| Cell Broadband Engine

Optimizing Compiler for the Cell Processor

Alexandre Eichenberger, Kathryn O’Brien, Kevin O’Brien,
Peng Wu, Tong Chen, Peter Oden, Daniel Prener,
Janice Shepherd, Byoungro So, Zehra Sura, Amy Wang,
Tao Zhang, Peng Zhao, and Michael Gschwind

www.research.ibm.com/cellcompiler/compiler.ntm

PACT, Tuesday, September 20th, 2005

Cell Broadband Engine

Cell Broadband Engine

Tsoq

e

i ¥

ibotTiPNngo

. Element'Interconnect Bu

Optimizing Compiler for a Cell Processor

L Multiprocessor on a chip
»> 241M transistors, 235mm?

» 200 GFlops (SP) @3.2GHz
» 200 GB/s bus (internal) @ 3.2GHz

U Power Proc. Element (PPE)
» general purpose

» running full-fledged OSs

U Synergistic Proc. Element (SPE)
» optimized for compute density

Alexandre Eichenberger

Cell Broadband Engine

Cell Broadband Engine Overview

U Heterogeneous, multi-core engine
» 1 multi-threaded power processor

LU LU LU LU LU LLJ LLJ
ol ol ol ol al al al
n n n n n n n

> up to 8 compute-intensive-ISA engines

| | | | | | | | 1 Local Memories
Element Interconnect Bus (96 Bytes/cycle) > fast access to 256KB local memories

—
S [

> globally coherent DMA to transfer data

1 Pervasive SIMD
> PPE has VMX

» SPEs are SIMD-only engines

-
@)
> 0
= QO
oO
o ©
al

To External Mem (=
To External 10

U High bandwidth
» fast internal bus (200GB/s)

» dual XDR™ controller (25.6GB/s)
» two configurable interfaces (76.8GB/s)

1 8 Bytes 16Bytes 128Bytes > numbers based on 3.2GHz clock rate
(per dir) (one dir) (one dir)

5 Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Supporting a Broad Range of Expertise to Program Caell

Highest performance with help from programmers

Multiple-ISA hand-tuned Explicit SIMD coding
programs

SIMD/alignment
directives

PROGRAMS

Automatic tuning for each ISA Automatic simdization

Highest Productivity with fully automatic compiler

Explicit parallelization with

PARALLELIZATION

local memories

Shared memory,
single program
abstraction

Automatic parallelization

technology

Optimizing Compiler for a Cell Processor

Alexandre Eichenberger

Cell Broadband Engine

Qutline

Part 3:
Shared memory &
single program abstr.

Part 1: Part 2:
Automatic SPE tuning Automatic simdization

Multiple-1SA hand-tuned Explicit SIMD coding Explicit parallelization with
programs local memories
“ Shared memory,
IMD/alignment _
- single program
irectives ,
abstraction
Automatic tuning for each ISA Automatic simdization Automatic parallelization

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Architecture: Relevant SPE Features

Synergistic Processing Element (SPE)

Even Pipe
Floating/
Fixed

Point

Register File

Local Store

DMA

(128 x 16Byte register)

(Globally-Coherent) instr. fetch: 2

Odd Pipe Dual-Issue
Branch Instruction

Memory Logic
Permute

'R
Instr.Buffer
(3.5 x 32 instr)

2
—

(256 KByte, Single Ported)

branch: 1,2
branch hint: 1,2

dma request: 3

Il ?pkg/tg i?)

16 bytes 128 bytes
(one dir) (one dir)

Optimizing Compiler for a Cell Processor

0 SIMD-only functional units
> 16-bytes register/memory accesses

O Simplified branch architecture
» no hardware branch predictor

» compiler managed hint/predication

[Dual-issue for instructions
» full dependence check in hardware

» must be parallel & properly aligned
U Single-ported local memory

» aligned accesses only
» contentions alleviated by compiler

Alexandre Eichenberger

Cell Broadband Engine

Feature 1: Single-Ported Local Memory

SPE

Even Pipe
Floating/
Fixed
Point

Register File

Local Store

DMA

Odd Pipe
Branch
Memory
Permute

IR

(128 x 16Byte register)

(256 KByte, Single Ported)

(Globally-Coherent)

Dual-Issue
Instruction
Logic

Instr.Buffer
(3.5 x 32 instr)

2
—

Ifetch

branch: 1,2
branch hint: 1,2
instr. fetch: 2
dma request: 3

(e

16Bytes
(one dir)

128Bytes
(one dir)

Optimizing Compiler for a Cell Processor

O Local store is single ported
> less expensive hardware
» asymmetric port

= 16 bytes for load/store ops

= 128 bytes for IFETCH/DMA
» static priority

= DMA > MEM > IFETCH

4 If we are not careful, we may
starve for instructions

Alexandre Eichenberger

Cell Broadband Engine

Instruction Starvation Situation

d There are 2 instruction buffers

BIVEIRISSIE
e » up to 64 ops along the fall-through path

Logic
O First buffer is half-empty
» can initiate refill

0 When MEM port is continuously used
» starvation occurs (no ops left in buffers)

nitiate
efill
ifter
alf instruction buffers

xmpty

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Instruction Starvation Prevention
O SPE has an explicit IFETCH op

Dual-Issue e : _
e TE e » which initiates a instruction fetch
Logic
before 1 Scheduler monitors starvation situation
it is too » when MEM port is continuously used
late to > insert IFETCH op within the (red) window
hide
latency

refill IFETCH latency

nitiate

efill

after O Compiler design

1alf Instruction buffer > scheduler must keep track of code layout
smpty

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Feature #2: Software-Assisted Branch Architecture

SPE O Branch architecture
» no hardware branch-predictor, but

» compare/select ops for predication
Even Pipe Odd Pipe Dual-Issue
Floating/ Branch Instruction

Fixed Memory Logic > one hint active at a time
Point Permute

» software-managed branch-hint

IR

Instr.Buffer U Lowering overhead by

3-5 '

(128 x 16Byte register)

> hinting predictably taken branches

Local Store
(256 KByte, Single Ported)

branch: 1,2
DMA branch hint: 1,2

(Globally-Coherent) instr. fetch: 2
dma request: 3

8 bytes 16 bytes 128 bytes
Il (per dir) (one dir) (one dir)

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Hinting Branches & Instruction Starvation Prevention

U SPE provides a HINT operation
lD“a"'Ssue > fetches the branch target into HINT buffer
nstruction

Logic > no penalty for correctly predicted branches

HINT br, target

fetches ops from target; E
needs a min of 15 cycles s=
and 8 intervening ops ;

IFETCH
window

L4

BRANCH if true i

target

v

» compiler inserts hints when beneficial

O Impact on instruction starvation

» after a correctly hinted branch, IFETCH
window is smaller

instruction butters ' 4 HINT buffer

Optimizing Compiler for a Cell Processor

Alexandre Eichenberger

Cell Broadband Engine

SPE Optimization Results

Relative reductions in execution time

1.0 -

0.9

0.8

0.7

0.6

0.5 1

-
M Original B +Bundle O +Branch Hint O + Ifetch
‘ [W] [EEST | BESNT | BT | BN [BT [ST | meT [
'y D Q S+ O - S H 2
Qé \QQ/ v 4\/ ’ \(\be. o\\\}\, g ’b§\~ {8'\ %,539 A@{b@
i o& O& N v
O

single SPE performance, optimized, simdized code

Optimizing Compiler for a Cell Processor

(avg 1.00 — 0.78)

Alexandre Eichenberger

Cell Broadband Engine

Qutline

Part 3:
Shared memory &
single program abstr.

Part 2:
Automatic simdization

Multiple-ISA hand-tuned Explicit SIMD coding Explicit parallelization with
programs local memories
“ Shared memory,
IMD/alignment ,
. single program
irectives e
abstraction
Automatic tuning for each ISA Automatic simdization Automatic parallelization

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Single Instruction Multiple Data (SIMD) Computation

Process multiple “b[i]+c[i]” data per operations

/ 16-byte boundaries
A/// //

D bO | b1 | b2 [b3 | b4 | bS5 | b6 | b7 | b8 | b9 |b10 C]

. =z

R1 bO‘bl‘bZ‘b?:I l

R2 cO|cl|c2|c3

w

D cO | cl|[c2|c3]Jcd|cHh|co|c7]|c8]|co|cl0 7

bO+ | bl+ | b2+ | b3+ R3
cO (cl |c2 |c3

16-byte boundaries

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

~ Successful Simdization
Extract Parallelism Satisfy Constraints

alignment constraints

for (i=0; i1<256; i++)

basic-block level

’»»
’»»

[] bo|&[b2[b3]ba]bs]be b7 b8|b9|---

oad
b0|6D|b2[b3] [b4|b5
__[©zlbsd]

data size conversion

16-byte boundaries

b
b6 b7l

i

entire short loop

for (i=0; i<8; i++) GlENERIC
ali] =
VMX SPE

_

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Example of SIMD-Parallelism Extraction

| level U Loop level
for (i=0; i<256; i++) > SIMD for a single statement across consecutive
iterations

> successful at;

= efficiently handling misaligned data
= pattern recognition (reduction, linear recursion)
= |everage loop transformations in most compilers

S [Bik et al, IJPP 2002]
P [VAST compiler, 2004]
for (i=0; i<8; i++)\ [Eichenberger et al, PLDI 2004] [Wu et al, CGO 2005]
| | [Naishlos, GCC Developer's Summit 2004]

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Example of SIMD Constraints

d Alignment in SIMD units matters:
» consider “b[i+1] + c[i+0]”

alignment constraints

bg|bo| - |

bo|@D]b2]b3

b4|b5|b6 b7

16-byte boundaries

)

16-byte boundaries
//7, [bole|b2]b3] [b4]bs |bs[b7]
_ @]b2[b3[b

U PO | bl | b2 [bB3|b4 | b5|b6|Db7

this is not
b[1] + c[0]

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Example of SIMD Constraints (cont.)

O Alignment in SIMD units matters
» when alignments within inputs do not match

alignment constraints

b8 |b9] -
16-byte boundaries

b0|@D|b2[b3] |b4|b5|b6 b7|
[
b7 _ @]b2[b3[b

bo|@D]b2]b3

b4|b5|b6 b7

» must realign the data

R2

bl+|b2+|b3+|b4+

Optimizing Compiler for a Cell Processor

Alexandre Eichenberger

Cell Broadband Engine

Automatic Simdization for Cell

O Integrated Approach
> extract at multiple levels

ies

» satisfy all SIMD constraints basic-block level
11 M 1} ‘@
> use “virtual SIMD vector” as glue T
> T
-
Cali+31=>

entire short loop

for (i=0; i<8; i++)
afi] =

» handle compile time & runtime alignment

U Minimize alignment overhead
> lazily insert data reorganization

’ \ multiple targets
L VMX SPU BG/L

» simdize prologue/epilogue for SPEs
" memory accesses are always safe on SPE

O Full throughput computations
» even in presence of data conversions

» manually unrolled loops...

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

SPE Simdization Results

Speedup factors

11.4
75 8.1 I

25.3

Checksum
Blending

single SPE, optimized, automatic simdization vs. scalar code

Optimizing Compiler for a Cell Processor

Saxpy

26.2

Mat Mult

Alexandre Eichenberger

Average

Cell Broadband Engine

Qutline

Part 3:
Shared memory &
single program abstr.

Multiple-ISA hand-tuned Explicit SIMD coding Explicit parallelization with
programs local memories
i Shared memory,
SIMD/alignment ;
. single program
directives ,,
abstraction
Automatic tuning for each ISA Automatic simdization Automatic parallelization

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Cell Memory & DMA Architecture

@)) Q Local stores are mapped in
Main global address space

Memory* MMU

bbbl Local store 1 Jd PPE
» can access/DMA memory

- Local store 1

INEINST ®) » set access rights
MMU SPE #8

 Local store 8 { BRIl Local store 1 SPU 1 SPE can initiate DMAS

Y
TLBS » to any global addresses,

MFC Regs m » including local stores of others.

Qofs*/ L3+ PN . » translation done by MMU
—

IO Devices

Memory requests

=)
ﬁ OMA O Note

* external PN > all elements may be masters,
Mapped there are no designated slaves

(Z

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Competing for the SPE Local Store

Local store is fast, need support when full.
irregular data

i

Provided compiler support:

1 SPE code too large
» compiler partitions code

regular
. : code dat
> partition manager pulls in code as needed ala

O Data with regular accesses is too large
» compiler stages data in & out

» using static buffering
» can hide latencies by using double buffering

O Data with irregular accesses is present
» e.g. indirection, runtime pointers...

» use a software cache approach to pull the data in & out (last resort solution)

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Software Cache for Irregular Accesses

U Data with irregular accesses
» cannot reside permanently in the SPE’s local memory (typically)

> thus reside in global memory
» when accessed,

» must translate the global address into a local store address
= must pull the data in/out when its not already present

d Use a software cache
» managed by the SPEs in the local store

» generate DMA requests to transfer data to/from global memory
» use 4-way set associative cache to naturally use the SIMD units of the SPE

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Software Cache Achitecture

/set tags data ptrs. dirty bits...\ 4 Cache directory

> 128-set, 4-way set associative
0 - - .
1 . . > pointers to data lines
pealE T T 11073

» use 16KByte of data
X -ql--l
N /

-

data array) O Data in a separate structure
> 512 x 128B lines

> use 64KByte of data

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

translate this global address
addr al

Software Cache Access

subset of addr
used by tags

set tags data ptrs. dirty bits...

addr offset

|a1|a1|a1|a1|

>

SIMD
comparison

data array

when successful

hit latency: ~ 20 extra cycles

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

“Single Source” Compiler, using OpenMP

#pragma Omp parallel for outline omp void foo()
for(i =0; i<10000; i++) region #pragma Omp parallel for
A[i] = x* BIil; - for(i =0; i<10000; i++)
Ali] = x* BI[il:

N\

code with OpenMP directives

clone for SPE
clone for PPE

void foo_PPE()
Init_omp_rte();
for(i=LB; I<UB; i++) "~

void foo SPE()
for(k=LB; k<UB; k++)
DMA 100 B elements into B’

Ali] = x * BJil; for (j=0; j<100; j++)
A’[j]] = cache lookup(x) * B[j];
\ \ DMA 100 A elements out of A
Runtime: Runtime:
initialize OpenMP runtime DMA in/out array, lookup software cache
compute its own work compute its own work

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Single Source Compiler Results

O Results for Swim, Mgrid, & some of their kernels

12
@ 10
al
n 8
(0 @)

:
.§6
S 4
D
o 2
)

0

baseline: execution on one single PPE

Optimizing Compiler for a Cell Processor

O softcache B optimization

Alexandre Eichenberger

Cell Broadband Engine

Conclusions

U Cell Broadband Engine architecture
» heterogeneous parallelism

» dense compute architecture

U Present the application writer with a wide range of tool
» from support to extract maximum performance

» to support to achieve maximum productivity with automatic tools

U Shown respectable speedups
» using automatic tuning, simdization, and support for shared-memory abstraction

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Questions

For additional info:

www.research.ibm.com/cellcompiler/compiler.ntm

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Extra

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

Cell Broadband Engine

Compiler Support For Single Source Program

1MUIT 3dS

J19|Idwod 3dS
Jappaqwi 3dS

SPE
Libraries

193Ul 4dd

PPE
Source

PPE
Libraries

J9dwo) 3dd

PPE
Source

Optimizing Compiler for a Cell Processor Alexandre Eichenberger

