToonTalk uses a physi-
cal metaphor for program execution. In
ToonTalk, cities and the creatures and

ACM Computing Surveys, Vol. 37, No. 2, June 2005.



Lowering the Barriers to Programming

105

her to carry other

L SR =y =ry Spp Seg Sy s S wep s e = e e
ekt e el e ok e} eof) o oot eod] mdd o] i end e
e e R R s e e Ltk e Ead] e
CCCr eecc
CCr . i
c ¢ she'll take it to ar
C C
- her nest. If you want -
% -

0N
‘ainialalinln

Fig. 17. A view of ToonTalk from inside a house. Marty the Martian provides information about

objects and what they can do.

objects within those cities represent pro-
grams (see Figure 17). Most of the compu-
tation takes place inside of houses where
trainable robots live. Robots can commu-
nicate with robots in other houses using
birds that carry objects back to their nests.
Using interaction techniques commonly
found in videogames, users can navigate
around the cities, pick up tools, and use
those tools to affect objects. Users can con-
struct programs by entering the thought
bubbles of robots and showing them what
they should do using standard ToonTalk
tools.

ProtoTYPE 2: VicTORIA UNIVERSITY, 1998
[Gilligan 1998]. Prototype 2 personifies
the flow of control in a computer, us-
ing a clerk following instructions. The
clerk can interact with calculators, I/0 de-
vices, worksheet machines, and his clip-
board in executing a program. Calculators
represent the computer’s math proces-
sor, I/O devices represent communication
with the computer user, the clipboard
represents the program stack, and the
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worksheet machines produce stacks of
worksheets that represent the instruc-
tions in user-defined subroutines. Rather
than imagining the internals of a com-
puter, a novice programmer can imagine
the clerk walking around a room inter-
acting with calculators, I/O devices, work-
sheet machines, and his clipboard, and ex-
ecuting the instructions specified on his
clipboard. This model was used in the cre-
ation of a programming by demonstration-
based system in which the user plays the
part of the clerk and demonstrates the ac-
tions the clerk should take. The system
records these actions. While Prototype 2
uses an anthropomorphic metaphor, the
system does not include a graphical rep-
resentation of the clerk and the objects in
his world; instead it is a standard graph-
ical user interface with sections of the in-
terface that represent each of the objects
in the clerk’s world (e.g., the calculator,
I/0O devices, etc.) that the novice program-
mer can use to demonstrate how the clerk
should behave.
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3.2. Learning Support

Systems in the previous category exam-
ined ways to make the process of learn-
ing to program easier by simplifying the
mechanics necessary to write a program.
The systems in this category try to ease
the process of learning to program by pro-
viding basic educational supports such as
progressions of projects that gradually in-
troduce new concepts or ways for stu-
dents to connect with and learn from each
other.

3.2.1. Social Learning. Some of the most
effective learning is done in a social con-
text where more than one person is work-
ing with a problem. Since programming is
known to be hard and children often learn
more effectively in groups, perhaps it may
help the learning process to provide a so-
cial context in which learning can occur.
The systems in this category investigate
different methods for allowing students to
work together, colocated and over a net-
work connection.

Side-By-Side. Most computer inter-
faces are designed for single users. Con-
sequently, when groups of children use a
standard mouse, monitor, and keyboard
setup in learning, one child tends to dom-
inate the process. The systems in this
category use tangible interfaces to allow
multiple students in informal groups to
work together in solving programming
problems. Because of the difficulty of rep-
resenting the wide variety of program-
ming constructs in a tangible form, these
systems concentrate on small subsets of
programming.

ArcoBrock: NEC INFORMATION TECHNOL-
0GY RESEARCH LABORATORIES, 1995 [Suzuki
and Kato 1995]. The authors of AlgoBlock
wanted to create an active learning com-
munity among children learning to pro-
gram in which children can share notes
and techniques, and learn from each other.
They created AlgoBlock, a set of blocks,
each of which corresponds to a simple com-
mand in Logo. The blocks can be connected
together to form programs that control the
movements of a submarine in a maze. The
blocks are tangible and large enough that
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they can be arranged on a desk that sev-
eral students can work around. This al-
lows students to work with the blocks in
a social context, learn from each other,
and communicate what they are learning.
The tangible nature of the blocks makes it
easy for children to take turns manipulat-
ing the blocks and communicating about
which pieces should be placed where. The
AlgoBlock project demonstrates that, in a
suitable environment, children will work
together in building programs. However,
the blocks supported a limited set of pro-
gramming constructs and there four the
children were not able to explore con-
cepts like procedures, parameters, or con-
trol structures.

TanciBLE ProGramMMmING Bricks: MIT
Mepia LaB, 2000 [McNerney 2000].
Tangible Programming Bricks are phys-
ical Lego blocks that can be stacked
together to form programs. The designer’s
intent in creating these was to provide
a simple interface to appliances and
toys and to create a programming en-
vironment that would allow children
to collaboratively explore ideas. While
the work concentrated on the hardware
implementation of the Lego blocks, the
designer created three prototype environ-
ments using Lego blocks that represent
commands. To allow a greater variety
of commands, users could insert a small
card (e.g., microchip) into a block. Each
block could accept a single card, allowing
users to communicate with other blocks
via IR transmission, supply parameters
to commands, sense the environment, or
display variables. The three prototype
languages allowed children to teach toy
cars to dance, kitchen users to program
microwaves, and toy trains to react to
signals along the side of the tracks in
unique ways. By stacking blocks together
with accompanying cards, if necessary,
users could construct simple programs.

Networked Interaction. Rather than
trying to move away from the common
single-user, single-computer paradigm,
the systems in this category attempt to
allow students using different machines
to work together over the network. While
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on pet this
tell player “You pet Rover.”
if player member_of my friends
emote “wags his tail.”

end

Fig. 18. A Moose Crossing script that allows Moose
users to pet Rover. When a user pets Rover, they are
told “You pet Rover.” If they are one of Rover’s friends,
then Rover wags his tail.

the systems designed for students working
side-by-side can assume all children can
see the state of the current program and
what other children are doing, program-
ming systems designed for network use
need to explicitly support the exchange of
this kind of information.

MOOSE CrossinG: MIT Mepia Las, 1997
[Bruckman 1997]. Moose Crossing is
a networked programming environment
built for children. It is an adapted text-
based MUD (multi-user dungeon) in which
children can use an object-oriented script-
ing language to create spaces and char-
acters that inhabit a textual world (see
Figure 18). Children create spaces and
characters similar to those found in text
adventure games such as castles complete
with secret passages that other children
can explore. Once their projects are com-
pleted, any child in the Moose Crossing
environment can interact with them. In
addition, the environment allows children
to view the scripts controlling any object
or character in the environment and chat
with children who are currently logged
onto Moose Crossing. In general, children
work alone on projects but one child will
often use another child’s project as an ex-
ample. Children can ask another user for
help or advice. The Moose Crossing com-
munity provides a source of help, role mod-
els, and positive feedback for users of the
system as they create their own projects.

Per Parx: MIT Mepia Lag, 1998
[DeBonte 1998]. Pet Park is an explo-
ration of the ideas of Moose Crossing
in a 2D-graphical domain rather than a
textual one. Children can choose one of
5 dogs to be their pet. Each dog comes
with a few animations such as wagtail,
jump, walk, laugh as well as basic ones
like wait, turnLeft, say, and so on. Users
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can combine these simple commands
to create their own animations using a
textual scripting environment or a set of
graphical blocks representing each com-
mand. As in Moose Crossing, Pet Park is
a networked programming environment
in which children can talk, ask each other
for help, and show off their creations.
While in Moose Crossing children create
spaces by describing them with text in Pet
Park, creating a space requires graphical
objects. In response, the system provides
a variety of furniture, objects, and rooms.
Furniture and rooms can be programmed
to react to simple events such as avatars
coming near them.

CrLEO0GO: UNIVERSITY OF CANTERBURY, 1998
[Cockburn and Bryant 1998]. Cleogo is
a networked version of Leogo (described
earlier) that allows children to see and
interact with the same Leogo workspace.
Rather than concentrating on building
a community of programmers, Cleogo
creates a shared environment—the cur-
rent program being edited—and allows
multiple children to see and manipulate
that environment. Cleogo does not at-
tempt to provide children with a way
of communicating with each other about
their project. Instead, it assumes that they
are either in the same room or can talk
to each other using the phone or some
equivalent.

3.2.2. Providing a Motivating Context. Mo-
tivation can be a key element in learning;
if students want to accomplish a partic-
ular goal, obstacles they encounter while
learning to program will not deter them
as much. The systems in this category at-
tempt to provide beginning programmers
with goals to achieve through program-
ming that the designers believe novice pro-
grammers will find motivating.

Rocky’s Boots/RoBor Opbyssey: THE
LearNiNG Company, 1982 [Robinett and
Grimm 1982]. Rocky’s Boots was one of
the first educational software products for
personal computers to successfully use an
interactive graphical simulation as a
learning environment. The game allows
children to connect logic gates (AND,
OR, NOT and flip-flop) together to create
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Fig.19. A puzzle from Rocky’s Boots in which the player is asked to create a circuit that separates
blue crosses from the other shapes. When the circuit is switched on, shapes move up the right side
of the screen. When they enter the white rectangle, the shape sensors to the right of the rectangle
can detect them. The player is asked to attach a sequence of logic gates to the sensor that will
activate the boot (center) when a blue cross enters the box. The boot, when activated, will kick the
shape out of the rectangle.

circuits using a joystick (see Figure 19).
When the circuits are active, users can
watch the wires turn from white to orange
as the electricity passes through them.
The game provides a series of puzzles
of increasing difficulty in which the
player is supposed to separate the shapes
matching a certain criteria from those
that do not using logic gates, sensors that
can detect certain kinds of shapes, and
a boot that, when activated by a true
value, kicks the current shape out of the
line and off to one side. Robot Odyssey
follows the same basic pattern; the player
connects gates together to solve problems.
However, Robot Odyssey includes a larger
selection of objects that perform animated
actions when they are activated (like
the shape-kicking boot), creating a wider
set of possibilities for the behaviors of
circuits.

ALGOARENA: NEC INFORMATION TECHNOL-
0GY RESEARCH LABORATORIES, 1995 [Kato

and Ide 1995]. In AlgoArena, players
write programs to control the behavior of
sumo wrestlers fighting in tournaments.
The programs are written in a language
based on Logo. When a player has com-
pleted a program, the player can log onto
a Web site and have his or her wrestler
fight against another student’s wrestler.
Over time, by analyzing the circumstances
in which the player’s sumo wrestler loses
tournaments, the player is expected to
learn more complex ways to control the
wrestler, perhaps querying the position
and posture of their opponent before de-
ciding which moves to execute.

RoBocopnk: IBM AbpvanceED TECHNOLOGY,
2001 [Nelson 2001]. Robocode is de-
signed to help novices learn Java through
programming a robotic battletank for a
“fight to the finish”. The tutorial teaches
novices to subclass an existing battletank
robot and extend the robot’s capabilities
using standard Java and a set of classes
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written for the Robocode environment.
Upon completion of a robot, users can up-
load their creation to a number of Web
sites or join a robotic battle league. The
designer of the system believes that the
ability to program robotic battles will pro-
vide enough motivation to get a novice pro-
grammer over the hurdles of beginning to
program.

4. EMPOWERING SYSTEMS

The systems in this category are built
with the belief that the important aspect
of programming is that it allows people
to build things that are tailored to their
own needs. Consequently, the designers of
these systems are not concerned with how
well users can translate knowledge from
these systems to a standard programming
language. Instead, they focus on trying to
create languages and methods of program-
ming that allow people to build as much as
possible.

4.1. Mechanics of Programming

Systems that fail into this category are
designed around the hypothesis that the
primary barrier for people attempting to
use programming as a tool is the me-
chanical difficulties of creating programs.
These systems examine ways of improv-
ing programming languages and alterna-
tive ways for creating programs.

4.1.1. Code Is Too Difficult. Many re-
searchers have examined the problem of
making languages more understandable
and usable for novices. While progress
has been made making programming
languages more understandable, there
still are many barriers for novices try-
ing to build their own programs. These
systems examine creating programs ei-
ther through demonstrating correct be-
havior or selecting actions through the
interface.

Demonstrate Actions in the Interface.
The systems in this category examine
ways that users can program a system by
showing the system what to do through
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manipulating the interface, without rely-
ing on a programming language.

PvgmALION: STANFORD UNIVERSITY, 1975
[Smith 1993]. Pygmalion was the first
programming-by-demonstration system.
Unlike many of the systems that came af-
ter it that concentrated on graphical ob-
jects, Pygmalion attempted to get people
to write more abstract programs such as
a program to compute the factorial of a
number. However, rather than building
factorial by typing statements in a pro-
gramming language, Pygmalion relied on
editing an artifact. To create a factorial
program, the user creates an icon with
two subicons, one for the input and one
for the output, and draws a symbol to rep-
resent factorial. The user can then enter
remember mode, in which all of the ac-
tions made by the user are remembered
by the system. Consequently, the user can
program the computer by working out an
example of how to compute factorial. How-
ever, the user must anticipate the han-
dling of the value one and test whether or
not the current value, say three, is equal
to one, something that novices may not
be well prepared to do. If the user does
not demonstrate his or her current ac-
tions as the case for the current value
not being equal to one, Pygmalion will not
know that one should be handled differ-
ently and, consequently, will not prompt
the user to demonstrate how one should be
handled.

ProGRAMMING BY REHEARSAL: XEROX
PARC, 1984 [Finzer and Gould 1984].
Programming by Rehearsal was built to
help nonprogrammers create educational
software. It is designed around a theater
metaphor in which components of the
interface are performers who interact
with one another on a stage by sending
and responding to cues. A user of the
system would begin creating a piece of
software by auditioning performers to
use as building blocks, selecting their
cues via a pop-up menu, and observing
their responses to those cues. The user
would then copy the chosen performers
onto the stage, placing and sizing them
appropriately. The rehearsal portion of
development consists of showing the
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performers what actions they should take
in response to user input or cues sent by
other performers. Objects that accept user
input, such as buttons, have cue sheets
that allow users to fill in their responses
to those user inputs. Users can press a
closed eye icon to tell the system to begin
observing their actions. Then, by selecting
cues from the menus of other performers,
they can show the system how to react to
those cues. By pressing the eye icon again,
users indicate they have finished. The
system comes with 18 basic performers
that users can audition and use in their
own creations. Additionally, the system
allows users to create new performers
by combining existing performers and
teaching them new cues. While Pro-
gramming by Rehearsal does allow users
to access the underlying programming
languages (Smalltalk), the system was
designed to allow nonprogrammers to
create educational software without re-
quiring them to program at the Smalltalk
level.

Monprian: MIT, 1992 [Liebermann
1993]. Mondrian is a programming-by-
demonstration system for drawing and
graphical editing in which commands are
shown with “domino” icons that depict the
before and after states for that command.
To execute a command, users select the
command icon and then select the object
or area to which the command should
be applied. The user can create new
commands in a storyboarding style by
showing how to do each step in the new
command. These steps are displayed at
the bottom of the screen in comic book
format with a short caption describing
each step. Drawing a rectangle on the
screen would show a box with the new
screen state captioned by “rectangle”.
If the user then moves the rectangle,
a “move” domino would appear beside
the “rectangle” domino in the definition
of the new command. New commands
created by the user are displayed in the
same domino style as the commands built
into the system. In addition, the system
provides speech synthesis capabilities
to give an English description of what a
command does.
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Demonstrate Conditions and Actions.
Like the previous category, the systems in
this category try to avoid forcing users to
express their intentions in code. However,
instead of demonstrating programs by per-
forming actions in the user interface as the
systems in the previous category did, the
systems in this category allow users to de-
pict the conditions in which they want the
program to perform an action and the re-
sults of that action.

AGENTSHEETS: UNIVERSITY OF COLORADO,
1991 [Repenning 1993; Repenning and
Ambach 1996]. In AgentSheets (see
Figure 20), users can create simulations
by specifying the behavior of sprites in
a 2-dimensional grid-based world. Sprites
can move to new grid positions, make
sounds, and change appearance. Users can
create programs using graphical rewrite
rules; users select conditions (configura-
tions of icons in the world or relative to
each other) and show the system what
should happen under these conditions by
moving the agents to their new positions.
In addition, Agentsheets provides tools for
creating analogies between agents. For ex-
ample, if a user wants a train to follow a
set of train tracks in exactly the same way
that a car follows roads, he or she can use
an analogy tool to easily specify this. Use
of analogies provides an easy way to reuse
code.

CueEmMTRAINS: US WEsT AbpvanceD TECH-
NOLOGIES, UNIVERSITY OF COLORADO, 1993
[Bell and Lewis 1993]. ChemTrains is
a pictorial rule-based language that at-
tempts to make it easy for people to
create a wide variety of “behaving pic-
tures”. ChemTrains is similar to Stage-
cast (see the following) in that users
show both the conditions and results of
a rule through pictures. In ChemTrains,
the pictures used to specify conditions and
results are interpreted as patterns of con-
nections rather than collections of pix-
els. For example, in simulating an AND
gate, if there is any box with a zero con-
nected to the AND gate (from any direc-
tion and any distance away), the output
of that gate should become zero. A similar
statement in Stagecast would only work if
the zero connected to the AND gate was
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Fig. 20. A screenshot of a traffic light simulation in AgentSheets con-
taining two rules. The first rule runs continuously: every three seconds it
triggers the second rule. The second rule looks at the current color of the
traffic light and changes it to the next one in the sequence green, yellow,

red.

always in the same relative position to
the AND gate. As in Stagecast, the or-
der of the ChemTrains rules dictates how
they are applied; only the first matched
rule is applied in each time slot. Addition-
ally, the ChemTrains pattern matcher can
use variables; in ChemTrains, variables
are specially marked pictorial elements
that can match any element of the sim-
ulation display. The addition of variables
allows users to create a wider range of
simulations.

STAGECAST: APPLE COMPUTER, 1995 [Smith
et al. 1994]. Stagecast, a commercial
version of KidSim (see Figure 21), is
an environment for creating simulations.
Children are presented with a grid-based
world in which they can create their own
actors. Users define rules for the simula-
tion by selecting a before condition from
the grid world and then demonstrating
how that condition should change (see
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Figure 21). When the simulation is
started, if a section of the grid matches
a condition of one of the rules, the rule
is applied. Stagecast applies only the first
rule (in top-to-bottom order) that matches
a section of the grid.

Specify Actions. In these systems, the
user creates programs by using the inter-
face to specify the desired behavior. The
user does not see any code, but unlike in
programming by demonstration systems,
the user does not show the computer what
to do, he or she selects the program’s
actions.

ArteErNATE REeALITY KiT: XEROX PARC,
1987 [Smith 1987]. The Alternate Real-
ity Kit (ARK) is an environment in which
users can build interactive simulations.
Users interact with objects built on a
physical-world metaphor; each object has
an image, position, velocity, and can be
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Fig. 21. This drawing shows an example of how
users create rules in Stagecast. On the left side are
the conditions in which each rule should be applied.
On the right, the results of each rule are shown. In
this drawing, if there is a raindrop with an empty
space below it, the raindrop should move down. Oth-
erwise, if there is a raindrop with an empty space on
its right, it should move right.

influenced by forces. Users can pick up
objects, move them, drop them, or throw
them using mouse gestures. Users can
query or change the state of objects by
sending messages (represented by but-
tons) to those objects. To connect a button
to a particular object, the user drops the
button onto that object. If the object under-
stands the message the button represents,
the button “sticks” to the object, otherwise
it falls through. Buttons that require a pa-
rameter have a little “plug” where users
can hook up a value for the parameter.
Kuk N Pray: Europress, 1994 [Lionet
and Lamoureux 1994]. Klik N Play is de-
signed to allow the user to create sim-
ple level-based games. The application has
three modes: a storyboard editor which al-
lows the user to see all levels as thumb-
nails, a level editor, and an event editor.
The level editor allows the user to se-
lect the background, add predefined ob-
jects to the level, and provides users with
the ability to create their own objects and
animations for those objects. Users create
animations frame-by-frame with a bitmap
editor and use controls to set the speed
and motion of objects. The event editor
uses a table format and allows the user
to specify actions for a variety of prede-
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fined events (see Figure 22). Klik N Play’s
events are based on collisions between ob-
jects, mouse and keyboard input, time, the
state of players, and the states of vari-
ables and objects in the level. Corel dis-
tributed an updated version of Klik N Play
that granted users the rights to sell their
games under the name Click and Create.

EmiLE: UNIVERSITY oF MIcHIGAN, 1995
[Guzdial 1995]. Emile is a program-
ming environment written in Hypercard
[Goodman 1987] that allows high school
students to create physics simulations
(see Figure 23). The environment pro-
vides support or scaffolding [Merrill and
Reiser 1993] that makes the process of
programming (everything from defining
the problem and breaking it into goals
to defining the behavior of a button
within the interface) easier for beginning
students. As the students become more
comfortable with the environment, they
can choose to use less support. In
Emile, beginning programmers create pro-
grams by assembling components: but-
tons, textfields, and predefined actions.
Using menus and dialog boxes, stu-
dents can select one or more actions
that should happen when a given but-
ton is pressed and fill in any neces-
sary parameters for those actions. As
they become more advanced, students
can begin to use mathematical expres-
sions, create their own actions by com-
bining other actions, and eventually edit
HyperTalk (Hypercard’s scripting lan-
guage) code themselves.

4.1.2. Improve Programming Languages.
The designers of many of the teaching
languages are concerned with how well
students can transfer the knowledge
they gain in the teaching language to
more general-purpose languages. Con-
sequently, the designers of teaching
languages have been hesitant to deviate
very far from these general-purpose
languages. However, the systems in this
category endeavor to empower their users
to create interesting programs; whether
the users of these systems can transfer
their programming knowledge to more

ACM Computing Surveys, Vol. 37, No. 2, June 2005.



Lowering the Barriers to Programming

1Klik & Play For Schools - Event Editor - music.gam

File Edit Objects Game Help

113

—lojx|

GOTO

All the events E\&

HELP || 3 OIElcollideswimmuackground

4 | ® Startof Level

5 | ® Caollision between m and

INFO

Action Editor

Actions related to object :

6|e Iﬂleaves the play area on the right

[&fsoms |

00:00
» Tle II' collides with the background

Selected Actions :

8 | ® User clicks with left button on Ij

9 | ® User clicks with left button on D

o

® User clicks with left button on D

® User clicks with left button on D

N

® User clicks with left button on Ij

w

® User clicks with left button on D

® Play sample pianol
® New action

S

® User clicks with left button on D

o

® User clicks with left button on m

OK | Cancel I Help |

Vv

LALKKIKKKKKK

® User clicks with left button on I I

=)

L

T T T 1T T T 1

\/Llil

Fig. 22. A view of the event editor in Klik N Play where the user builds a graphical piano
program. The user is currently specifying that when the “User clicks with left button on white
piano key,” the game should play “sample pianol.” The events are organized in table form based
on their effects: all sound events are in the first column, events on the user’s objects, piano keys

in this screenshot, begin at column 5.

general-purpose languages is not impor-
tant. Consequently, the designers of these
systems can make changes to standard
programming languages that the authors
of teaching languages might hesitate to
make.

Make the Language More Understand-
able. These systems include languages
that were developed with a focus on the
language and words novices use to de-
scribe situations. Most previous languages
have been developed with a focus on con-
sistency between languages or on math-
ematical simplicity. These languages in-
stead focus on choosing words that the
users of the system understand and can
use effectively without having to translate
their words in their everyday vocabularies
into the words that the computer language
uses for the same concept.

COBOL: DEPARTMENT OF DEFENSE, 1960
[Sammet 1981]. Cobol is the COmmon
Business Oriented Language, designed
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to support the creation of business ap-
plications. It was intended to be usable
by novice programmers and readable by
management. Spoken English influenced
many of the programming constructs (see
Figure 24). The designers also added
“noise” words to increase the readability
of the language: ADD X TO Y rather than
ADD X)Y.

Loco: MIT, 1967 [Papert 1980]. The
Logo programming language is a dialect
of Lisp with much of the punctuation re-
moved to make the syntax accessible to
children. It was intended to allow children
to explore a wide variety of topics from
mathematics and science to language and
music. The most well-known part of Logo
is the Logo turtle which began as a robotic
turtle that could draw on the ground. It
was later replaced by a simulated actor
in a two-dimensional graphical world that
can move, turn, and leave trails. The tur-
tle’s directions are object-centric; if a child
tells the turtle to “forward 10,” the turtle
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IFX=Y<.>
IF GREATER <...>
OTHERWISE <...>

Fig. 24. A conditional statement in Cobol. Con-
ditionals can use implied subjects and objects as
seen in the second and third lines of the conditional
statement.

will move in his own forward direction
rather than a direction defined by the
screen. Many children have been intro-
duced to programming through making
the turtle draw simple pictures. However,
the Logo language includes a wider variety
of possibilities. Classes of children have
written music programs, programs that
translate English to French, and many
others. The Logo language is an inter-
preted language with descriptive error
messages. For example, if a student typed
“foward 10” instead of “forward 10” the
system would respond with “I don’t know
how to foward.”

ALICcE98: CARNEGIE MELLON UNIVERSITY,
1997 [Conway 1997]. Alice98 is a pro-
grammable 3D-authoring tool designed to
make authoring interactive 3D-graphical
worlds accessible to college-level, non-
science majors. The authoring tool con-
sists of a scene-layout editor in which the
user can create their opening scene and
a script tab in which the user can spec-
ify the behavior of the world. The pro-
gramming language in Alice is Python
with a few changes suggested by user test-
ing: it is not case sensitive and 14 eval-
uates to 0.5 rather than 0. However, Al-
ice provides domain-specific commands for
manipulation of objects in 3D. The struc-
ture and naming of these domain-specific
commands were influenced greatly by
user testing. As in Logo, commands uti-
lize object-centric notation: forward, back-
ward, up, down, left and right are used
to describe direction. This description is
equivalent to XYZ notation but is much
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corner.

easier for novices to understand. Simi-
larly, the names of commands are drawn
from the language that users would choose
to describe those actions; for example,
translate becomes moves, scale becomes
resize, and rate becomes speed. Alice com-
mands can also be accessed with vary-
ing degrees of detail. At the simplest,
bunny.move only needs a direction. The
user can also specify how far bunny should
move, how long the animation should take,
what speed he should move at, whether
he should move in someone else’s coordi-
nate system, and different interpolation
styles. This allows novices to begin by
learning a very simple command for mov-
ing the bunny and, as they gain more ex-
perience, learn to express greater control
over how the bunny moves through addi-
tional options. To help users understand
the behavior of their programs, Alice98
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animates all changes to the state of the
program.

HANDS: CARNEGIE MELLON UNIVERSITY,
2001 [Pane 2002]. The Hands system was
designed to allow children in 5th grade
and older to create games and simulations
similar to the ones with which they play
(see Figure 25). The design of the sys-
tem was informed by studies of the lan-
guage that children with no programming
experience use in expressing solutions to
programming problems. The environment
provides a concrete model of computation,
represented by an agent, HANDY the dog,
who manipulates a deck of cards. All in-
formation used in a program is stored on
two-sided cards. The front of each card
contains object-related data; the back dis-
plays a picture of the object. The user can
place cards on the surface of the table
which represents the end-users’ view of
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the program. It includes queries and ag-
gregate operations that reduce the need
for data structures and iteration through
lists of items. Children using the Hands
system perform better than children us-
ing a version of the Hands system that
does not include queries and aggregate
operations.

Improve Interaction with the Language.
In addition to changing the language and
the words used to describe programming
commands and constructs, another area
for improvement is in the ways that peo-
ple interact with language. The systems
in this category examine different meth-
ods for creating programs in ways that
are easier for novice programmers to un-
derstand and less prone to errors. The
systems use a variety of techniques from
dataflow metaphors to menu selection,
to physical proximity in order to allow
users to express their intentions without
having to type traditional programming
statements.

Bopy Eirectric: VPL [Blanchard et al.
1990]. Body Electric was designed as an
authoring tool for a two-person virtual
reality system. Programs in Body Elec-
tric are data driven; raw data from sen-
sors (such as positional sensors on people)
can be passed to the representation of the
virtual world through modules that are
capable of transforming the data or gen-
erating events. These modules are repre-
sented in the authoring environment as
boxes connected by arrows in a flow di-
agram. Users can create programs that
modify and react to sensor data by send-
ing the sensor data through a sequence of
modules. Programs are always live, allow-
ing the author to immediately see the re-
sults of changes. This allows worlds to be
quickly prototyped, tested, and modified.

FaBrik: AppLE COMPUTER, 1988 [Ingalls
et al. 1988]. Fabrik is a computational con-
struction kit in which pieces of function-
ality (procedures) appear as boxes with
connectors. These boxes can be wired to-
gether to create a variety of programs (see
Figure 26). The user is supplied with a
parts bin that includes simple computa-
tional elements such as string and inte-
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ger manipulation, as well as interface ele-
ments such as buttons, images, and lists.
By dragging boxes into a working area
and connecting them together, the user
can create programs. As in Body Elec-
tric, Fabrik programs are always live so
users can test as they are building. Dur-
ing development, user-interface elements
and computational elements share screen
space. However, once a program is fin-
ished, the user can choose to view only
the interface elements. In addition, fin-
ished programs can be used as elements
in subsequent programs so the user can
extend the capabilities of the construction
kit.

Forms/3: OREGON STATE UNIVERSITY, 1995
[Burnett et al. 2001; Hays and Burnett
2001]. Forms/3 is a visual programming
language based on the spreadsheet
paradigm which is designed to give end
users access to more powerful program-
ming while maintaining the ease-of-
use associated with spreadsheets (see
Figure 27). In Forms/3, users create cells
and provide mathematical expressions
(which may rely on the values of other
cells) that the system will use to com-
pute the value of those cells. To extend
the kinds of programs that users can
write in Forms/3, the system provides
users with the ability to create their
own data types (including graphical
data types), use a system clock to create
time-based calculations and animations,
and link spreadsheets together to allow
encapsulation of data and functionality.

TANGIBLE PROGRAMMING WITH TRAINS: MIT
Mepia LaB, 1996 [Martin et al. 1999].
Tangible Programming with Trains is a
train set and collection of active train toys
that influence the behavior of the train.
The Tangible Programming with Trains
system was designed to allow children
to explore “preprogramming concepts—
causality, interaction, logic, and emer-
gence” [Martin et al. 1999] (i.e., a stop sign
that causes the train to stop or a sign that
asks the train to turn on its lights). The
active train toys and the train can com-
municate via IR signals so that when the
train is close to one of these toys, the train
will change its behavior appropriately.
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Children can place these objects around
the path of the train so that it will stop at
a station or turn its lights on when it goes
through a tunnel.

Squeak Ertoys: Disney, 1997 [Kayl.
Squeak Etoys are designed to allow chil-
dren to learn ideas by “building and
playing around with them” [Kay] either
through interacting with simulations oth-
ers have built or creating their own sim-
ulations (see Figure 28). The Etoys envi-
ronment provides students with a variety
of premade objects from simple shapes to
trashcans, and a simple drawing tool with
which students can create their own ob-
jects. All objects have viewers that contain
object-specific information as well as tiles
that the student can drag out of the viewer
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to build programs that control the behav-
ior of the object. Programs can change the
position, orientation, size, and appearance
of objects as well as play sounds. Users can
create simple if-statements in their pro-
gram, but no other standard control struc-
tures are included in the Etoys system.
Users can trigger object behaviors based
on a variety of mouse events, or the behav-
iors can be started, stepped and stopped
with a set of premade buttons users can
add to their simulations.

ALICE99: CARNEGIE MELLON UNIVERSITY
[1999]. The developers of Alice98 (see
Section 3.1.1) noticed that typing was
difficult for many users. This system is a
follow-on system to Alice98 that focuses
on exploring ways to reduce the amount
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Fig. 27. A Forms/3 program which creates a graphical representation of a Person. The value for
the head is computed with a nested if-statement that selects an appropriate face based on the age
(young < 20) and gender of Person. The width and height of the body box are based on the Person’s
weight and height. To view or edit the equation associated with a given cell, the user can press the
arrow symbol below the bottom-right corner of the cell.

of text users have to type. In Alice98,
users create both animations and events
by typing statements in a programming
language. In Alice99, users create basic
animation using drag and drop: the user
selects the character of interest from
the tree of characters on the left of the
screen and drags that character into the
animations window. When the user drops
the character in the animations window,
a series of menus appear showing the
actions the character can take, such as
move, turn, resize, and so on, and the op-
tions for each of those choices; a character
can move forward, backward, left, right,
and so forth. The drag and drop system in
Alice99 does not provide support for many
of the traditional programming constructs
present in the Alice98 system—to create

more complex programs, users must still
type. The animation editor can create
only fully specified, linear animations.
The scripting system was left in place to
allow advanced users to build complex
worlds. Alice99 also introduced an event
editor that allowed users to specify events
in a table form in which they selected the
event and the animation they wanted to
trigger in response to that event.
AuToHAN: UNIVERSITY OF CAMBRIDGE,
2001 [Blackwell and Hague 2001]. The
AutoHAN project grew out of the desire
to provide a single programming interface
for the many home appliances that are
being shipped with customization or pro-
gramming features. The goal of the project
is to provide a language and interface
that home users can use to program their
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appliances to do simple tasks such as
recording a particular TV show, switch-
ing on an outside light when the doorbell
rings, or starting the coffee pot when the
alarm goes off in the morning. This lan-
guage must be usable by people who can
operate remote controls. The AutoHAN
project elected to create a variety of phys-
ical media cubes for this purpose. At their
simplest, they operate as single-button re-
mote controls that can be associated with
a wide variety of appliances. For example,
a play cube can be associated with a CD
player by holding it close to the CD player.
Once the association has been created, the
user can press the cube’s button to play
a CD. The user can later associate that
same play cube with a VCR and use it
to play a movie. Additionally, the cubes
can be composed together to form pro-
grams such as starting the coffee pot when
the alarm goes off. These programs can
be stored by the AutoHAN system for
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later use. The designers proposed two lan-
guages for the media cubes: one based on
ontological abstraction, the other based on
linguistic abstraction. The ontological lan-
guage includes event cubes which refer-
ence changes of state in the home, channel
cubes which grant access to different chan-
nels of information, and aggregate cubes
which allow cubes to be grouped together
to form a set (a set of events to react to,
for example). The linguistic language in-
cludes cubes that are linked to particu-
lar words in English, for example, stop,
go, and play. Cubes that support more ab-
stract data roles such as variables and
lists are also included.

Puysicar. PRoGRAMMING: UNIVERSITY OF
MARYLAND, 2002 [Montemayor et al. 2002].
The Physical Programming work de-
scribes a method for children ages 4-6 to
build interactive story spaces using Story-
Room Kits that provide sensors and actua-
tors that can be used to augment everyday
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objects such as chairs or teddy bears. The
StoryRoom kits allow children to create
stories in which objects in the real world
represent characters or elements in the
story the children are telling. Seeking sto-
ries in which one character is asking a
series of other characters where to find
an object, character, or piece of informa-
tion work very well in this context. The
Physical Programming method was proto-
typed using Wizard of Oz techniques and
the following tools: a foam hand to indi-
cate touch, a light for lighting up objects to
draw attention to them, a sound box which
had a different sound associated with each
side of the box, and a magic wand for users
to indicate when they were programming
and when they wanted to tell a story using
their augmented story room. To create a
program, a child associates sensors, actu-
ators, and props using the magic wand. For
example, to have the teddy bear say some-
thing when it is touched, the child would
tap the hand and the teddy bear to indi-
cate that the bear should respond when
touched, and one side of the sound box
to indicate which sound should be played
when the teddy bear is touched. When the
wand is put away, the StoryRoom goes into
“story” mode and the rules the child cre-
ated are active.

Froco: MIT Mebia Las, 2001 [Hancock
2001]. Flogo is a visual dataflow lan-
guage designed to enable children to build
more complex robotic behaviors with their
lego robotics kits. The designers of the
system believe that visualizing the tem-
poral structure of a program is helpful
in understanding how it works (or why
it does not work). The visual dataflow
model is well suited to showing the tempo-
ral structure of a program. Consequently,
Flogo programs use a visual dataflow
model. Sensor outputs can be connected
in the box and wires style to arithmetic
operations, Boolean tests, and motor con-
trols. Flogo programs are always live; a
change in the inputs to the sensors will
be immediately reflected in the repre-
sentation of the program, making Flogo
a tinkering-friendly language even when
the program a child is working on is
incomplete.
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JIVE: OTT0-vON-GUERICKE UNIVERSITY OF
MacGpEBURG, 2004 [Hintze and Masuch
2004]. JiVE is a programming environ-
ment inspired by Squeak Etoys that was
designed to allow children to easily cre-
ate 3D-interactive virtual worlds while
learning mathematical concepts. The au-
thors of the system believe that if chil-
dren draw their own characters, they will
be more motivated to animate them. In-
stead of providing a library of 3D-objects,
JiVE allows users to draw 2-dimensional
sketches of characters. The system then
inflates these drawings into 3D-objects
for the world, using a modification of the
Teddy algorithm [Igarashi et al. 1999]. As
in Etoys, all objects have viewers that con-
tain information about the object and tiles
the user can drag out to create programs.
While the Etoys system only allows users
to create if-statements, JiVE includes for,
while, and repeat loops.

Integration with Environment To write
a program in most general-purpose lan-
guages, a user must type their program
into a text editor, compile the program, fix
any syntax errors, build the program, and
then run it. For a novice programmer, this
is a lot of steps, and the time and effort
involved in making changes to a program
can discourage experimentation. The
systems in this category integrate the en-
vironment in which users write programs
with the environment in which users run
programs. Many of these systems also
allow users to test the effects of individual
program statements so that they can
experiment while building programs.

BoxgErR: UNIVERSITY OF CALIFORNIA AT
BerkELEY, 1986 [diSessa and Abelson
1986]. Boxer presents a hierarchical
world composed of boxes that can con-
tain other boxes (see Figure 29). Rather
than separating the act of programming,
programming is integrated into an en-
vironment that a typical person might
use primarily for text editing and graphi-
cal layout. Boxer programs contain three
types of boxes: standard boxes which can
contain text or program code, data boxes
which contain string literals for use in pro-
grams, and graphics boxes which contain
graphical displays. The composition of the
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that name.

boxes has meaning; it indicates that sub-
procedures are parts of procedures and
records are part of databases. In general,
subboxes are only accessible from inside
a box. The boxes provide the novice pro-
grammer with a simple mechanism for
abstracting program and data elements.
Boxes also allow the novice to view pro-
gram elements as black boxes that they
can use in their programs without fully
understanding them. As users gain ex-
perience, they can return to these black
boxes and open them to discover how they
work.

HyrErcarD: AprPLE COMPUTER, 1987
[Atkinson  1987; Goodman  1987].
Hypercard is described by its creator
Bill Atkinson as “an authoring tool and
a sort of cassette player for information.”
The application itself allows users to
create stacks of cards, somewhat like a
Rolodex program, that contain images,
text, and buttons. At their simplest,
buttons can trigger visual changes, make
sounds, or show a new card. A scripting
language called Hypertalk is provided to
allow users to build more functionality
into the stacks they author. Spoken
English heavily influenced the Hypertalk
language itself;, the language provides

ACM Computing Surveys, Vol. 37, No. 2, June 2005.

constructs such as the “first card” and
the “last card,” descriptors that are easily
understandable to most users. In design-
ing the system, Atkinson concentrated
on the user’s first experience with the
tool. He focused on supporting the user’s
immediate success using Hypercard and
tried to reveal features gradually. A
beginning user could learn to create cards
and used text-editing tools before moving
on to graphics editing. The user could
learn about using the message box as
a calculator before moving onto placing
values in fields. By the time the user
was ready to write a full script, they
would already be familiar with how to
access information in different parts of
the interface.

cT: CarNEGIE MELLON, 1988 [Sherwood
and Sherwood 1988]. This system at-
tempts to simplify the process of creating
graphics-oriented programs by providing
higher-level primitives. Programs are cre-
ated in an integrated environment where
users can see the results of their pro-
grams immediately. The ¢T environment
also provides a method for users to specify
shapes using mouse clicks on the screen.
Finished programs can be executed as sep-
arate programs.
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VisuaL  AcGeENTALK:  UNIVERSITY  OF
CoLorapo, 1996 [Repenning 1993;
Repenning and Ambach 1996]. Visual
AgenTalk is a programming environment
based on an approach the designers of
the system call “Tactile Programming”
which focuses on allowing users to ma-
nipulate code in multiple contexts to aid
comprehension, the construction of more
complex programs, and sharing between
programmers. The designers of AgenTalk
believe that users should be able to
drop code pieces (either commands or
conditional statements) in three contexts:
the program editor, the programming
world (the grid-based world in which
the program runs), and the collaboration
world. Allowing users to drop code in the
programming world allows users to test
the behavior of individual pieces of code
without running the whole program. This
gives users a way to explore and under-
stand code that they did not create. Visual
AgenTalk also allows users to easily
share code with other users through the
Web.

CHART N ART: UNIVERSITY OF COLORADO,
1996 [DiGiano 1996]. Chart N Art is a
graphical editor similar to MacDraw that
reveals a programming language. As de-
signers manipulate the interface to cre-
ate drawings and charts, the equivalent
programming statements are printed in a
scrolling history area at the bottom. These
statements can be copied from the his-
tory area into an interaction pane, edited,
and executed. The interface provides oper-
ations on sets of objects as well as single
objects, allowing designers to learn how to
specify sets of objects to manipulate using
the scripting language. The goal of the in-
terface is to allow designers to automate
the creation of custom designed charts,
giving them more control than graphing
and charting packages, but removing the
necessity to draw every aspect of the chart
by hand.

4.2. Activities Enhanced by Programming

The systems in this group look at program-
ming as a way to enhance activities either
by allowing greater control or creating op-
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portunities to explore particular domains.
Rather than trying to create full general-
purpose programming environments, the
designers of these systems have tailored
the functionality in the programming lan-
guages to specific domains.

4.2.1. Entertainment. These systems use
programming to support entertaining ac-
tivities. They use programming models in-
spired by earlier systems to make pro-
gramming more realizable to novices and
provide activities that the designers be-
lieve users will find enjoyable.

PinBALL CONSTRUCTION SET: EXIDY SOFT-
WARE, 1983 [Budge 1983]. The Pinball Con-
struction Set was written in 1983 to allow
users to design and build their own pin-
ball machine simulations (see Figure 30).
It provided a construction space, a set
of pinball parts, and bitmap editing ca-
pabilities to allow users to build themed
pinball machine simulations. Physical
laws and behaviors were written into each
part; each part provided could be seen
as acting on balls that collide with it
in defined ways. In this system, users
can program by placing pinball parts in
well-defined relationships. For example,
users may want to specify that when a
ball hits a certain target, it is diverted
onto a ramp and its path affected by a
magnet.

THE INCREDIBLE MACHINE: SIERRA ENTER-
TAINMENT [1993]. In the Incredible Ma-
chine, the player is given a series of Rube
Goldberg style challenges (see Figure 31).
For example, the player may be asked to
construct a way to get a ball to fall into
a basket. Each challenge includes a short
description and all the parts necessary to
create the machine described. Players can
select parts and position them in the world
and then start the simulation to test their
machine. When the simulation is running,
the parts respond as they would in the
physical world. If users run into trouble,
they can ask for hints. More advanced
users can use a freez-play mode to create
their own machines.

WIDGET WORKSHOP: Maxis [1995]. Wid-
get Workshop provides a series of puzzles
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Fig. 30. A screenshot of the Pinball Construction Set. On the right is an empty pinball game;
on the left are a variety of parts that users can put into their pinball games.

that players attempt to solve by connect-
ing different components together using
graphical wires. Each puzzle poses a spe-
cific question (e.g., what colors of light do
you add together to get white) and pro-
vides a context in which to experiment
with that question (e.g., red, green, and
blue lights controlled by switches that con-
nect to a light box where they are com-
bined). Widget Workshop also provides a
free-play mode in which users can create
their own widgets by connecting premade
parts together.

Bonco: MIT Mebpia LaB, 1997 [Begel
1997]. Bongo enables children to create
their own video games and share them
with others on the Web. Bongo builds
upon Starlogo (see Section 4.2.2) and adds
primitives for playing sounds, changing
shapes, and detecting collisions between
characters on the screen. It customizes
Starlogo for use in the domain of games
programming. High-level movement of
objects in the system can be done using
drag and drop but procedures are cre-
ated with text-based programming. Bongo
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supplies a command center that allows
users to test out code and observe its
results.

MinproOVER: Cocnitoy [2001]. Mind-
rover is a commercial game in which the
user is a researcher on Europa, one of
the moons of Jupiter. In the researcher’s
freetime, he or she programs robotic
rovers to race around hallways and bat-
tle other rovers. The game allows users
to program their rovers using a drag
and drop programming system inspired
by a dataflow visual programming model
and The Incredible Machine (see Section
4.2.1). Users select prebuilt components
(such as thrusters and steering wheels)
and sensors, place them in a limited num-
ber of slots on their rovers, and wire the
components and sensors together to give
their vehicles certain behaviors. The pro-
gramming model is similar to the box and
wires approach seen in Fabrik, Flogo, and
Body Electric. Wires contain information
about when signals are sent from sen-
sors to components and the actions trig-
gered by those signals. Boolean gates are
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Fig. 31. An easy challenge in The Incredible Machine: the player needs to help Mel (top left) get
back to his house. The puzzle has been solved by positioning the grey pipe, ramp, and a trampoline
so that Mel will go through the pipe, slide down the ramp, and bounce off the trampoline and over

the barrier to get home.

provided to allow users to create more
complex behaviors.

4.2.2. Education. These systems use
programming to allow users to build,
explore, and experiment with models
from different domains of knowledge to
gain a stronger understanding of those
models. The programming languages are
tailored for these specific domains.

SOLO: Tue OpeN UNIVERSITY, 1983
[Eisenstadt 1983]. Solo is a Logo-
inspired, interpreted textual program-
ming language designed for cognitive psy-
chology modeling. The typical psychology
student has little computer experience,
no programming experience, occasional
access to a computer, and often works
on projects in groups. The Solo language
provides psychology students with a
simple way to model cognitive processes
through accessing and manipulating a

simple database of triples. Each triple
represents a relationship, for example,
“Fido isa dog”. The language provides
10 commands that allow students to
store triples, remove triples, test for re-
lationships via pattern matching, define
procedures, iterate through triples, and
view and edit procedures. Students are
able to quickly create simple models of
human memory and reasoning, similar to
those discussed in introductory psychol-
ogy classes, and use these programs to
reason about how cognition works.
GraviTas: THE OpPEN UNIVERSITY, 1992
[Sellman 1992]. Gravitas is an object-
oriented discovery-learning environment
that allows students to experiment with
Newtonian Gravitation. The environment
includes both a graphical interface con-
trolled by the mouse and a textual Logo-
based programming interface. Students
can control the x and y position, x
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and y velocity, x and y accelerations,
and the mass of the spherical objects
in the world. Students typically start
with the graphical interface to Gravi-
tas, and then, as they gain more ex-
perience, they progress to typing Logo
commands.

StarLocgo: MIT Mepia Las, 1996
[Resnick 1996]. Starlogo is a pro-
grammable  modeling  environment

designed to allow students to explore de-
centralized systems such as ant colonies
and traffic patterns. Users can write
simple rules that control thousands of ob-
jects and observe the patterns that arise
as a result of these rules. The Starlogo
programming language is based on Logo
(see Section 4.1.2.). However, instead of
controlling a single turtle, users control
thousands of turtles. The Starlogo turtles
have improved senses: they can detect
each other, nearby turtles, and scents
in the world. Each pixel in the world
has additional capabilities. Rather than
containing a single piece of information
(color), each pixel is modeled as a turtle
that cannot move; it can contain an arbi-
trary amount of information. Pixels in the
world can affect the state of other pixels,
causing growth or dispersal of scent, for
example.

Haxk: ToE OpPEN UNIVERSITY, 1998
[Mulholland and Watt 1998]. Hank is a
visual programming language designed
for the same audience as Solo, psychology
students who are constructing cognitive
models of human behavior. Consequently,
the Hank language was designed with five
goals in mind: support the creation of cog-
nitive models; consider the requirements
of the non-programmer; support group
work; clearly show the execution path; and
support paper-based use of the language.
Based on findings that spreadsheets tend
to allow a number of interested people to
understand how the spreadsheet is being
developed, Hank is a spreadsheet-based
language. The architecture of Hank is
similar to the information-processing
architectures taught to psychology stu-
dents. There are three components: a
database where information can be stored
and represented (i.e., long-term memory),
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a workspace where information can be
worked upon (i.e., short-term memory),
and an executive component that carries
out processing, input, and output. Data is
represented with fact cards that typically
represent relationships between entries
similar to a typical spreadsheet. Programs
are expressed on instruction cards using
queries for entries on cards and arrows to
indicate what to do when entries are found
or not. The execution model is explained
using a dog named Fido who performs
programs according to a few simple rules.
The authors designed Fido to be similar
to the Logo turtle in the sense that he
gives students a physical being to imagine
executing their programs, increasing
the likelihood that they will be able
to accurately simulate their programs
on paper. In addition, the environment
provides a comic strip representation of
the execution of each program—Dby double
clicking on a cell in the comic strip, at
student can view the related part of the
program.

5. ADDITIONAL SYSTEM INFORMATION

We placed systems in our taxonomy based
on the primary problem that a particu-
lar system was trying to address. How-
ever, many of the systems described in
this article have incorporated ideas drawn
from earlier systems. In this section, we
try to pinpoint some of the most influ-
ential systems, identify which approaches
to making programming more accessible
each system has incorporated, and pro-
vide information about which program-
ming constructs are included.

5.1. System Influences

Table I attempts to provide some insight
into which systems have most influenced
the design of later programming systems
for novice programmers using the num-
ber of citations. The system with the most
citations (from papers referenced by this
survey) appears first. Underneath the sys-
tem name is the list of all references to
it.
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5.2. System Attributes

Each system appears in our taxonomy only
once but many have built on the lessons
of systems that have preceded it. Table II
attempts to show the major design influ-
ences, including those that were not the
primary contribution of the system. The
table is also intended to address the fol-
lowing questions.

(1) What style of programming does
the programming environment or lan-
guage support? The systems in the tax-
onomy fell into six categories: procedural,
functional, object-oriented, object-based,
event-based, and state-machine based.

(2) What programming constructs are
available? We categorized each program-
ming language as having a particular pro-
gramming construct only if the language
included a single statement corresponding
to that construct. This excludes languages
which do not explicitly support a given
construct even if users can replicate the
behavior of that construct using a combi-
nation of other elements in the language.
For example, in a system that does not in-
clude a “for” loop, a user can create the be-
havior of a “for” loop using a “while” loop
and a variable. This system would be clas-
sified as supporting “while” loops but not
“for” loops.

(8) How does code look in the program-
ming environment or language? The sys-
tems in our taxonomy represent programs
using text, pictures, flow charts, anima-
tion, forms users can fill in, finite-state
machines, and physical objects users can
manipulate.

(4) What actions do users take to con-
struct programs? Users can construct pro-
grams by typing code, assembling graphi-
cal objects, demonstrating actions through
an interface, selecting from valid options
or filling values into a form, and assem-
bling physical objects.

(5) Does the programming environment
provide additional support to enable users
to better understand the behavior of their
programs? Environments in our survey
used several techniques to help users un-
derstand the behavior of their programs.
These included (i) back stories designed
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to explain the world in which programs
execute and what actions are possible
within those worlds, (ii) debugging sup-
port, (iii) choosing commands with a phys-
ical interpretation (for example, move for-
ward or turn right) so that users can “act
out” their programs, (iv) allowing users
to make changes to a running program
so that users can immediately see the ef-
fects of those changes (liveness), and (v)
the ability to generate example programs
that correspond to users’ interface actions.

(6) Does the programming environment
attempt to prevent syntax errors in any
way? Environments help to prevent users
from making syntax errors by (i) using the
shape of objects to suggest to users what
program elements can be connected to-
gether (physical shape affordance), (ii) al-
lowing users to select from valid options
based on their current position within the
program, (iii) using syntax directed edit-
ing, (iv) allowing users to drop graphical
objects only in places where they would
be syntactically correct, and (v) provid-
ing better syntax error messages to enable
users to more easily recover from syntax
errors that do occur.

(7) Have the designers of the language
made any explicit attempt to make the
language easier to learn? Language de-
signers used a number of techniques to
make programming languages easier for
novices to learn. These included (i) lim-
iting the domain so that there are fewer
commands for users to learn, (ii) select-
ing user-centered keywords, (iii) remov-
ing unnecessary punctuation, (iv) making
statements in the programming language
as close to natural language as possible,
and (v) removing any redundancy in the
language.

(8) Does the environment support users
collaborating on programs? Environments
enabled three types of collaboration be-
tween users (i) side-by-side-based collab-
oration in which two or more users were
manipulating the same program on com-
puters that were located in the same room,
(i1) networked-shared manipulation in
which users were in different locations but
connected to a common network and could
collaborate while building a program,
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Table ll. (Continued)
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and (iii)) networked-shared results in
which users were in different location
but connected to a common network and
could share completed programs or pro-
gram fragments.

(9) What were the primary considera-
tions behind what the authors of the system
envisioned users creating with it? The sys-
tems in the taxonomy fell into three cate-
gories (i) fun and motivating systems were
designed to support a task the creators of
the system believed users would find en-
joyable, (ii) useful systems were designed
to enable users to solve a particular type
of problem, (iii) educational systems were
created specifically to aid in teaching ei-
ther programming or another topic.

6. SUMMARY AND FUTURE DIRECTIONS

The systems presented in this article have
tried to make programming accessible in
three main ways namely, by simplifying
the mechanics of programming, by provid-
ing support for learners and by providing
students with motivation to learn to pro-
gram. The majority of the systems have fo-
cused on the mechanics of programming.
Clearly, beginners need to feel that they
can make progress in learning to program.
However, pure difficulty is not the only
reason that people hesitate to learn to pro-
gram. There are a variety of sociological
factors (including students not seeing the
relevance of programming or perceiving
computer science as being a socially iso-
lating career path) that can prevent people
from learning to program. Creating envi-
ronments that address some of these soci-
ological barriers to programming by sup-
porting learners or providing interesting
reasons to program have the potential to
attract a more diverse group of people to
the computer science field. If the popula-
tion of people creating software is more
closely matched to the population using
software, the software designed and re-
leased will probably better match users
needs. In addition to the potential bene-
fits to society of having a diverse computer
science population, we believe that learn-
ing to program benefits individuals both
as a mode of thought and as preparation

ACM Computing Surveys, Vol. 37, No. 2, June 2005.

131

for interacting with technology in daily
life.

6.1. Mechanical Barriers to Programming

Most of the programming systems built for
children and novice adults have focused
on making the mechanics of programming
more manageable. Systems have removed
unnecessary syntax, designed languages
that are closer to spoken English, intro-
duced programming in visible contexts
(such as the Logo turtle) in which students
can see the immediate results of their com-
mands, and explored alternatives to typ-
ing programs. Using these ideas, it is pos-
sible to create a system that will allow
a wider audience of people to begin pro-
gramming. While these systems do not
take all of the challenges out of program-
ming, they can allow students to focus
on the logic and structures involved in
programming rather than worrying about
the mechanics of writing programs. How-
ever, even with these improvements to
a beginner’s first programming experi-
ence, there are a number of questions that
remain.

Many of the teaching languages have
been heavily influenced by the prevalent
general-purpose languages of their time.
Designers of these systems chose to make
the programming constructs and syntax
very similar to those of the general-
purpose languages to ease the transition
from teaching languages to general-
purpose languages. While it seems obvi-
ous that students need to understand the
parallels between the programming con-
structs in teaching and general-purpose
languages, it is not clear how closely and
in what ways teaching languages must
resemble general-purpose languages. We
can now more easily introduce beginners
to programming; perhaps it is time to be-
gin studying the intermediate program-
mer, someone who has been introduced to
programming through a system designed
for beginners and wants to apply that ex-
perience to learning a general language.
What are the hardest aspects of that tran-
sition and how are those aspects affected
by the teaching system? What are the
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trade-offs between presenting issues of
syntax and program expression earlier or
later in the process?

6.2. Sociological Barriers to Programming

In some ways, sociological barriers can be
harder to address than mechanical ones
because they are harder to identify and
some cannot be addressed through pro-
gramming systems. However, by studying
particular groups of people who choose not
to learn to program, identifying the rea-
sons behind their decisions, and trying to
address those reasons in our programming
systems and textbooks, we may be able to
attract a broader audience of people to pro-
gramming and computer science. The sys-
tems in the taxonomy have identified, and
are beginning to address, two kinds of soci-
ological barriers to programming, the lack
of a social context for programming, and
the lack of compelling contexts in which to
learn programming.

6.2.1. Social Support. It can be easier
and more fun to learn with a group of
people. Moose Crossing [Bruckman 1997]
and, later Pet Park [DeBonte 1998] added
support for social interaction so that stu-
dents using these systems could share
projects, provide examples for each other,
and chat. Future communities might pro-
vide support for students helping each
other learn the interface and program-
ming constructs, support students work-
ing on projects together, or try to capture
and strengthen the positive feedback that
members of the community give to each
other through looking at and using each
other’s work.

6.2.2. Reasons to Program. Several sys-
tems have tried to provide motivating
contexts such as building robots, fight-
ing battles, and constructing machines
in which to learn programming. While
these systems have been very effective
for a segment of the population, they do
not have broad appeal. What program-
ming activities can we provide that will
interest girls or artistic or musical stu-
dents? Future systems could provide con-
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texts for programming that are relevant
to under-represented groups in computer
science.

APPENDIX
A. SYSTEM LIST

Below is an alphabetical list of the sys-
tems included in this survey article. Each
system name is followed by the section in
which the system is discussed and its Web
page (if applicable).

AgentSheets: 4.1.1 under Demonstrate
Conditions and Actions, agentsheets.com

Alice 2: 3.1.1 under Find Alternatives to
Typing Programs — 1. Construct Programs
Using Graphical and Physical Objects,
www.alice.org

Alice 98: 4.1.2 under Make the Language More
Understandable, www.alice.org

Alice 99: 4.1.2 under Improve Interaction with
the Language. www.alice.org

AlgoArena: 3.2.2

AlgoBlock: 3.2.1 under Side by Side

Alternate Reality Kit: 41.1 under Specify
Actions

Atari 2600 BASIC: 3.1.3 under Tracking
Program Execution

AutoHAN: 4.1.2 under Improve Interaction
with the Language

BASIC: 3.1.1 under Simplify Entering Code —
1. Simplify the Language

Blue: 3.1.1 under Simplify Entering Code — 1.
Simplify the Language, www.bluej.org

Blue Environment/Blued: 3.1.2 under Making
New Models Accessible, www.bluej.org

Body Electric: 4.1.2 under Improve Interaction
with the Language

Bongo: 4.2.1

Boxer: 4.1.2 under Integration with
Environment

Chart N Art: 4.1.2 under Integration with
Environment

ChemTrains: 4.1.1 under Demonstrate
Conditions and Actions

Cleogo: 3.2.1 under Networked Interaction

COBOL: 4.1.2 under Make the Language More
Understandable

Cornell Program Synthesizer 3.1.1 under
Simplify Entering Code — 2. Prevent Syntax
Errors

cT: 4.1.2 under Integration with Environment

Curlybot: 3.1.1 under Find Alternatives to
Typing Programs — 2. Create Programs
Using Interface Actions
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Drape: 3.1.1 under Find Alternatives to
Typing Programs — 1. Construct Programs
Using Graphical or Physical Objects,
www.cs.uu.nl/people/markov/kids/

Electronic Blocks: 3.1.1 under Find
Alternatives to Typing Programs — 2.
Construct Programs Using Graphical or
Physical Objects, www.itee.uq.edu.
au/~peta/_ElectronicBlocks.htm

Emile 4.1.1 under Specify Actions

Fabrik: 4.1.2 under Improve Interaction with
the Language

Flogo: 4.1.2 under Improve Interaction with
the Language

Forms/3 4.1.2 under Improve Interaction with
the Language, http://web.engr.oregonstate.
edu/~burnett/Forms3/forms3.html

GNOME: 3.1.1 under Simplify Entering
Code — 2. Prevent Syntax Errors

GRAIL: 3.1.1 under Simplify Entering Code —
1. Simplify the Language

Gravitas: 4.2.2

HANDS: 4.1.2 under Make the Language
More Understandable

Hank: 4.2.2, kmi.open.ac.uk/projects/hank/

Hypercard: 4.1.2 under Integration with
Environment

Incredible Machine, The: 4.2.1

JiVE, 2.1.2 under Improve Interaction with
the Language

JJ: 3.1.1 under Simplify Entering Code — 1.
Simplify the Language, www.publicstatic-
voidmain.com

J Karel: 3.1.2 under Making New Models
Accessible, www.cs.tufts.edu/comp/
10F/JKarel.htm

Josef: 3.1.3 under Make Programming
Concrete: Actors in Microworlds

Kara: 3.1.2 under New Programming Models,
www.educeth.ch/compscience/ karatojava/

Karel: 1.1.3 under Make Programming
Concrete: Actors in Microworlds

Karel++: 3.1.2 under Making New Models
Accessible, csis.pace.edu/~bergin/
karel.html

Karel J Robot: 3.1.2 under Making New
Models Accessible, csis.pace.edu/~bergin/
KarelJava2ed/Karel++JavaEdition.html

Klik N Play: 4.1.1 under Specify Actions,
www.clickteam.com/English/

LegoSheets: 3.1.1 under Find Alternatives to
Typing Programs — 2. Create Programs
Using Interface Actions

Leogo: 3.1.1 under Find Alternatives to Typing
Programs — 3. Provide Multiple Methods for
Creating Programs

Liveworld: 3.1.2 under Making New Models
Accessible
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Logo: 4.1.2 under Make the Language More
Understandable

LogoBlocks: 3.1.1 under Find Alternatives to
Typing Programs — 1. Construct Programs
Using Graphical or Physical Objects,
llk.media.mit.edu/projects/
cricket/software/index.shtml

MacGnome: 3.1.1 under Simplify Entering
Code — 2. Prevent Syntax Errors

Magic Forest: 3.1.1 under Find Alternatives to
Typing Programs — 1. Construct Programs
Using Graphical or Physical Objects,
ns.logotron.co.uk/magicforest

Mindrover: 2.2.1, www.mindrover.com

Mondrian: 4.1.1 under Demonstrate Actions in
the Interface

MOOSE Crossing: 3.2.1 under Networked
Interaction, www.cc.gatech.edu/elc/moose-
crossing

My Make Believe Castle: 3.1.1 under Find
Alternatives to Typing Programs — 1.
Construct Programs Using Graphical or
Physical Objects, www.microworlds.com

Pascal: 3.1.2 under New Programming
Models

Pet Park: 3.2.1 under Networked Interaction

Pet Park Blocks: 3.1.1 under Find Alternatives
to Typing Programs — 1. Construct Programs
Using Graphical or Physical Objects

Physical Programming: 4.1.2 under Improve
Interaction with the Language

Pict 3.1.1 under Find Alternatives to Typing
Programs — 1. Construct Programs Using
Graphical or Physical Objects

Pinball Construction Set: 4.2.1

Play: 3.1.1 under Find Alternatives to Typing
Programs — 1. Construct Programs Using
Graphical or Physical Objects

Playground: 3.1.2 under New Programming
Models

Programming by Rehearsal: 4.1.1 under
Demonstrate Actions in the Interface

Prototype 2: 3.1.3 under Models of Program
Execution

Pygmalion: 4.1.1 under Demonstrate Actions
in the Interface

Roamer: 3.1.1 under Find Alternatives to
Typing Programs — 1. Create Programs
Using Interface Actions,
www.valiant-technology.com/

Robocode: 3.2.2, robocode.alphaworks.
ibm.com

Robot Odyssey: 3.2.2

Rocky’s Boots: 3.2.2, www.
warrenrobinett.com/rockysboots

Show and Tell: 3.1.1 under Find Alternatives
to Typing Programs — 1. Create Programs
Using Interface Actions
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Smalltalk: 3.1.2 under New Programming
Models

SOLO: 4.2.2

SP/k: 3.1.1 under Simplify Entering Code — 1.
Simplify the Language

Squeak eToys: 4.1.2 under Improve
Interaction with the Language, www.
squeakland.org

Stagecast: 4.1.1 under Demonstrate
Conditions and Actions, www. stagecast.com

Starlogo: 4.2.2, education.mit.edu/starlogo/

Tangible Programming Bricks: 3.2.1 under
Side by Side

Tangible Programming with Trains: 4.1.2
under Improve Interaction with the
Language

Thinkin’ Things Collection 3: Half Time: 3.1.1
under Find Alternatives to Typing
Programs — 1. Construct Programs Using
Graphical or Physical Objects,
www.riverdeep.net/edmark/

TORTIS-Button Box 3.1.1 under Find
Alternatives to Typing Programs — 2.
Create Programs Using Interface
Actions

TORTIS-Slot Machine: 3.1.1 under Find
Alternatives to Typing Programs — 1.
Construct Programs Using Graphical or
Physical Objects

Turing: 3.1.1 under Simplify Entering Code —
1. Simplify the Language,
www.holtsoft.com/turing/

Turingal: 3.1.3 under Make Programming
Concrete: Actors in Microworlds

Toon Talk: 3.1.3 under Models of Program
Execution, www.toontalk.com

Visual AgenTalk, 4.1.2 under Integration with
Environment

Widget Workshop: 4.2.1
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