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Abstract

There has been a resurgence of interest in dataflow architec-
tures, because of their potential for exploiting parallelism with low
overhead. In this paper we analyze the performance of a class of
static dataflow machines on integer media and control-intensive
programs and we explain why a dataflow machine, even with un-
limited resources, does not always outperform a superscalar pro-
cessor on general-purpose codes, under the assumption that both
machines take the same time to execute basic operations. We com-
pare a program-specific dataflow machine with unlimited par-
allelism to a superscalar processor running the same program.
While the dataflow machines provide very good performance on
most data-parallel programs, we show that the dataflow machine
cannot always take advantage of the available parallelism. Using
the dynamic critical path we investigate the mechanisms used by
superscalar processors to provide a performance advantage and
their impact on a dataflow model.

1. Introduction

The renewed interest in dataflow architectures is in part sparked
by the underlying elegance of the model, but also motivated by the
changes wrought by continued technology scaling. Increased sili-
con resources [1], the desire to avoid global wires [16], the com-
plexity of global clock distribution [3], the diminishing returns of
ever longer pipelines [37], and the complexity of the many mono-
lithic superscalar structures [25] all suggest designs should be sim-
pler, rely mostly on local signals, and contain many instances of
each type of functional unit. How effectively these “distributed”
architectures can exploit instruction-level parallelism (ILP) is still
an open question, that we are addressing in this paper.

This paper addresses this question by analyzing an architec-
ture that is at an extreme in the space of possible solutions. We
call this architecture ASH, an acronym for Application-Specific
Hardware. In ASH, functional units are never shared between in-
structions. ASH is optimized for communication: since computa-
tion units are never shared, there is no need to share communica-
tion channels, and each data value uses a dedicated one-directional
high-speed link. We use the CASH compiler [6] to translate au-
tomatically each C program into a hardware static dataflow ma-
chine, synthesized as collection of asynchronous circuits. These
circuits feature completely distributed datapath, register file, and
control logic, with no global signals, and without any notion of
a clock. Programs run on ASH use very little power, with en-

ergy efficiencies up to four orders of magnitude better than super-
scalar processors [6], but their performance is sometimes worse
than when they are run on a superscalar. To understand the per-
formance problems of the dataflow machines, we have developed
a new tool which allows us to visualize and analyze the dynamic
critical path of programs executed on ASH. Our analysis shows
that ASH circuits have certain bottlenecks inherent in the dataflow
model, bottlenecks that a superscalar overcomes using specific
mechanisms, that traditionally were not considered as part of the
dataflow model.

For completeness we start in Section 2 by describing the com-
pilation methodology. In Section 3 we employ timing-accurate
simulation to measure the performance of C programs on both su-
perscalar and dataflow machines, observing that dataflow’s
exploitation of unlimited parallelism does not always offer a per-
formance advantage. In our comparison we employ a simple nor-
malizing assumption: that all arithmetic operations take the same
time in both machines. In Section 4 we describe a fully auto-
matic tool to visualize the dynamic critical path of a dataflow
execution. This tool is used in Section 5 to identify perfor-
mance bottlenecks by analyzing several representative hot func-
tions. We show how various architectural features impact the per-
formance of the dataflow machines and how they compare to
superscalar microarchitectural mechanisms. The ability of mod-
ern superscalars to speculate branches, to speculate loads, to per-
form dynamic register renaming and dynamic loop unrolling, to
issue the same instruction multiple times, and to execute proce-
dure calls before their arguments have been computed are instru-
mental for high performance. Implementing some of these mech-
anisms in a dataflow machine requires extensions to the basic
model. In fact, some of the mechanisms require monolithic struc-
tures and global wires, attributes contrary to the distributed nature
of dataflow that is exploited by the recent proposals.

2. Compiling C to Hardware

This section describes how CASH translates C programs into
hardware dataflow machines. CASH represents the input program
using Pegasus [4, 5], a dataflow intermediate representation (IR).
The output of CASH is a hardware dataflow machine which di-
rectly executes the input program [45, 6].

A program is represented by a directed graph in which nodes
are operations and edges indicate value flow. CASH can gener-
ate drawings of the program representation using the dot lan-
guage [15], which we used to generate all the figures in this pa-
per. We briefly describe how programs represented as control-
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Figure 1: Control-flow operations: MU, SWITCH, ETA. Dotted lines
represent Boolean values.

flow graphs are translated to Pegasus. The translation is accom-
plished in two steps: first, the control-flow graph is divided into
acyclic regions. The current implementation uses hyperblocks [23]
as acyclic regions, trying to grow hyperblocks as large as possible.
Each region is separately converted to a predicated data flow repre-
sentation. The second phase of the translation stitches hyperblocks
together, creating the representation for a whole procedure.

From Hyperblocks to Dataflow. Each hyperblock is trans-
formed into straight-line code through the use of predication, us-
ing techniques similar to PSSA [8]. Within hyperblocks Pegasus
uses multiplexor (MUX) nodes instead of SSA φ-nodes.

Speculation is introduced by predicate promotion [22]: instruc-
tions without side-effects are executed unconditionally once a hy-
perblock is entered. Predication and speculation are thus core con-
structs in Pegasus. The former is used for translating control-flow
constructs into dataflow; the latter for reducing the criticality of
control-dependences [20]. They effectively increase ILP.

Some operations have lenient implementations: they can pro-
duce an output before all inputs are known. E.g., a Boolean AND

can generate a false result as soon as any input is known to be
false [45].

Steering Dataflow: MU, SWITCH and ETA. Pegasus uses three
special computational primitives to steer data between hyper-
blocks. Figure 1 shows their graphic representation. MU opera-
tions have n data inputs and one data output. At any moment at
most one of the n data inputs is available. That input is copied to
the output immediately. Pegasus uses MUs at the entry points of
a hyperblock. MU nodes can have a second output; the index of
the input that last received data, whose only purpose is to drive
SWITCH nodes.

SWITCH nodes serve the same purpose as MU nodes, having n
data inputs and one data output. However, they also have a control
input, which indicates which of the data inputs is expected to fire
next. SWITCHes are similar to MUXes, in the sense that the control
input selects which of the data inputs to forward. Unlike MUXes,
they expect only one data input to be present at a time.

CASH generates a special value called the current execution
point, abbreviated crt, which corresponds somewhat to a tradi-
tional “program counter”, and indicates the currently executing hy-
perblock. The invariant maintained is that there exists exactly a sin-
gle instance of a crt value in the whole program at any one point.
The crt value is always steered by MU nodes; the crt MU nodes pro-
vide the control for the SWITCH node inputs.

While MU and SWITCH nodes are used to steer data at the en-
try of a hyperblock, ETA nodes are used to steer data out of a hy-
perblock. Each ETA has two inputs — one for data and one for a
predicate — and one output. An ETA forwards the data to the out-

put if the predicate is true; if the predicate is false, the data is con-
sumed and nothing is forwarded.

Memory Accesses are represented through explicit LOAD and
STORE nodes. These operations, as others with side-effects, also
have a predicate input: if the predicate is false, the operation is not
executed.

The compiler adds dependence edges, called token edges, to ex-
plicitly synchronize operations whose side-effects may not com-
mute. Operations with memory side-effects (LOAD, STORE, CALL,
and RETURN) all have a token input. Token edges explicitly en-
code data flow through memory. An operation with memory side-
effects must collect tokens from all its potentially conflicting pre-
decessors (e.g., a STORE following a set of LOADs). The COMBINE

operator is used for this purpose. COMBINE has multiple token in-
puts and a single token output; it generates an output after it re-
ceives all its inputs.

For this paper we assume that all memory operations are con-
nected to a single load-store queue (LSQ), which interfaces the
dataflow machine to a conventional memory hierarchy. We imple-
ment an aggressive protocol for memory access: once a memory
operation has received a token, it reserves the next slot in the LSQ.
When additional inputs reach the operation (e.g., address, predi-
cate, or data for STOREs), it updates its reserved slot. The LSQ
performs dynamic disambiguation even with incomplete informa-
tion. As soon as the LSQ slot reservation succeeds, the operation
issues its token output, therefore enabling its successors to reserve
slots themselves. Given enough bandwidth to the LSQ and enough
storage space in the LSQ itself, the token part of the computation
will propagate ahead of the scalar computation. Note that scheme
is very similar to the operation of LSQ in a superscalar proces-
sor [34].

Synthesis. The hardware back-end synthesizes each node as
a distinct micropipeline stage [38], having a single output regis-
ter, and each edge as a channel connecting the source and desti-
nation pipe stages [45]. Each channel is composed of a data bus, a
data-ready signal, and an acknowledgment signal, used by the con-
sumer(s) to indicate they are ready to receive another value.

At run-time, each edge of the graph either holds a value or is
empty. Once all required inputs of an operation are available, it
can begin computing. The computation consumes the input values
and when the output is empty, it can latch the newly produced out-
put. This behavior corresponds to a static dataflow machine: i.e.,
each edge can hold at most one value in the single register.

Example. Figure 2 shows a function that uses i as an induc-
tion variable and sum to accumulate the sum of the squares of i.
On the right is the program’s Pegasus representation, which con-
sists of three hyperblocks. Hyperblock 1 receives the crt and n as
arguments and initializes i and sum to 0. Based on the compari-
son node labeled with (A), ETA nodes steer values to either hyper-
block 2 or 3. Hyperblock 2 represents the loop; it contains three
SWITCH nodes, one for each of the loop-carried values, i, n and
sum, and a MU node for crt (labeled (B) in the figure), which
drives the SWITCH nodes. Back-edges within a hyperblock denote
loop-carried values; in this example there are four such edges in
hyperblock 2. Hyperblock 3 is the function epilog, containing two
MERGE nodes — one for the return value and one for crt— and the
RETURN.



int squares(int n)
{

int i = 0,
sum = 0;

for (i=0;i<n;i++)
sum += i*i;

return sum;
}
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Figure 2: A C program and its Pegasus representation; each hyperblock is shown as a numbered rectangle. The dotted lines represent pred-
icates. The dashed lines are used to represent the flow of crt.

3. Performance Comparison

We compare ASH and superscalar by examining whole pro-
grams executions on timing-accurate simulators. Since there are
many parameters, one should interpret this comparison as a limit
study.

Experimental Setup. We make the following assumptions: (1)
arithmetic operations have the same latencies on both computa-
tional fabrics; (2) MUXes, SWITCHes, MUs and Boolean operations
have latencies proportional to the log of the number of inputs; (3)
ETA takes the same time as an addition; (4) memory operations
in ASH, as opposed to the superscalar, incur an additional cost for
network arbitration and propagation to the load-store queue (LSQ);
(5) the ASH latency through the memory access network is 1 cy-
cle, independent on the program size; (6) the memory hierarchy
used for both models is identical: a load-store queue (LSQ) and a
two-level cache hierarchy. The L1I$ latency for the CPU is 1 cy-
cle; the L1D$ latency is 2 cycles for both models. For this study
we use a similar LSQ for both fabrics. The LSQ has two input and
two output ports. We model the queueing for the LSQ ports. The
L2$ latency is 8 cycles, and the memory latency is 72 cycles.

Some of these assumptions are clearly optimistic for ASH
when dealing with whole programs. In particular, the complexity
of the memory access network and of the interconnection medium
for procedure calls and returns cannot be assumed constant. In the
best case the latency of these networks should grow as

√
n, where

n is the size of the compiled program, assuming a two-dimensional
layout.

The superscalar is a 4-way out-of-order SimpleScalar simu-
lation [7], using the off-the-shelf simulator, with a 4-wide is-
sue, 5-stage pipeline, with the PISA instruction set; we use gcc
2.7.2.3 with -O2 optimization flags, generating MIPS binaries.
The dataflow machine is simulated by using a high-level simula-
tor which is automatically generated by CASH. CASH is config-
ured to compile with maximum optimizations, and performs ex-
tensive loop unrolling.

Figure 3: Speed-up (percents) of Mediabench and SpecInt95
benchmarks executed on various dataflow machine configurations.
The reference is a superscalar four-way out-of-order processor.
Negative values indicate a slower execution on dataflow. The first
bar shows non-lenient execution performance (c.f. Section 5.3).
The second bar correspond to the baseline data-flow machine per-
formance. The last bar shows the effect of perfect ETA predicate
prediction (c.f. Section 5.1, Section 5.4).

Performance Measurements. We present data for all the
benchmarks that successfully compiled and simulated on our in-
frastructure. Naively we would expect that ASH is always
faster—since it benefits from (a) unlimited parallelism, (b) lack
of computational resource constraints, (c) dynamic schedul-
ing, and (d) no overhead for instruction fetch/decode/dispatch.
However, only some programs show performance improve-
ments (Figure 3). The rest of this paper is devoted to explaining
these results.



4. The Dynamic Critical Path

To understand the above results we characterize the program
execution by its dynamic critical path. This path is simultaneously
a function of program dependences, runtime execution path (which
is a function of the input data), hardware resources and dynamic
scheduling. Despite the apparent simplicity of the concept, only
recently has a practical methodology been proposed to extract and
analyze dynamic critical paths in superscalar processors [14, 13].

The key insight is that all critical events must be last arrival
events. Such an event is the last one which enables data to be
latched. Events correspond to signal transitions on the edges of
the dataflow graphs. Most often, the last-arrival event is the last
input to reach an operation. However, for lenient operations (see
Section 2) the last arrival event is the input that enables the com-
putation of the output. If a circuit experiences backlog, the last ar-
rival event may be the acknowledgment signal which enables the
computation to proceed. (The acknowledgment signal is the com-
pletement of the stall signal in the superscalar pipeline.) In a typi-
cal execution, multiple critical events may correspond to the same
hardware structure (i.e., the input to an operation may be critical
several times). One way to summarize the critical path is as a his-
togram of edges, where each edge is labeled with the number of
occurrences.

Since datapath hardware is never shared in ASH, the critical
path maps very naturally to program operations. This has enabled
us to completely automate the computation of the critical path.
We have implemented a utility that captures and post-processes
the complete execution trace produced by the simulator. First, the
tools filters out all but the last arrival events for each operation.
Then, the last arrival events trace is reversed and a continuous
chain of last arrival events is computed starting with the last op-
eration executed. This chain is the dynamic critical path. Finally,
the tool generates a drawing of a specified function with the criti-
cal path edges highlighted proportionally to their frequency of oc-
currence. Throughout the rest of this paper we rely on this tool to
understand performance differences between the superscalar pro-
cessor and ASH.

5. Insights from the Critical Path

In this section we use the critical path to investigate the impact
on performance of various microarchitectural and compiler mech-
anisms. We discuss several hot functions which exhibit poor per-
formance on ASH, and whose behavior is representative for other
program fragments.

5.1. Outer Loop Pipelining
Branch prediction, in addition to reducing pipeline bubbles, is

instrumental in creating loop parallelism.
Figure 4 shows a code fragment from the epic d Mediabench

program whose performance on ASH is about 66% of the su-
perscalar due to the lack of branch prediction. There are three
branches involved in two very shallow nested loops: (1) the do
backwards branch, mostly not taken (this loop iterates either once
or twice); (2) the if branch, almost always taken; and (3) the for
backwards branch, almost always taken. There are 8 machine in-
structions in the outer loop body, and the processor window is large

internal_int_transpose(int *mat,int rows,int cols){
register int modulus = rows*cols - 1;
register int swap_pos, current_pos, swap_val;

for(current_pos=1;current_pos<modulus;current_pos++)
{

swap_pos = current_pos;
do {

swap_pos = (swap_pos * cols) % modulus;
} while (swap_pos < current_pos);

if ( current_pos != swap_pos ) {
swap_val = mat[swap_pos];
mat[swap_pos] = mat[current_pos];
mat[current_pos] = swap_val;

}
}

}

Figure 4: The internal int transpose function from the
epic d benchmark from Mediabench, which exhibits poor per-
formance on ASH.

enough to hold several iterations in flight. The innermost loop con-
tains a tight long-latency true loop-carried data dependence, be-
tween swap pos and its new value, which apparently cannot be
accelerated unless some form of value prediction is used.

However, by using branch prediction the processor can effec-
tively issue a second iteration of the outermost for loop before
completing the previous one. The iterations of the outer for are
effectively pipelined. The critical resource in this loop is thus the
single division unit, which is not pipelined, and takes 24 cycles to
complete a modulus. Indeed, the throughput of this function av-
erages 27 cycles per outer loop iteration on the CPU. The cost of
most of the other operations in the loop (e.g., multiply, branches,
memory accesses) is hidden by the division.

In ASH the most important part of the critical path is shown in
bold lines in Figure 5(a). (We have omitted all nodes that are not
on the critical path.) The thickest edges have a higher frequency.
The performance of this code is hampered by the explicit sequenc-
ing of control along the three hyperblocks. In particular, a new
iteration of the outer loop cannot be initiated as long as the in-
ner loop has not terminated. The predicates controlling both the
loops (the < operations) are on the critical path. This also puts
the three-cycle multiplier on the critical path. The extra operations
on this path sum up to 12 cycles, which corresponds to the ob-
served 33% slowdown. The inner loop “<” is the “last” value com-
puted within the innermost loop and it is immediately used to de-
cide whether to loop again. The outer loop comparison “<” could
be computed much earlier, since both its inputs are known. How-
ever, the value of current pos, which is unchanged within the
do loop, is not propagated out of the inner loop until its iterations
have completed.

5.2. Bypassing Across Control-Equivalent Hyper-
blocks

The hyperblocks surrounding the inner loop in Figure 5(a) are
control-equivalent, so the computation of the condition of the outer
loop can be lifted to be performed in parallel with the inner loop.
This optimization is called bypass [17], since the invariant value
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Figure 5: Dynamic critical path of the function internal int transpose.

/* x > 0 - 66% */
/* x <= 0 - 33% */
if (x > 0)

y = -x;
else

y = b*x;
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Figure 6: Sample program fragment and the corresponding criti-
cal path with strict and lenient execution. When strict execution is
employed, the multiplier is on the critical path; with a lenient im-
plementation of the MUX, the multiplier is critical only when its
result is used by latter computations.

of current pos is forwarded directly without crossing the in-
ner loop. Bypassing allows the static data flow machine to ex-
ploit control-independence, a graph property that cannot be ex-
pressed in regular ISAs [20], but can aid in improving program
performance [30, 10]. This observation was one of the original
motivations of Multiscalar Processors [36], which employ multi-
ple threads for this purpose.

Performing this optimization changes the critical path as shown
in Figure 5(b). Nevertheless the performance of the code fragment
improves by only 4.5%, since we have removed only two inexpen-
sive operations. The critical path along the outer loop is now solely
composed of the machinery required to control the global flow of
the computation.

5.3. Lenient Execution
The form of speculative execution employed by Pegasus, which

executes all forward branches simultaneously, alleviates the im-
pact of branches, but may be plagued by the problem of unbal-

anced paths, well-known from the literature on predicated execu-
tion [2], as illustrated in Figure 6: if a MUX waits for all inputs to
generate the result, the critical path of the entire construct always
includes the longest of the critical paths of the inputs. We use le-
niency to solve this problem. MUXes are implemented leniently:
as soon as a selector is true and the corresponding data is avail-
able, a MUX generates its output. A result of leniency is that the
dynamic critical path is the same as in a non-speculative imple-
mentation. For example, when the multiplication in Figure 6 is not
used, it does not affect the critical path.

Figure 3’s first bar illustrates ASH’s lackluster performance in
the absence of lenient execution.

5.4. Control Dependences and Predicates

Branch prediction not only decreases pipeline bubbles and in-
creases parallelism, it also can eliminate control dependences, as
Figure 7 shows. In this example ASH is two times slower than the
processor. Figure 8(a) shows the essential part of the optimized
code generated by CASH with the critical path highlighted. As in
the case of the previous function, the predicate deciding whether
the loop should iterate is again the last thing computed, because
it depends on the loaded value. The critical path contains not only
the LOAD but the LOAD predicate computation as well, since it in-
dicates whether the LOAD needs to be executed or not.

Figure 8(b) shows the critical path when the value of the &&
(the ETA predicate) is perfectly predicted. Under the assumption
that the LOAD is not executed speculatively, the critical path now
goes through the LOAD predicate, which prevents the LOAD from
being issued early to memory.



void init_processor(void)
{
int i, j;
for(i = 0; i < 64; i++)
{
for(j = 0; SFU0bits[j].regnum != 0xFFFFFFFF; j++)

if(SFU0bits[j].regnum == i) break;
m88000.SFU0_regs[i] = SFU0bits[j].reset;

}
}

LOOP:
L1: beq $v0,$a1,EXIT
L2: addiu $v1,$v1,20
L3: lw $v0,0($v1)
L4: addiu $a0,$a0,1
L5: bne $v0,$a3,LOOP
EXIT:

(a) Source code. (b) gcc MIPS assembly for the inner
loop.

Figure 7: The function init processor from the SpecInt95 benchmark 124.m88ksim.
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(c) Critical path with speculative loads. (d) Path with both predicate prediction and speculative LOADs.
The most frequent edges form a tight loop: LOAD address →
LOAD→ ack edge to LOAD address.

Figure 8: Dynamic critical path of the function init processor. The LOAD fetches a 4-bytes word, and is shown as =[4].

5.5. Issuing Loads Speculatively
We have modified the LSQ connected to the dataflow machine,

allowing it to initiate a LOAD that reaches the head of the queue
speculatively, i.e., without waiting for a confirmation that the ac-
tual predicate value is true. After this change the critical path con-
tains the address computation, as shown in Figure 8(c). The prob-
lem is that the address computation for the next iteration is not
made speculatively — it needs to know that the next iteration is
initiated before starting the computation.

The superscalar code is shown in Figure 7(b). The code con-
tains a loop-carried dependence involving four of the five instruc-
tions (L1control−→ L2true−→L3true−→L5control−→ L1), so the latency through
this loop ought to be at least four cycles. However, if branch pre-
diction correctly guesses the outcome of the two branches, the con-
trol dependences vanish from the critical path, and the only re-
maining circular dependence is between L2 and itself. A 5-wide
processor with good branch prediction can execute this loop in
only one cycle per iteration!



Going back to ASH, when combining LOAD speculation and
ETA predicate prediction, the critical path is shown in Figure 8(d).
The critical path now contains an acknowledgment edge, from the
LOAD to its address computation. Technically the limiting depen-
dence is an anti-dependence between the output register of the
LOAD and itself, from two consecutive iterations. This dependence
stems from the fact that the LOAD has a single output register, and
therefore cannot acknowledge its address input before it has suc-
cessfully latched its result. However, despite hitting in the cache,
the latency of the LOAD is more than two cycles — it takes one cy-
cle just to get to the LSQ, and then two more cycles to hit into
L1, and one more cycle to return the result. Each loop iteration la-
tency is bounded below by the latency of the longest operation in
the loop, which in this case is the LOAD.

A superscalar processor removes the load anti-dependence by
register renaming: each issued load writes its result to a differ-
ent physical register. It can therefore have multiple instances of
the same load operation in flight. If the memory system supports
pipelined load operations, it can sustain a very high throughput for
this loop. This proves that a dynamic dataflow model (i.e., which
allows multiple values for each graph edge), which is well approxi-
mated by a Superscalar when enough computational resources are
present, is strictly more powerful than a static model — the one
employed in our dataflow machines.

We can address this in the static dataflow model in two ways:

(1) Pipelining the LOAD operation itself to allow multiple si-
multaneous accesses initiated by the same operation. This solution
requires either hardware in the LOAD that must be able to buffer
and handle out-of-order replies from the memory system for mul-
tiple outstanding LOAD requests (i.e. a reorder buffer), or a simpler
FIFO buffer and a memory system that returns replies in-order.

(2) Using loop unrolling, which transforms one LOAD into mul-
tiple LOADs made in parallel. The latency of the computation is
still bounded below by the latency of a LOAD, but the limit now
applies to code containing multiple iterations of the original loop,
so the throughput is increased. This option is discussed next.

5.6. Dynamic Loop Unrolling

When we statically unroll the init processor loop and use
perfect branch prediction, the performance on ASH approaches but
still does not equal the superscalar processor. The reason is that
the inner loop executes different numbers of iterations at differ-
ent times: sometimes it iterates many times, but sometimes it iter-
ates only once. Static unrolling only helps when the number of it-
erations is large. This is exacerbated by the fact that in CASH the
unrolling of inner loops creates a large loop whose body is a sin-
gle hyperblock—all of whose instructions must be executed, due
to predicate promotion and speculative execution. Thus, when the
loop has a single iteration, all the extra code from unrolling is pure
overhead.

The superscalar does well on this loop without compiler un-
rolling, because it performs dynamic unrolling: it unrolls the loop
at run-time inside the instruction window, as guided by the branch
predictor. The only overhead it pays is when prediction fails.

int unused_arg(int unused, int used)
{ return used; }

int main()
{

....
return unused_arg(EXPENSIVE(i), i);

}

Figure 9: Sample synthetic code exhibiting reduced performance
due to the strictness of the CALL and RETURN instructions.

5.7. Call Strictness

The program in Figure 9 shows how two superscalar mecha-
nisms provide an advantage in the implementation of procedure
calls: (1) the decoupling of control transfer and argument forward-
ing, and (2) out-of-order execution. In this example the function
unused arg ignores its first argument, which is computed us-
ing some expensive expression. In the current version of ASH, the
CALL instruction is a single circuit element, and has a strict im-
plementation, i.e., it waits for all arguments to be available before
transferring control to the callee. Therefore, the critical path con-
tains the expensive computation.

The superscalar passes the call arguments in registers and the
call instruction is just a branch. The net effect is that the call in-
struction is lenient, since control may be passed to a procedure
before all its arguments are computed. In this example, the proce-
dure may even return before the expensive computation is termi-
nated, because its result is unused.

A similar problem plagues the current ASH implementation of
the RETURN instruction: this is strict in all three of its arguments —
the value returned, the memory token, and crt. In contrast, the pro-
cessor just writes the return value to a register and branches back
to the caller. The return branch may complete much earlier than the
actual register write-back. If the caller ignores the returned value
(a frequent occurrence in C functions), the returned value compu-
tation may vanish from the critical path (assuming it does not stall
the processor through the use of resources or through the in-order
commit stage.)

The simplest solution to this problem in the dataflow machine,
not always applicable, is to inline the callee. We are also consid-
ering CALL/RETURN implementations which allow lenient invoca-
tions.

5.8. Synchronization Overhead

Another feature of ASH which has a detrimental impact on per-
formance is the run-time cost of steering the data flow. This ma-
chinery, which is not required by the superscalar, adds significant
overhead to the execution cost. First, ETAs, which roughly corre-
spond to conditional branches in a superscalar, incur a propagation
delay. This contrasts with the superscalar which relies on branch
prediction to significantly reduce the cost of conditional branch-
ing. Moreover superscalar microarchitectures may rely on branch
folding [12] to execute many branches with truly zero cost. Fig-
ure 10’s first bar illustrates the performance gains assuming ETAs
incur no delay; performance improvements are noticeable.



Figure 10: Speed-up (percents) of Mediabench and SpecInt95
benchmarks executed on various dataflow machine configurations.
The reference is the baseline data flow machine. The first and sec-
ond bar assume, respectively, that ETA and COMBINE have no cost.
The last bar shows the impact of eliminating the cost of control-
flow operations.

In ASH control-flow graph join points also require to extra ma-
chinery, namely SWITCH, MU, and MUX nodes. These nodes corre-
spond roughly to labels in assembly language and have a cost log-
arithmic in the number of inputs, whereas in the superscalar labels
are essentially free. Figure 10’s last bar corresponds to ASH per-
formance under the assumption these operations incur zero delay.
As the performance improvements demonstrate, there is a signifi-
cant amount of extra cost associated with control flow join points
in ASH. Note that some proposed processor architectures support-
ing predication may also inject “multiplexor” micro-operations
[47], which will incur a run-time cost. (This is also true of the
“conditional move” instructions.)

Even the COMBINE operator, which is used to enforce run-
time memory dependences, sometimes contributes to the critical
path. The cost of a COMBINE is logarithmic in the number of in-
puts. COMBINE operators with a large fan-in, which can arise be-
cause of an ambiguous reference or because of a STORE follow-
ing a large set of LOADs, can incur a substantial run-time over-
head. Figure 10’s second bar correspond to the achievable perfor-
mance assuming COMBINEs have zero cost.

We believe this is a fundamental issue: the tension between par-
allelism and synchronization overhead, that is manifested here at
the level of individual instructions. Dataflow replaces global in-
formation (e.g., the program counter or the branch predictor) with
explicit communication and synchronization. The steering of data
by ETA, MUX, MU, and SWITCH nodes requires coordination be-
tween multiple nodes, and also a broadcast of the branch condition.
Even though the cost of each of these operations is low, it still be-
comes an important overhead in very tight loops, such as the ones
exemplified in this section. Other distributed architectures, such as
MIT’s Raw, also have to pay for broadcasting the branch condi-
tions to the remote computations [21]. This is one of the reasons
that executing control-intensive code on a single Raw tile often is
faster than parallelizing the code across multiple tiles [40].

6. Related Work

One can interpret these results as a limit study on the amount
of ILP available in C programs. Many studies exploring the inter-
play between architectural features, compilers and ILP have been
carried during the course of the years [20, 46, 41, 27, 36, 9, 35, 42,
24, 29, 19, 26, 18, 43, 39]. We study the behavior of large C pro-
grams using timing-accurate simulation of both a superscalar pro-
cessor and a static dataflow machine; memory bandwidth is also
modeled. We now discuss the distinguishing aspects of this work.

Memory Disambiguation / Dependence Analysis: Memory
dependences are a known stumbling block to exposing ILP. Trace
based studies found a significant increase in the available paral-
lelism when relying on perfect memory disambiguation [41, 46].
Our study relies only on realistic, compiler based, memory depen-
dence analysis coupled with run-time disambiguation in the load-
store queue.

Control Dependences: Exploiting control dependences al-
lows a larger amount of ILP to be exposed without relying on
speculation. Trace based studies quantified the impact of exploit-
ing control dependences to increase the available parallelism and
found significant gains [20, 41]. A less ambitious approach is to
enable early execution of instructions from control equivalent ba-
sic blocks. Rotenberg [30] studied the effectiveness of this ap-
proach in the context of a superscalar processor, in this work we
also exploit this technique in the context of a data flow machine;
more recently Chen-Yong [10] proposed a superscalar microar-
chitecture, Skipper, that also exploits control-independence. In-
stead of speculating on hard-to-predict branches Skipper executes
control-equivalent instructions; which are always executed regard-
less of the branch outcome. Execution of instructions control de-
pendent on the branch proceed after the hard-to-predict branch is
resolved.

Branch prediction: Branch predition coupled with specula-
tive execution is another sucessfull technique to reduce the impact
of control flow on paralelism [48, 49]; we evaluate the impact of
no branch prediction and perfect branch prediction on dataflow.

Instruction Window Size and ILP: Our static data flow ma-
chine exploits all the parallelism that can be identified by our
compiler; constrasting with other studies in which parallelism is
extracted dynamically from a limited size parametrizable win-
dow [46, 41].

Dataflow Computation: Recent publications that compare
WaveScalar [39] — a model of computation similar to our dataflow
architecture — with a very wide superscalar have reached quite
different conclusions from ours, implying that a dataflow model
of execution has the potential for high parallelism on integer-type
benchmarks. WaveScalar assumes a model of execution closer to
dynamic dataflow, but uses a significantly different memory access
protocol to ensure coherence. As this work shows, performance
differences cannot be easily ascribed to a single aspect of the ar-
chitecture; a detailed evaluation would need to be carried out to
compare the two models in a fair way.

The TRIPS project [31] studies a hybrid form of execution,
somewhere between dynamic dataflow and superscalar proces-
sors: there is a very wide instruction word which drives a data-
flow limited-size fabric. This work attempts to accurately mod-
els the cost of communication across the 2-D lattice of functional



units. Exploiting ILP in control-intensive programs is quite diffi-
cult for this type of architecture as well. The numbers in [32] show
sustained IPC below 2 for SpecInt95, even with perfect memory
dependence prediction; a monolithic memory disambiguation en-
gine [11] can obtain only around 80% of the benefits. Implement-
ing a distributed memory disambiguation mechanism may also in-
cur some additional synchronization costs, corresponding to our
COMBINE operators.

There is also a large amount of work on dataflow computa-
tion [44], but the vast majority used parallel functional languages,
and thus cannot be used for a fair comparison with our implemen-
tation.

7. Conclusions

From the performance results and from our analysis of some
critical code segments, we conclude that in our model of dataflow
execution there are some fundamental limitations towards the ex-
ploitation of ILP:

(1) Control dependences still limit ILP, as they do for non-
predicated code [20]. It is well known that predication, which
we employ aggressively, does not completely eliminate unpre-
dictable branches, but only propagates unpredictability to other
branches [33].

(2) Implementing a generic prediction scheme (be it branch
prediction or value prediction) in a dataflow model is hindered by
the difficulty of building a mechanism for squashing the computa-
tion on the wrong paths. The register renaming mechanism of a su-
perscalar provides such a mechanism for free. An interesting pro-
posal for a distributed dataflow implementation of speculation was
made in [28].

(3) Even assuming control-flow speculation can be squashed,
good quality prediction often requires “global” information (e.g.,
two-level branch prediction, memory dependence prediction, etc.).
Such an implementation may not naturally map to the distributed
nature of ASH dataflow machines.

(4) The ability of register renaming to remove anti-
dependences between the same operation in different itera-
tions is crucial for efficiently executing tight loops.

(5) The distributed nature of the computation in a dataflow ma-
chine requires more remote accesses (i.e., even LSQ accesses be-
come non-local), which are more expensive than in a monolithic
system.

(6) The cost of the explicit “join” operations in the representa-
tion (MU, SWITCH, MUX, COMBINE), all of which are essentially
“free” in a processor, can be substantial. This is the cost of syn-
chronization which replaces the global signals in monolithic ar-
chitectures.

This study has increased our admiration for the capability of
superscalar processors of exploiting ILP and pipeline parallelism,
through the virtualization of a very limited set of resources: com-
putational units, registers, and bandwidth on both internal and ex-
ternal interconnection networks. Since there is no free lunch, the
price paid for the effectiveness in exploiting ILP is power con-
sumption: 90% of the die of Pentium 4 (even excluding the caches)
is devoted only to support structures, trying to keep the functional
units busy. The dataflow model we have presented lies at the other
extreme: it lacks all helper structures, can provide excellent perfor-

mance on code with ample data parallelism, but may be as much
as two times slower than a superscalar for control-intensive code.
However, as we show in [6], ASH uses 1000 times less power to
perform the same tasks. We believe that there is a place for both
models of computation.

We conclude that for control-intensive code, with relatively
low ILP, the superscalar performance is excellent compared to a
dataflow machine. Performance-wise, dataflow is a winning solu-
tion for programs exhibiting a large amount of parallelism, which
it can execute with high performance and low power. More re-
search is needed for designing a balanced hybrid which can inherit
more of the strengths of both models of computation.
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