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ABSTRACT
Concurrent programming is notoriously difficult. Current
abstractions are intricate and make it hard to design com-
puter systems that are reliable and scalable. We argue that
these problems can be addressed by moving to a declarative
style of concurrency control in which programmers directly
indicate the safety properties that they require.

In our scheme the programmer demarks sections of code
which execute within lightweight software-based transactions
that commit atomically and exactly once. These transac-
tions can update shared data, instantiate objects, invoke
library features and so on. They can also block, waiting
for arbitrary boolean conditions to become true. Transac-
tions which do not access the same shared memory locations
can commit concurrently. Furthermore, in general, no per-
formance penalty is incurred for memory accesses outside
transactions.

We present a detailed design of this proposal along with
an implementation and evaluation. We argue that the re-
sulting system (i ) is easier for mainstream programmers to
use, (ii ) prevents lock-based priority-inversion and deadlock
problems and (iii ) can offer performance advantages.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—concurrent
programming structures; F.1.2 [Computation by Abstract
Devices]: Modes of Computation—parallelism and concur-
rency

General Terms
Algorithms, Languages

Keywords
Concurrency, Conditional Critical Regions, Transactions, Non-
blocking systems
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1. INTRODUCTION
There have been few developments in mainstream program-
ming language support for concurrency since the 1970s. Most
systems provide multiple threads and use mutual-exclusion
locks and condition variables to control access to shared
data. These abstractions have many problems. For instance,
consider implementing a shared buffer within an array. The
core of a Java-style design could be:

public synchronized int get() {

int result;

while (items == 0) wait ();

items --;

result = buffer[items];

notifyAll ();

return result;

}

The synchronized keyword means that a caller must ob-
tain a mutual-exclusion lock (mutex) associated with the
target object. The wait and notifyAll invocations are be-
ing used to block a thread which finds the buffer empty and
to wake other threads (which may have blocked elsewhere
having found the buffer full). There are numerous difficulties
here. Firstly, idioms such as the repeated while loop around
the call to wait are often forgotten or mis-understood by
novice programmers. Secondly, there is no check that the
data accesses made are protected by the locks that are held.
Thirdly, if a thread is pre-empted while holding the lock
then no other thread can safely use the buffer. Finally,
mutual-exclusion prevents get operations on a buffer pro-
ceeding concurrently with put operations, even if they do
not conflict.

As a solution to these problems, we have returned to one of
the oldest proposals for concurrency control – Hoare’s con-
ditional critical regions (CCRs) [15]. In their most general
form, CCRs allow programmers to indicate what groups of
operations should be executed in isolation rather than how
to enforce this through some concurrency control mecha-
nism. The programmer can also guard the region by an
arbitrary boolean condition, with calling threads blocking
until the guard is satisfied. The core of a shared buffer
based on CCRs could look like:

public int get() {

atomic (items != 0) {

items --;

return buffer[items];

}

}
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This style closely expresses the safety properties which un-
derlie the design. For this reason CCRs have long been
popular in teaching concurrency and defining concurrent
algorithms. Unfortunately, no good implementation tech-
nique has been known [3, 4]. The key problem is that the
general form of CCRs gives no indication of what specific
data items are to be accessed or, if a thread blocks at the
guard, exactly when it may be released. Early implemen-
tations allowed only one CCR to execute at any time and
re-evaluated every blocked CCR’s guard condition whenever
any CCR completes. Unsurprisingly, performance was poor.
To improve matters, mutual exclusion locks were introduced
so that unrelated operations can execute concurrently and
condition variables were introduced to control blocking and
unblocking.

However, recent work on practical non-blocking concur-
rent data structures has led us to develop a new implemen-
tation technique. We map CCRs onto a software transac-
tional memory (STM) which groups together series of mem-
ory accesses and makes them appear atomic. We evaluate
this technique under a number of different scenarios rang-
ing from small multi-processors to a large server with 106
CPUs. In our results, algorithms using CCRs can vastly out-
perform those using simple mutual-exclusion. At all times
they remain competitive with a well-engineered mutex-based
scheme; under many workloads, our CCRs perform and scale
better.

This paper makes three contributions:

• Our implementation of CCRs is the first (i ) to allow
dynamically non-conflicting executions to operate con-
currently, (ii ) to re-evalute CCR conditions only when
one of the shared variables involved may have been up-
dated, and (iii ) to use a non-blocking implementation,
preventing deadlock and priority inversion.

• This paper is the first to consider providing practical
software transactions within a modern object-oriented
programming language. Interesting problems arise over
how to integrate transactional and non-transactional
access to objects and how transactions interact with
existing mechanisms for concurrency control and the
memory consistency model.

• The STM developed is the first to allow word-size data
to be held “in the clear” – that is, without the im-
plementation needing to reserve storage space in each
object and without requiring the programmer to seg-
regate objects which may be subject to transactional
access. It is the first STM to consider synchronization
between threads as well as simple atomic update.

After expanding on our motivation in Section 2, we survey
related work in Section 3. Section 4 describes how we inte-
grate CCRs with the Java programming language. Section 5
describes our software transactional memory. In Section 6
we introduce our current implementation and evaluate its
performance. Section 7 concludes.

2. MOTIVATION
Nowadays concurrency is the norm, whether on large cc-
NUMA servers, on more modest symmetric shared-memory
multi-processors, or even on single processors with simulta-
neous multi-threading or pre-emptive scheduling. This pro-

vides a compelling need for practical mechanisms for con-
trolling concurrency. We suspect that many programmers
do not explicitly target parallel environments at least par-
tially because of the current complexity of doing so.

Programmers using mutexes must decide what granularity
of locking is appropriate. One easy option is to protect each
data structure with a separate lock. While straightforward,
this reduces the parallelism available. Using many smaller
locks allows better parallelism, but leads to intricate code
which spends much of its time juggling the locks. The op-
timal selection depends on the system’s workload, meaning
that an informed decision is difficult in the general case.

A particularly difficult problem, and one we see in existing
multi-threaded programs, is how to compose data structures
which perform their own internal locking. For example, the
B-tree structures used in the SPECjbb benchmark provide
get, put and remove operations which are safe for multi-
threaded use. However, to build a ‘remove least’ operation,
the caller must invoke one method to find the minimum
element and then invoke a second to perform the removal:
if this compound operation is to appear atomic then clients
of the tree must use their own locking scheme – potentially
negating the benefits of any scalable concurrency control
provided within the B-trees.

Deadlock must be considered in systems with non-trivial
locking. Unfortunately, preventing deadlock requires knowl-
edge of the complete system and the execution paths through
it. As well as deadlock, a programmer using priority-based
scheduling must also understand priority inversion. Some
cases can be handled by more sophisticated schedulers (e.g.
priority inheritance), but others again require global knowl-
edge (e.g. a priority ceiling protocol).

The root of these problems is the imperative style of ex-
isting facilities for concurrency control. Programmers must
manually place lock-management operations in their code.
This hand-compilation hides the real safety and progress
properties that are required. It also commits the code, at
the time when it is written, to following a particular locking
discipline.

3. RELATED WORK
The work in this paper builds on research in two areas. The
first, which we discuss in Section 3.1, is the design and im-
plementation of programming language features for concur-
rency. The second, in Section 3.2, is the construction of
non-blocking algorithms and software transactional memo-
ries.

3.1 Language features
The JVM [17], Microsoft CLR [24] and POSIX pthreads
APIs all provide mutexes and condition variables. These
can either be used directly by programmers or can be built
upon to provide higher level abstractions. For instance, the
util.concurrent library1 being developed for future ver-
sions of the Java programming language gives high-quality
implementations of atomic variables, special-purpose locks,
queues and thread pools.

Several languages have included CCR-style constructions.
DP provides a style of guarded region defined by a when

statement taking a series of boolean conditions and blocks
of code; the statement blocks until one of the conditions is

1JSR166, http://www.jcp.org/en/jsr/detail?id=166
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true and then executes the corresponding code [5]. Schedul-
ing follows a co-routine model so no further support for
mutual-exclusion is required. The Edison language provides
an alternative when statement that acts as an atomic if [6].
Only one when statement may execute at any time. Lynx
includes an await statement that allows a thread to block
until a boolean expression becomes true [26]. It uses co-
operative scheduling.

Rem shows how to build general CCRs over semaphores [3].
The design exhibits the classical problems: overly pessimistic
concurrency and frequent expression re-evaluation. Schmid
shows how static analysis can be used to avoid some re-
evaluations [25]. His analysis is limited to expressions which
are conditional on the values of statically allocated shared
counters.

Argus has a style of transactions with an enter state-
ment executing a body of code within a new transactional
context [18]. An explicit leave allows transactions to be
aborted. Nested transactions are permitted, but their defi-
nition is syntactically different from top-level ones, hindering
code re-use.

Flanagan and Qadeer have been investigating a similar
atomic construct in Java [7]. They use static analysis to
prove whether blocks of code are guaranteed to appear atomic.
This approach is orthogonal to our own; it will be interest-
ing to examine an integrated system in which static analysis
is used where possible and our own dynamic scheme is used
where atomicity cannot be proven in advance. It is interest-
ing to note that they found numerous examples of incorrect
locking disciplines in existing library code.

The previous work closest to our own is Lomet’s atomic
action statements [19]. The semantics are close to ours,
including the ability to block on boolean conditions. He
suggests various implementation directions, including two-
phase locking and simple uni-processor execution with inter-
rupts disabled. To simplify the implementation, programs
must identify the ‘synchronization’ variables used in condi-
tions. Our work builds on Lomet’s by providing a concrete
system which (i ) avoids the deadlock problems that basic
two-phase locking would exhibit and (ii ) removes the need
to identify synchronization variables in advance.

3.2 Non-blocking algorithms
Non-blocking algorithms have been studied as a way of side-
stepping the problems caused by mutual-exclusion. A design
is non-blocking if the failure of any number of threads cannot
prevent the remainder of the system from making progress.
This provides robustness against poor scheduling decisions
as well as against arbitrary thread termination. It natu-
rally precludes the use of locks because, unless a lock-holder
continues to run, the lock can never be released.

Non-blocking designs can be classified according to the
kind of progress guarantee that they make. In this work
we focus on obstruction-freedom, a recent suggestion which
is felt to make it easier to design efficient algorithms [12].
An obstruction-free algorithm guarantees that any thread
can make progress so long as it does not contend with other
threads for access to any location. This is strong enough to
prevent deadlock and priority inversion, but requires an out-
of-band mechanism to avoid livelock; exponential backoff is
one option.

Building practical non-blocking algorithms directly from
available hardware primitives is a very difficult task. For

this reason, there is great interest in building higher-level ab-
stractions from which it is easier to create non-blocking sys-
tems. One promising example is transactional memory [14],
which allows memory accesses to be grouped into transac-
tions which either commit, becoming globally visible at the
same instant in time, or abort without being observed.

Although the original proposal for transactional memory
suggested hardware support, Shavit and Touitou show how
a similar design can built entirely in software [27]. However,
their design has two practical limitations: (i ) it can only
be applied to static transactions, whose data sets and oper-
ations are known in advance; and (ii ) it requires a strong
atomic primitive which is not provided by any processor
architecture. Mechanisms do exist to build these stronger
primitives. However, they are complicated and involve re-
serving space in each word that may be accessed. For exam-
ple, word-size values can only be manipulated by fragment-
ing them across multiple locations with an attendant space
cost [23].

More recently, Herlihy et al [11] have designed a practical
software transactional memory which is obstruction-free and
requires only the readily-available compare-and-swap (CAS)
instruction. Unlike the design in Section 5, it introduces per-
object indirection and an explicit ‘open’ step when accessing
an object in a transaction. They show how the STM can be
provided as a library in the Java programming language,
with particular method calls used to manage transactions
and to ‘open’ the objects that they access.

Their interface has many attractions. However, it would
be hard to use it directly as the basis for a construct such as
atomic – it would be necessary to insert appropriate ‘open’
operations and to identify transactional objects through the
type system. Aside from the different level of transparency,
the performance trade-offs are different to our own: the
‘open’ step may be costly for large objects, while subsequent
field accesses are likely to be simpler.

4. LANGUAGE INTEGRATION
In the introduction we sketched an example use of the atomic
construct for providing a style of conditional critical region
(CCR) in the Java programming language. We now turn
to the details of the design. What operations and method
invocations should be permitted within a CCR? What kinds
of shared data may be accessed? What guarantees are made
about concurrent access to data items outside CCRs? How
do CCRs interoperate with existing features for concurrency
control?

With such questions in mind, our design is motivated by
two principles. Firstly, CCRs should be able to enclose code
with as few restrictions as possible. This encourages code re-
use by allowing single-threaded libraries to be made thread-
safe by wrapping each invocation with a CCR. The second
principle is that the system should permit an implementa-
tion which does not impose a high overhead in parts of an
application where CCRs are not used. For instance, it would
be unfortunate for the implementation to mandate an extra
field for every object or to complicate field accesses outside
CCRs.

In this section we describe the high-level aspects of our
design, showing how we integrate CCRs with the Java Pro-
gramming Language. We will then turn to our implementa-
tion of these over a software transactional memory in Sec-
tion 5.
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4.1 Identifying CCRs
Our basic syntax of

atomic (condition) {

statements;

}

defines a CCR which waits (if necessary) until condition

is true and then executes statements. The condition may
be omitted if it is simply “true” and atomic can also be
applied as a method-modifier in place of synchronized. The
thread executing the CCR sees the updates it makes proceed
according to the usual single-threaded semantics. All other
threads observe the CCR to take place atomically at some
point between its start and its completion, so long as they
follow the memory consistency rules in Section 4.7.

We provide exactly-once execution of the statements. We
did consider offering at-most-once semantics and using non-
execution as an indicator of contention. We concluded that
this may aid expert programmers, but most uses of CCRs
would then require external looping to retry until an oper-
ation succeeds. We also considered timeouts but again, for
simplicity, do not currently provide them – a thread blocked
on a CCR’s guard can be ‘interrupted’ in the same way as
a Java thread blocked on a condition variable.

Exceptions can be thrown from within a CCR to outside
it. This is consistent with our first design principle of allow-
ing their use as wrappers around existing single-threaded
code.

4.2 Data accessible to CCRs
The principle of allowing code re-use suggests that we should
not need to indicate through the class hierarchy which ob-
jects may be accessed within CCRs – for example by re-
quiring them to extend a designated superclass. Doing so
would require library classes to be re-implemented before
they could be used.

We therefore allow a CCR to access any field of any object.
This fact, along with our principle of avoiding overhead out-
side CCRs, led to the development of our word-based soft-
ware transactional memory which aids the sharing of mem-
ory locations between transactional and non-transactional
accesses.

4.3 Native methods
It is not practicable, in general, to allow native methods
to execute within CCRs – native code containing arbitrary
memory accesses and system calls raises the same problems
that have hitherto made it difficult to provide CCRs. Native
methods include all those within the standard libraries for
performing I/O operations.

Our current design generally raises a runtime exception
if a native method is invoked within a CCR. However, we
treat a number of built-in native methods as special cases
in which their behavior is either thread local (for instance
cloning an object or computing an object’s identity hash
value) or relates to synchronization and therefore requires
special handling.

4.4 Nested CCRs
If CCRs are nested dynamically then the entire assembly
appears to execute atomically at a time satisfying all of the
conditions. Of course, the programmer is responsible for

ensuring that such a time will exist; for instance, code con-
taining incompatible conditions such as:

atomic (x == 1) {

atomic (x == 0) {

...

}

}

will never complete. Of course, such cases can be detected
dynamically.

4.5 Existing synchronization mechanisms
Allowing code re-use requires us to consider how concur-
rency control within CCRs interacts with the existing mech-
anisms of mutual-exclusion locks and condition variables;
what does it mean for a block of code that manipulates
locks or communicates through wait and notify operations
to appear atomic?

4.5.1 Mutual-exclusion locks
If a CCR attempts to acquire mutexes then the system en-
sures that all of these are available at the point at which it
appears to atomically take effect. This means that mutexes
can be used to safely share data between access within CCRs
and external access. Consequently, if the CCR implementa-
tion is non-blocking, then it precludes the risk of deadlock
in code such as

atomic { atomic {

synchronized (a) { synchronized (b) {

synchronized (b) { synchronized (a) {

... ...

} }

} }

} }

We return to some further consequences of using locks when
discussing the consistency model in Section 4.7.

4.5.2 Condition variables
It is not possible to ascribe useful semantics to a wait op-
eration on a condition variable within a CCR. The wait

operation always blocks until selected for resumption by a
notification. This makes it impossible to identify a single
point at which the entire CCR appears atomic. For symme-
try we also forbid notification within CCRs, although there
is no implementation impediment to allowing it. In both
cases this is consistent with the fact that in Java the oper-
ations on condition variables, wait, notify and notifyAll

are defined as native methods.

4.6 Class loading
The Java programming language defines times at which new
classes should be loaded and their initialization code be ex-
ecuted [16]. What happens if class loading or initialization
is attempted by the JVM while executing within a CCR?
There are two options:

The first is to consider that such operations are performed
in the context of the CCR that causes them to happen; the
class would appear to be loaded or initialized at the same
time as the atomic block appears to occur. This raises dif-
ficult conceptual problems from a programmer’s viewpoint;
for instance classes whose initialization involves the creation
of a thread or calls to native methods.
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The second option, which we select, is to dissociate class
loading and initialization from the point within a CCR’s
execution which triggers it. We require class loading and
initialization to occur at some point between when a CCR
begins and the point at which it appears to take place atom-
ically.

4.7 Consistency model
The final decision to highlight is the relationship between
CCRs and the proposed Java memory model [20]. The
model defines what is necessary for a memory access made
in one thread to be visible to another, even though accesses
may be re-ordered by the processor or by compiler optimiza-
tions [1].

The memory model sets out rules for developing “cor-
rectly synchronized” code and it guarantees that programs
following these rules will appear to run with sequential con-
sistency. We elide some details, but broadly the model de-
fines a total ordering between lock and unlock operations
on each mutex and “happens-before” relationships between
a lock operation and subsequent memory accesses by the
same thread and between those accesses and a subsequent
unlock operation. Different rules apply to volatile fields;
effectively accesses to them cannot be re-ordered.

Although the details of the definition are intricate, they
give rise to a simple programming rule: if a location is
shared between threads, either (i ) all accesses to it must
be controlled by a given mutex, or (ii) it must be marked as
volatile.

We extend this to CCRs in the natural way, placing the
same onus on the programmer in order to achieve atomic-
ity if data is shared between different kinds of concurrency
control. An ordering is induced between any CCRs that
access common memory locations, between any CCR that
accesses a volatile field and any other access to that field,
and finally between CCRs that hold a mutex and other ac-
quire/release operations on that lock.

We intend to formalize this model in future work. How-
ever, we believe it leads to the same kind engineering rule as
currently proposed: if a location is shared between threads
then either (i ) all accesses to it must be controlled by a given
mutex, (ii ) all accesses to it must be made within CCRs, or
(iii) it must be marked as volatile.

5. SOFTWARE TRANSACTIONS
We now turn to the STM we have developed as the ba-
sis for our implementation of CCRs. We present it here in
terms of a software system but a hardware-based transac-
tional memory could be used if available. We return to the
question of hardware support when discussing future work,
but for the moment we assume only that word-sized memory
accesses are atomic and that a word-sized atomic compare
and swap (CAS) instruction is available. This instruction,
or an equivalent, is available in all major architectures.

As with existing STMs, our design groups memory ac-
cesses into transactions and performs these as-if atomically.
The STM has a number of notable features which stem from
our requirements:

• No reserved space is needed in the locations being ac-
cessed. This means that, in Java, fields can hold full
32-bit integers without additional per-field storage.

boolean done = false;

while (!done) {

STMStart ();

try {

if (condition) {

statements;

done = STMCommit ();

} else {

STMWait();

}

} catch (Throwable t) {

done = STMCommit ();

if (done) {

throw t;

}

}

}

Figure 1: A CCR of the most general form atomic

(condition) { statements; } expressed in terms of
transaction start/commit operations, assuming that
done is an otherwise unused identifier. In practise
exception propagation is complicated by the fact
that the translated code should retain the expected
throws clause.

• It requires only word-sized updates to be atomic when
accessing heap locations. Supporting double-word data
types poses no problem.

• The permanent structure used to co-ordinate transac-
tions can be statically allocated outside the applica-
tion heap. We can trade off the likelihood that non-
conflicting transactions commit in parallel against the
size of this structure. Temporary data structures can
be allocated from the same heap used by the JVM, or
instead be held separately.

• Outside transactions, access to non-volatile heap loca-
tions uses standard memory reads and memory writes.

• Read operations, whether in transactions or otherwise,
do not cause any updates to shared memory. This is
important to ensure effective caching [10].

We will introduce the STM interface in Section 5.1 and then
describe the implementation in Sections 5.2-5.4.

5.1 STM interface
Our STM provides operations for non-nesting transactions
accessing memory locations on a word-addressed basis. We
define five operations for transaction management:

Transaction management
void STMStart()
void STMAbort()
boolean STMCommit()
boolean STMValidate()
void STMWait()

The first four of these have their usual meaning in trans-
action processing [4]. STMStart begins a new transaction
within the executing thread. STMAbort aborts the trans-
action in progress by the executing thread. STMCommit at-
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tempts to commit the transaction in progress by the exe-
cuting thread, returning true if this succeeds and false if
it fails. STMValidate indicates whether the current transac-
tion would be able to commit – that is, whether the values
read represent a current and mutually consistent snapshot
and whether any locations updated have been subject to
conflicting updates by another transaction. It is an error
to invoke STMStart if the current thread is already running
a transaction. Similarly, it is an error to invoke the other
operations unless there is a current transaction.

The fifth operation, STMWait, is one that we introduce
for allowing threads to block on entry to a CCR. It ulti-
mately has the effect of aborting the current transaction.
However, before doing so, it can delay the caller until it
may be worthwhile attempting the transaction again. In a
simplistic implementation STMWait would be equivalent to
STMAbort, leading to callers spin-waiting. In our implemen-
tation, STMWait blocks the caller until an update may have
been committed to one of the locations that the transaction
has accessed.

Figure 1 summarises how a non-nesting atomic block may
be expressed in terms of these explicit transaction manage-
ment operations. Nesting CCRs are implemented within the
same transaction, counting the dynamic nesting depth and
only invoking STMCommit when the top-level completes; they
do not require support here.

The second set of operations exposed by the STM are for
performing memory accesses:

Memory accesses
stm word STMRead(addr a)
void STMWrite(addr a, stm word w)

Again, these may only be used while a transaction is active.
In our implementation an address of type addr is an ordinary
pointer into the heap and an stm word is simply an integer
of the machine word size.

5.2 Heap structure
Our STM uses three kinds of data structure, as indicated
in Figure 2. The first is the application heap in which the
data itself is held. For instance, in the JVM, this would be
the objects allocated by the application, held in their usual
format and including any header fields needed.

The second kind of structure are the ownership records
(orecs) which are used to co-ordinate transactions. An own-
ership function maps each address in the application heap
to an associated orec. There need not be a one-to-one corre-
spondence between addresses and records – there could be
one orec per object or, as in our prototype, a fixed-size ta-
ble of records to which addresses map under a hash function.
Each orec holds either a version number or a current owner
for the addresses that associate with it. Each time a loca-
tion in the application heap is updated, the version number
must be incremented. Version numbers will be used to de-
tect whether a transaction may be committed. We assume
for the moment that they are never re-used in the same orec;
we return to this when discussing our implementation.

The final kind of structure holds transaction descriptors
which set out the current status of each active transaction
and the accesses that it has made to the application heap.
Each access is described by a transaction entry specifying
the address in question, the old and new values to be held

a1 7

Application
heap

Transaction
descriptors

Ownership
records

version 15

r3

r4

a4

a5

Status: ASLEEP

a5: (600,13) −> (600,13)

a4: (500,12) −> (500,12)

t1

t2

a3

r2

100

200

a2

500

600

r1

Status: ACTIVE

a1: (7,15) −> (7,15)

a2: (100,7) −> (300,8)

Figure 2: The STM heap structure showing two
transactions. The first transaction, t1, is part-
way through a commit operation after performing
STMWrite on a2 (where it overwrote 100 by 300) and
STMRead on a1 (where it read 7). The second trans-
action, t2, is asleep waiting for updates to either a4

(where it read 500) or to a5 (where it read 600).

there and the old and new version numbers of those val-
ues. The status field indicates that the transaction is ei-
ther ACTIVE (able to have STMAbort, STMWait, STMCommit,
STMRead and STMWrite operations invoked for it), COMMITTED,
ABORTED or ASLEEP. Descriptors are initially ACTIVE and move
through the other states while attempting to commit, to
abort or to wait.

A descriptor is well formed if for each associated ownership
record it either (i ) contains at most one entry associated
with that orec, or (ii ) contains multiple entries associated
with that orec, but the old version number is the same in
all of them and the new version number is the same in all of
them. As with version numbers, we assume that descriptors
are never re-used; we again return to this for our implemen-
tation.

Given this structure, we introduce the concept of the log-
ical state of an address in the application heap. This is the
pair of the value conceptually held at that address and the
version number associated with that value being there. We
define the logical state by a disjunction of three cases. In
the first case the orec contains a version number:

LS1 The version number is taken from the orec and the
value is held directly in the application heap. For in-
stance, in Figure 2, the logical state of a1 is (7, 15).

In the second and third cases the orec refers to a descriptor:

LS2 If the descriptor contains an entry for the address then
that entry gives the logical state. For instance, the
logical state of a2 is (100, 7) because the descriptor
shown has not yet committed and it holds an entry
updating a2 from (100,7) to (300,8).

LS3 If the descriptor does not contain an entry for the ad-
dress, then the descriptor is searched for entries about
other addresses which map to the same orec as the
requested address. The value is taken from the appli-
cation heap and the version is taken from the entry;
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the new version number if the transaction is COMMITTED
and the old version number otherwise. The ‘well formed’
property ensures that this is uniquely determined. For
instance, the logical state of a3 is (200, 7) taking old
version 7 from the entry for a2.

At run time, the logical state of an address can be deter-
mined from a consistent snapshot of the locations on which
its value depends: the address itself, its orec, the status of
an owning descriptor and information from entries in that
descriptor. Fortunately, a general-purpose snapshot algo-
rithm is not necessary here and we can directly compute the
logical state by reading locations as described in the three
cases LS1..LS3. The non-re-use of descriptors and version
numbers lets us employ a simple re-read-then-check design,
re-computing the logical state if the orec’s value changes
part-way through:

do {

orec = orec_of (addr);

<directly compute logical state based on orec>

} while (orec_of (addr) != orec);

As we shall see in the implementation of the STM opera-
tions, if the orec’s value is unchanged then the derived logical
state is consistent with a snapshot of the locations involved.
For LS1 the value is read from the application heap – it can-
not have changed if the orec did not. For LS2 and LS3, the
locations accessed in descriptor entries relating to an orec
are constant once the pointer is installed as that record’s
owner. The only other location involved – the descriptor’s
status – can change exactly once from ACTIVE to one of the
other states. The snapshot is consistent with the time when
the status is read.

5.3 STM operations
We will now describe the implementation of the STM oper-
ations using this heap structure. In outline, orecs ordinarily
hold version numbers, as r1 does in Figure 2. An orec only
refers to a descriptor when that transaction is attempting to
commit or to sleep – until STMCommit or STMWait is invoked
the transaction execution is private, building up a series of
entries in the descriptor which set out the locations that
it has accessed. In many ways the commit process can be
seen as a development of our multi-word compare-and-swap
algorithm [8] but applied to the orecs involved rather than
directly to the application heap.

5.3.1 STMStart
Starting a transaction allocates a fresh descriptor and ini-
tializes its status field to ACTIVE.

5.3.2 STMAbort
Aborting a transaction writes ABORTED into its status field.

5.3.3 STMRead
To read a value we must consider two cases. Firstly, if the
current descriptor already contains an entry (te) for the re-
quested location then return te.new value. Otherwise de-
termine the logical state of the location and initialize a new
entry with the value seen as old value and as new value.
Record the version seen as old version. If the descriptor
already contains an entry for this orec then copy that entry’s

new version number to this entry in order to keep the de-
scriptor well formed, otherwise use old version. Although
we describe these operations in terms of searching and copy-
ing, this can be streamlined in implementation as we shall
describe in Section 5.4.

5.3.4 STMWrite
The implementation of STMWrite first ensures that the de-
scriptor contains an entry (te) relating to the location being
accessed. This can be done by performing a read operation
from the location. Set te.new value to the value being writ-
ten and set te.new version to te.old version+1, copying
this new version number to any other entries relating to the
same orec so that the descriptor remains well formed.

5.3.5 STMCommit
Commit proceeds by temporarily acquiring each of the own-
ership records it needs, then – if it can acquire them all
– it updates the descriptor’s status field from ACTIVE to
COMMITTED, makes any updates to the application heap and
then proceeds to release each of the ownership records. The
key to all of these operations is that logical states are only
updated when the status field is changed.

The details lie in how the acquire and release steps are
implemented and, in particular, what happens when one
transaction wishes to acquire an orec that is already held.
Both take as parameters the descriptor in question (td) and
an index into that descriptor’s table of transaction entries.

acquire (transaction_descriptor *td, int i) {

transaction_entry te = td.entries[i];

orec seen;

seen = CAS (orec_of(te.addr),

te.old_version, td); /*C1*/

if (seen == te.old_version || seen == td) {

return TRUE; /*1*/

} else if (holds_version_number (seen)) {

return FALSE; /*2*/

} else {

return BUSY; /*3*/

}

}

This attempts to install td in the ownership record asso-
ciated with the selected transaction entry. It may only be
called for a descriptor that is ACTIVE or ABORTED. The only
possible update to shared memory is at /*C1*/. If this suc-
ceeds then it preserves the logical contents of that location
(case LS2); it also preserves the logical contents of any other
locations which alias to the same ownership record (case LS3
and well-formedness).

In return case /*1*/ either /*C1*/ succeeded, or transac-
tion td already held the orec. In return case /*2*/ the orec
contained a version number other than the one expected by
this transaction: the transaction is doomed to fail. In return
case /*3*/ the orec is discovered to be owned already and
cannot be acquired.

Given this operation, STMCommit proceeds by invoking
acquire for each entry in turn. If any invocation returns
FALSE then the logical contents of that location were not con-
sistent with the version expected in the entry; the commit
has failed and the status is updated to ABORTED and release

invoked for any entries successfully acquired. If any invoca-
tion returns BUSY then the transaction has encountered an-
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other active on the same orec. A simple reaction is to (i )
abort the existing owner, (ii ) wake it if it was blocked in
STMWait and (iii ) abort the current transaction and leave it
to retry (hopefully when the existing owner has completed
its own operation and relinquished ownership). We discuss
alternative non-blocking strategies in Section 5.4.

If all locations can be acquired, the descriptor’s status
field is updated to COMMITTED. This has the effect of atom-
ically updating the logical state of all of the locations – at
that point the descriptor is referred to by all of the ownership
records relating to locations it has acted on. The transaction
then writes the new values to the application heap – note
again that concurrent operations, when determining the val-
ues held at those locations would use the versions held in the
descriptor; they will be unaware that these writes themselves
occur at different times to different locations.

Finally, once it has made all of the writes, the transaction
invokes release for each entry in turn. This attempts to
remove a reference to a descriptor from an ownership record:

release (transaction_descriptor *td, int i) {

transaction_entry te = td.entries[i];

if (td.status == COMMITTED) {

CAS (orec_of(te.addr),

td, te.new_version); /*C2*/

} else {

CAS (orec_of(te.addr),

td, te.old_version); /*C3*/

}

}

Again, note that it preserves the logical contents of all lo-
cations associated with the orec so long as the descriptor’s
state is COMMITTED or ABORTED and the locations have been
updated as necessary.

5.3.6 STMValidate
Validation is an entirely read-only operation. It checks that
the ownership records associated with each location accessed
in the caller’s current transaction contain the version num-
ber held in the transaction descriptor. Validation succeeds,
returning true, if every record holds the expected value.
Otherwise validation fails, returning false.

5.3.7 STMWait
The last function to consider is the STMWait operation which
causes the caller to abort its current transaction and to block
until an update may have been committed to one of the
locations that the transaction has accessed.

The implementation initially proceeds as with STMCommit

in attempting to acquire all of the orecs relating to the
transaction. If successful, this confirms that the memory
accesses made so far represent a consistent snapshot; the
thread sleeps, settings its status field to ASLEEP and leaving
references to its descriptor installed at the acquired orecs.
These will act as “software tripwires” and signal the pres-
ence of the sleeper to any other transaction which attempts
to commit an update to those locations; its acquire opera-
tion will return BUSY and it can wake the sleeper. Figure 2
illustrates this situation, showing a transaction t2 whose
thread is asleep waiting for updates to locations associated
with orecs r3 and r4.

5.4 Optimizations
The basic design in Section 5.3 provides safe concurrent
transactions. However, as presented, it has several infelici-
ties which would limit its practical performance – (i ) at most
one thread can sleep on any particular ownership record,
(ii ) both read and write operations involve searching the
current descriptor for entries associated with a particular
orec, (iii ) processing an entry describing a read-only access
to a location still involves updating its orec twice, harming
data-cache performance, and (iv ) the simple retry operation
prompted by a BUSY return value prevents the design from
being non-blocking.

We now introduce remedies to these problems. We present
these separately to avoid cluttering the main design.

5.4.1 Multiple sleeping threads
In the basic design, both STMCommit and STMWait respond
to a BUSY signal by waking the thread currently holding the
orec if it is asleep. This means that at most one transaction
can be asleep associated with any one orec. To allow mul-
tiple threads to sleep on the same location we extend each
descriptor to include a list of other threads which wish to
sleep on locations acquired by the descriptor.

5.4.2 Read sharing
Modern cache coherence protocols allow multiple CPUs to
concurrently hold the same cache block, so long as they do
not attempt to write to it [10]. This makes it important to
avoid contended writes to shared locations. Our basic de-
sign risks such writes to the locations that hold ownership
records; an STMCommit operation must acquire and then re-
lease each of these records even when the underlying access
in the transaction was a read.

We can modify STMCommit to introduce an additional phase
to deal with read-only locations. It is tempting to do this
by simply (i ) acquiring the locations subject to updates and
then (ii ) checking the logical state of the locations which are
just being read against the old value and old version in
the descriptor before (iii ) attempting to update the trans-
action’s state to COMMITTED. However, this does not provide
atomicity: another transaction may update the locations
being read between the second and third steps.

To prevent this problem we introduce a new transaction
state, READ PHASE, which is entered before checking read-
only locations and therefore held throughout those checks
up to the point at which the transaction commits or aborts.
If another transaction encounters one in READ PHASE then it
causes the one encountered to abort. In practice the read
phase is so short that it is not observed by other transactions
under any non-synthetic workloads we have encountered.

5.4.3 Avoiding searching
We observe that many transactions exhibit temporal local-
ity in the locations that they access. We can exploit this by
maintaining, for each thread, a table mapping from owner-
ship records to entries in the thread’s current descriptor. In
particular, this streamlines STMWrite operations which fol-
low earlier transactional reads – the cache directly identifies
the entry to update. A designated value indicates if there
are multiple entries relating to the same ownership record,
in which case a search of the descriptor is unavoidable.
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Figure 3: Ownership records extended to allow
obstruction-free STMCommit operations. In this case
transaction t3’s descriptor has stolen ownership of
r5 from the lower descriptor. It now includes up-
dates from both descriptors, even though t4’s write
to a8 has not yet been performed to the application
heap.

5.4.4 Non-blocking commit
The final and most intricate development to describe is how
to make the STMCommit operation non-blocking – currently,
if a thread encounters an ownership record that is already
held, it must wait for the current holder to release it. In
some settings this may be an academic concern rather than
a practical one; if the holder is making good progress then
“helping” them complete their operation will do nothing but
harm caching. However, in other settings, the stronger guar-
antees of non-blocking algorithms are desirable for the rea-
sons given in Section 2.

Our approach is to permit one thread to steal ownership
by using an atomic compare-and-swap on the orec. There
are two problems in allowing this:

• Firstly, we must ensure that the theft does not change
the logical contents of any location.

• Secondly, if a previous owner has COMMITTED but not
yet written to the underlying locations in the applica-
tion heap, there is no control over when those writes
occur. We must ensure that the writes made by the
new owner succeed those made by the previous owner.

Both of these problems have solutions. We will illustrate our
solutions with respect to Figure 3. To ensure that the logical
contents of locations are not updated, a transaction such as
t3 that steals ownership of an orec from another (t4) must
merge entries relating to the orec from t4’s descriptor into its
own. We cannot merge from an ACTIVE transaction in case it
commits while we are doing so; we would then risk changing
the logical state of addresses when stealing. This is avoided
by aborting the victim if it has not already committed. The
stealer takes the old value and old version if the victim is
aborted and new value and new version if it has committed.
In the figure, t3 has merged the entry for address a8.

The second problem means that we cannot release owner-
ship of a location until we can guarantee that (i ) there are no
transactions still making writes to the location, and (ii ) the
final value written relates to the most recent transaction.
We deal with this by introducing a counter into each orec
saying how many transactions are in the process of making

Transaction A: Transaction B:

atomic { atomic {

if (x != y) x ++;

while (true) { } y ++;

} }

Figure 4: Initially x=y=0. Unless the system per-
forms periodic validation, transaction A may enter
an endless loop if it reads x before Transaction B
commits and then reads y after it does so.

updates to the locations it manages. In the figure r5 has
two transactions making writes to its locations (t3 and t4)
and r6 has none because it is not owned. When stealing, the
counter is incremented atomically with updating the owner.
When releasing ownership, the counter is decremented, ei-
ther leaving the owner unchanged (if the counter will remain
above zero), or restoring the version number (if the counter
becomes zero). If a thread discovers that ownership has
been stolen from it (because it sees a different descriptor
in the orec) then it re-does the updates made by the new
owner, ensuring that the final value written before releasing
ownership if that of the most recent transaction.

Our implementation of STMWait is not non-blocking: it
uses per-transaction mutexes and condition variables to co-
ordinate sleeping and waking. This design was based on the
library facilities that were readily available to us. However,
an alternative scheme using counting semaphores could be
developed if stronger progress guarantees are required.

6. IMPLEMENTATION AND EVALUATION
Our implementation is based on version 1.2.2 of the Sun
Java Virtual Machine for Research. This JVM implementa-
tion has already undergone extensive optimization; we are
comparing our prototype against a best-of-breed system [2].

6.1 Modifications to the JVM and compilers
The implementation is split between the source-to-bytecode
compiler and the bytecode-to-native compiler. The inter-
mediate .class file format is unchanged. At the bytecode
level we implement atomic blocks only on a per-method ba-
sis, signalling them to the run-time system by appending
a suffix to the method’s name. If an atomic block is de-
fined within a method then the source-to-bytecode compiler
extracts it into a separate method.

Java bytecode provides separate operations for accessing
different kinds of data: local variables, fields, and array-
elements. This distinction, coupled with our use of separate
methods for each atomic block, means that local variables
can continue to be accessed directly. STMRead and STMWrite

operations are only necessary when accessing fields or array-
elements.

We add a second method table to each class. This holds
references to transactional versions of its methods (compiled
on demand) and is used by method invocations within trans-
actional methods.

The bytecode-to-native compiler is also responsible for in-
serting STMValidate calls to detect internal looping in trans-
actions that cannot commit. This can occur if a transaction
has made unrepeatable reads – Figure 4 shows a contrived
example.
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The run-time compiler generates specialised code for ac-
cessing volatile fields outside CCRs. For the moment they
are translated as “small” transactions performing a single
read or write as appropriate and looping until they com-
mit successfully. This provides the ordering required by the
memory model in Section 4.7. Access to other shared fields
outside CCRs is unordered and is implemented directly by
memory reads or writes to the application heap.

6.2 Memory management
The design presented here has assumed that descriptors are
managed through a garbage collector. While we could sim-
ply allocate them on the garbage-collected heap, our imple-
mentation provides build-time options to allow re-use where
possible. The options include simple reference counting [22]
and the more recent designs due to Michael [21] and Herlihy
et al [13].

In our experiments we allocate descriptors on the garbage-
collected heap and use the pass the buck algorithm for re-
use between collections [13], holding re-usable descriptors
in thread-local pools. Descriptor allocation and dealloca-
tion form less than 2% of the time spent within the STM
implementation.

Ownership records are statically allocated. Our experi-
ments used a table of 65 536 records, indexed by bits 2–18
of a location’s address. We tested our implementation for
sensitivity to the number of orecs. So long as aliasing of dif-
ferent locations to the same orec is rare, the precise number
has only a marginal effect on performance – less than 1%
difference between 4 096 and 65 536 in our experiments.

6.3 Version numbers
We represent version numbers as odd integer values, allow-
ing us to distinguish them in the ownership records from
aligned pointers to descriptors. We do not consider the pos-
sibility of overflowing the remaining 31 bits: a simple scheme
would be to periodically suspend all threads, abort any ac-
tive transactions and reset the version numbers to 1. Such a
brief ‘stop-the-world’ situation already exists in the garbage
collector. We use a double-word-width CAS to maintain
counters in the non-blocking commit operation.

6.4 Performance
Key to good performance on any shared-memory multipro-
cessor is avoiding contention for cache blocks. For appli-
cation data this is the responsibility of the programmer,
whether using locks or whether using CCRs.

Our implementation makes a substantial separation be-
tween common-case code and the more involved aspects of
our design. For instance, there is an ‘optimistic’ commit
that assumes the contention is rare and executes an out-of-
band non-blocking commit only if another descriptor is en-
countered; the code was invoked on fewer than 1% of com-
mit operations in our experiments. Remember that even
long-running transactions remain private until they start to
commit.

Where a transaction commits without contention, reading
from r locations and updating w locations involves w CAS
operations to acquire ownership, r reads to check read-only
locations, 2 updates to the status field, w writes to the ap-
plication heap and then w CAS operations to release own-
ership.

Figure 5: Experimental configuration for the Wait
test. t threads are conceptually arranged in a ring
with a shared buffer between each. Initially n
of these buffers contain tokens and the others are
empty. In this case t = 5 and n = 2.

6.5 Experimental set-up
We present results from three different experimental set-
tings:

• Hashtable compares various implementations of con-
current hashtables. The first exmploys the hashtable
implementation from the JDK 1.2.2 java.util library
which uses a single mutex to protect the entire table.
The second implementation uses ConcurrentHashMap

taken the util.concurrent package (release 1.3.2).
This is a carefully engineered design which allows most
read-only operations to proceed without locking and
often allows non-conflicting updates to proceed con-
currently. The third implementation uses the same
underlying simplistic design as java.util.Hashtable

but wraps each access in a CCR without using any
locks.

In each case the table contains 4096 mappings and we
perform a mix of p% reads and (100 − p)% updates.
Operations are uniformly distributed across the keys.

• Compound compares operations involving several ac-
cesses to a hashtable. Each compound operation se-
lects (uniformly) two keys and then swaps the val-
ues that they map to – the combined update must be
atomic. We implement this either (i ) with a single mu-
tex, (ii ) using per-key locks and ConcurrentHashMap

or (iii ) using an atomic block. We can vary the size of
the table in order to vary the likelihood of contention.

• Wait evaluates blocking operations. The experimen-
tal configuration has t threads conceptually arranged
in a ring with a shared buffer between each adjacent
pair. Of these buffers, initially n contain tokens and
the remainder are empty. Each thread loops remov-
ing an item from the buffer on its right and placing
it in the buffer on its left. Figure 5 illustrates this
configuration.

We compare an implementation based on CCRs against
one built using the mutexes and condition variables
provided by the JVM.

In each case we ran tests for three wall-time seconds and
took the median of five runs. In Section 6.6 we use an
entry-level symmetric shared-memory system and then in
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µs per operation

1% updates 16% updates
CPUs CCR S-l FG-l CCR S-l FG-l

1 1.8 1.1 0.9 1.9 1.1 0.9
2 1.8 3.3 0.9 2.0 7.9 1.0
3 2.1 25 1.3 2.4 23 1.1
4 1.8 30 1.1 2.4 30 1.4

size=256 size=4096
CPUs CCR S-l FG-l CCR S-l FG-l

1 4.8 2.1 2.6 5.1 2.3 2.7
2 6.2 17 5.0 6.3 17 4.4
3 7.2 27 6.4 7.2 28 6.3
4 7.4 37 8.3 7.5 40 6.9

Figure 6: Performance of the hashtable test (above)
at 1% and 16% update rates and of the compound
test (below) at table sizes of 256 entries and 4096
entries. In each case we record the mean number of
microseconds to complete an operation using CCRs,
using a single lock (S-l) and using fine-grained lock-
ing in ConcurrentHashMap (FG-l).

Section 6.7 we use a larger ccNUMA server. Aside from
trivial single-threaded cases, our results for a simple imple-
mentation hashtable using CCRs out-perform an equivalent
implementation using locks. We do not yet attempt to con-
sider single-threaded execution as a special case. In every
case our simple CCR-based implementation remains com-
petitive with well-engineered locking; in some cases it per-
forms even better.

6.6 Small systems
Our first set of measurements are from a 4-processor Sun-
Fire v480. Figure 6 compares the performance of CCRs
against lock-based implementations of the hashtable and
compound tests.

In the individual operations of the hashtable test the so-
lution based on fine-grained locking in ConcurrentHashMap

performs best of all, sometimes by a factor of just over 2.
However, the implementation of that class is much more
involved than that of our simple comparison using CCRs.
Our benchmark accentuates the performance difference by
attempting operations as frequently as possible; any real ap-
plication would have less than a 100% duty cycle.

In the compound test the CCR-based solution continues
to outperform the basic lock-based scheme in all but single-
threaded use. Furthermore, the difference in performance
between it and ConcurrentHashMap reduces and is eventu-
ally reversed under higher contention.

Finally, in the wait test measuring the throughput of
blocking operations, the implementation using CCRs oper-
ated at 80% of the lock-based rate when using 2-4 threads,
irrespective of the number of tokens circulating.

6.7 Large systems
Our second set of experiments uses a 106-processor ccNUMA
SunFire e15k machine. Figure 7 shows the results for 1..48
processors running the hashtable and compound tests.
For the hashtable tests the performance of the lock-based
system is deleterious on multi-threaded workloads. When

write-contention is low, the ConcurrentHashMap design per-
forms best; this is to be expected because it avoids the
transaction management overheads of the STM. However,
as write-contention rises, so does contention for locks and
the STM-based design performs best.

Of course, it may be possible to specialise the lock-based
designs for for this particular workload. However, the point
we emphasise is that under every workload here, the design
using CCRs around a näıve hashtable has performance that
is comparable with these other techniques. Furthermore,
aside from its performance and programming ease, its non-
blocking guarantees are automatically providing robustness
against deadlock and priority inversion.

For the compound tests the CCR designs are fastest in
every setting with more than 1 CPU (in the single-threaded
case it is 15% slower than ConcurrentHashMap and 36%
slower than using a single lock). The improved performance
comes from the fact that using CCRs allows parallelism be-
tween non-conflicting operations which would contend for
the same lock in ConcurrentHashMap and from the fact that
occasional pre-emption of one thread in any of the lock-
based designs will stall other threads. Note that the CCRs
performing swap operations commit only 2 updates to the
application heap; the number of atomic operations to ac-
quire and release those locations is likely to be the same as
the number in a conventional lock implementation.

Figure 8 shows the performance of the wait test, plotting
how many put or get operations are achieved per second on
the machine as a whole as the number of tokens available to
the 48 threads increases. In principle the results should scale
linearly, although in practise any scheme reaches a plateau,
representing the point at which the threads’ time is con-
sumed managing the shared buffers rather than exchanging
tokens through them. Again, the STM-based design per-
forms only marginally below the traditional one.

6.8 STM performance summary
From the design of our STM algorithm, and the results in
Section 6, we can make some observations about the work-
loads in which it can work well and the workloads in which
it will perform poorly. A key feature of the algorithm is that
transactions which do not contend for the same ownership
record can execute and commit entirely in parallel.

This explains the trends seen in our results. The imple-
mentations based on a single lock (S-l) serialize the execu-
tion of all operations. This performs well under low levels of
contention because uncontended lock management is opti-
mized in the JVM under test and, once the lock is acquired,
the hashtable operations can access the data structure in-
place. The implementations based on fine-grained locking
(FG-l) scale better over moderate numbers of concurrent
threads until contention for the locks used becomes signifi-
cant. Crucially, in the case of these results, the locks prevent
many concurrent operations which would not dynamically
conflict. In contrast, the implementations based on CCRs
have higher initial costs caused by accessing data structures
through the STM interface rather than in-place. However,
they scale well in these cases because few operations require
access to the same ownership records.

In summary, we believe our STM implementation is well
suited to applications in which concurrent operations are
likely to be dynamically non-conflicting. For instance, it
would perform less well if we augmented the hashtable with
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(a) Individual hashtable operations, 1% writes (b) Individual hashtable operations, 16% writes
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(c) Compound operations, 256-element table (d) Compound operations, 4096-element table

Figure 7: Performance of concurrent updates running 1..48 threads. In (a) and (b) we perform individual
atomic updates to a single hashtable. In (c) and (d) we perform compound operations making two updates
to the table in one atomic step. The insets show 1..8 threads, confirming that our scalability is combined
with good absolute performance.

a single counter of the number of updates performed to it.
The skill for the designer of concurrent data structures is
therefore moved from ensuring correctness through locking
to avoiding contention ‘hot spots’ in their data.

6.9 Ease of programming
We now turn to the final aspect of evaluation; do CCRs
provide a programming abstraction that is easier to use than
the existing facilities of Java? At the moment we can offer
only anecdotal observations.

Firstly, as we remarked in Section 2, CCR-style abstrac-
tions are popular when introducing the topic of concurrency
to students. We suspect that reasoning about the behaviour
of CCRs – whether at a formal or an informal level – is made

easier by the ability to consider the enclosed statements as a
single step in an operational model. In contrast, lock-based
schemes other than simple monitors require reasoning about
interleavings between parts of operations.

Secondly, the provision of CCRs has close analogies with
the concept of database transactions. Both provide simple
semantics and isolated execution. Both leave the exact im-
plementation of this behaviour to a run-time system rather
than requiring programmers to identify where to acquire and
release locks. The popularity of transactional concepts, and
the acceptance of this model by mainstream programmers,
gives us confidence about our style of CCR.

Finally, we can compare the design of simple shared data
structures using Java’s existing monitors against the corre-
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Figure 8: Performance of blocking operations run-
ning 48 threads.

sponding design using CCRs. For data structures which do
not involve wait, the difference is solely that synchronized

is replaced by atomic on each method; the result is that the
implementation may extract more concurrency from dynam-
ically non-conflicting operations and that the risk of access-
ing shared data from outside the locked object is avoided.
For data structures which involve blocking using wait and
notify, the simplification is even greater – the CCR-based
design expresses the pre-conditions directly and avoid lost-
wake-up and premature-wake-up problems.

We hope, in the future, to be able to perform more me-
thodical user studies.

7. DISCUSSION AND FUTURE WORK
In this paper we have argued that concurrent programming
is made easier by moving away from locks and condition vari-
ables and instead using facilities that more closely capture
the safety properties that a programmer is trying to enforce.
In this final section we turn to a number of questions about
how to take this work forward to a more complete imple-
mentation and to other directions that we hope to follow in
future research.

7.1 Benchmarking and evaluation
We plan to explore the performance of a wider range of
data structures and, if suitable multi-threaded benchmarks
are available, to study performance in larger systems. It is
unfortunate that we have largely had to use synthetic micro-
benchmarks. We are keen to hear from groups with “real”
multi-threaded code.

The SpecJVM98 benchmarks suite contains only one multi-
threaded test, 227 mtrt, which is a two-threaded raytracer
with the threads operating on independent sections of the in-
put model. The VolanoMark benchmark provides a strained
concurrent environment modelling an internet server man-
aging connections to a large set of clients, typically several
thousand. However, it uses a separate thread for each client
and results consequently reflect thread management and the
I/O subsystem. The SpecJBB2002 benchmark can operate
with a controllable number of threads. However, in its in-
tended configuration, the threads act on disjoint data.

7.2 Language-level interface
We currently only provide the atomic construct to program-
mers rather than exposing transactional concepts. However,
we could readily provide a reflective interface. For example,
this could allow a thread to determine whether a transaction
is active, to examine the set of updates that have been pro-
posed thus far, or perhaps to explicitly create and attempt
to commit transactions or to enter and leave transactional
contexts.

Exposing a reflective interface may provide a unified ap-
proach to supporting many kinds of I/O as well as external
database transactions. The approach would be to expose
facilities to leave and re-enter a transaction and to register
call-backs for execution during the commit process. Oper-
ations with external side-effects would be executed outside
any current transaction and instead would queue a callback
to perform the proposed operation (if an output), or would
perform it directly (if an input) and queue up a callback to
re-buffer the value read. The callbacks would execute using
2-phase-commit, allowing each to veto the commit and then
informing each of the outcome. Of course, some operations
such as file renaming are inherently impossible to support
transactionally without lower-level support from the oper-
ating system. We discuss these techniques in more detail in
an accompanying technical report [9].

7.3 Implementation-level interface
Our integration with the Java Virtual Machine benefited
from the simple word-based STM design. As we observed in
Section 3.2, this provides a different cost profile when com-
pared with Herlihy et al’s object-based scheme. It will be
interesting to compare the trade-offs in a practical setting.

A further aspect of our STM interface to revisit is whether
to support nested transactions directly at the STM inter-
face level, allowing an enclosed transaction to abort its op-
erations without aborting all of those that it is contained
within. Of course, this kind of question has undergone sub-
stantial research in the context of database transaction pro-
cessing.

7.4 Alternative STM implementations
In future work we plan to investigate alternative STM im-
plementations for use in cases outside the envelope in which
our current implementation performs well. One approach,
where contention is rare, is to allow updates to be made
in place without the indirection through a transaction de-
scriptor. This could be achieved by acquiring ownership
of a location when it is first updated with STMWrite – the
descriptor would hold an update log of overwritten values
should an abort be necessary.

An allied approach, where contention is high or where
transactions are long-running, is to use an alternative mech-
anism for implementing the acquire and release operations
on ownership records. One possibility is to use a lock-based
scheme with appropriate deadlock avoidance (for instance,
aborting and re-trying a transaction with exponential back-
off). Of course, that loses our current benefit of a non-
blocking implementation.

7.5 Hardware support
Another question, about which numerous viewpoints already
exist in the literature, is what kinds of hardware support
would benefit designs such as our STM. Proposals have
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already been made for hardware transactional memories,
with suggestions for implementation techniques based on ex-
tended cache coherence protocols [14].

It would be interesting to consider what hardware/software
interface would be appropriate to build STMWait – perhaps
one in which “tripwire” locations can be registered with the
CPU and an interrupt delivered should one be updated.
Another option is support for multi-word atomic updates
somewhere between the current single-word operations and
a fully general transactional model. We have often found al-
gorithms that would be simplified, both here and in previous
work, through an operation to perform one CAS conditional
on another location holding a specified value [8].

7.6 Code availability
Source code to the core implementation of our STM is avail-
able under a BSD-style license at http://www.cl.cam.ac.

uk/Research/SRG/netos/lock-free. This exposes a C API
as described in Section 5.1.

7.7 Summary
In this paper we have shown how to implement general con-
ditional critical regions on commodity hardware. We have
shown how a simplistic implementation of a data structure
using this construct is competitive with a well-engineered
lock-based scheme. We believe that this approach makes it
substantially easier to write reliable concurrent systems; it
is no coincidence that the same construct is frequently used
in text books and in the specification of concurrent systems.
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