Bitwise: Optimizing Bitwidths Using Data-Range
Propagation
by
Mark William Stephenson

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2000
(© Mark William Stephenson, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Department of Electrical Engineering and Computer Science
May 5, 2000

Certified Dyo
Saman Amarasighe

Assistant Professor

Thesis Supervisor

Accepted by . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Bitwise: Optimizing Bitwidths Using Data-Range
Propagation
by
Mark William Stephenson

Submitted to the Department of Electrical Engineering and Computer Science
on May 5, 2000, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

This thesis introduces Bitwise, a compiler that minimizes the bitwidth — the number
of bits used to represent each operand — for both integers and pointers in a pro-
gram. By propagating static information both forward and backward in the program
dataflow graph, Bitwise frees the programmer from declaring bitwidth invariants in
cases where the compiler can determine bitwidths automatically. Because loop in-
structions comprise the bulk of dynamically executed instructions, Bitwise incorpo-
rates sophisticated loop analysis techniques for identifying bitwidths. We find a rich
opportunity for bitwidth reduction in modern multimedia and streaming application
workloads. For new architectures that support sub-word data-types, we expect that
our bitwidth reductions will save power and increase processor performance.

This thesis also applies our analysis to silicon compilation, the translation of
programs into custom hardware, to realize the full benefits of bitwidth reduction.
We describe our integration of Bitwise with the DeepC Silicon Compiler. By taking
advantage of bitwidth information during architectural synthesis, we reduce silicon
real estate by 15 — 86%, improve clock speed by 3 — 249%, and reduce power by 46 —
73%. The next era of general purpose and reconfigurable architectures should strive
to capture a portion of these gains.

Thesis Supervisor: Saman Amarasighe
Title: Assistant Professor

Acknowledgments

First and foremost Id like to thank my advisor Saman Amarasinghe for sinking a great
deal of time and energy into this thesis. It was great working with him. Jonathan
Babb also helped me a great deal on this thesis. I'd like to thank him for letting me
use his silicon compiler to test the efficacy of my analysis.

I also received generous help from the Computer Architecture Group at MIT. In
particular, I want to thank Matt Frank, Michael Zhang, Sam Larsen, Derek Bruening,
Andras Moritz, Benjamin Greenwald, Michael Taylor, Walter Lee, and Rajev Barua
for helping me in various ways. Special thanks to Radu Rugina for providing me with
his pointer analysis package. Thanks to the National Science Foundation for funding
me for the last two years.

This research was funded in part by the NSF grant EIA9810173 and DARPA
grant DBT63-96-C-0036.

Contents

Introduction

1.1 A New Era: Software-Exposed Bits
1.2 Benefits of Automating Bitwidth Specification
1.3 The Bitwise Compiler.
1.4 Application to Silicon Compilation
1.5 Contributions

1.6 Organization
Bitwidth Analysis

Bitwise Implementation

3.1 Candidate Lattices o .
3.1.1 Propagating the Bitwidth of Each Variable
3.1.2 Maintaining a Bit Vector for Each Variable
3.1.3 Propagating Data-Ranges

3.2 Data-Range Propagation,

Loop Analysis

4.1 Closed-Form Solutions
4.2 Sequence Identificationo
4.3 Sequence Exampleo
4.4 Termination Lo

4.5 Loops and Backward Propagation

5

11
11
12
13
13
14
14

15

17
17
17
18
18
19

5 Arrays, Pointers, Globals, and Reference Parameters
5.1 Arrays oL
5.2 Pointers L

5.3 Global Variables and Reference Parameters.

6 Bitwise Results

6.1 Experiments L Lo
6.2 Register Bit Elimination
6.3 Memory Bit Elimination 00000
6.4 Bitwidth Distributiono o000

7 Quantifying Bitwise’s Performance

7.1 DeepC Silicon Compiler
7.1.1 Implementation Details
7.1.2 Verilog Bitwidth Rule

7.2 Impact on Silicon Compilation
7.2.1 Experimentso
7.2.2 Registers Saved in Final Silicon
723 Areao
724 ClockSpeed oo
7.2.5 Power
7.2.6 Discussion Lo

8 Related Work

9 Conclusion

33
33
34
35

37
37
39
40
41

47
47
48
48
48
49
49
ol
93
23
95

57

59

List of Figures

2-1

3-1
3-2
3-3

4-1
4-2

4-4
4-5
4-6

Sample C code to illustrate fundamentals.

Three alternative data structures for bitwidth analysis.
Forward and backward data-range propagation.

A selected subset of transfer functions for data-range propagation. . .

Pseudocode for the algorithm that solves closed-form solutions.
A lattice that orders sequences according to set containment.
Example loop. oL oL
SSA graph corresponding to example loop.
A dependence graph of sequences.

Backward propagation within loops.o

Compiler flow o oo
Percentage of total register bits. o000
Percentage of total memory remaining after bitwidth analysis.

A bitspectrum of the benchmarks we considered.

Register bits after Bitwise optimization.
Register bit reduction in final silicon.
FPGA area after Bitwise optimization.
FPGA clock speed after Bitwise optimization.

ASIC power after Bitwise optimization.

27
28
29
29
30
32

20
92

List of Tables

6.1 Benchmark characteristics 39
6.2 Number of bits in programs before and after bitwidth analysis 42
6.3 Table showing memory bits remaining after bitwidth analysis. 43
6.4 The bitspectrum in tabular format. 45

10

Chapter 1

Introduction

The pioneers of the computing revolution described in Steven Levy’s book Hack-
ers [16] competed to make the best use of every precious architectural resource. They
hand-tuned each program statement and operand. In contrast, today’s programmers
pay little attention to small details such as the bitwidth (e.g., 8, 16, 32) of data-types
used in their programs. For instance, in the C programming language, it is common
to use a 32-bit integer data-type to represent a single Boolean variable. We could
dismiss this shift in emphasis as a consequence of abundant computing resources and
expensive programmer time. However, there is another historical reason: as processor
architectures have evolved, the use of smaller operands eventually has provided no
performance gains. Datapaths became wider, but the processor’s entire data path
was exercised regardless of operand size. In fact, the additional overhead of pack-
ing and unpacking words — now only to save space in memory — actually reduces

performance.

1.1 A New Era: Software-Exposed Bits

Three new compilation targets for high-level languages are re-invigorating the need
to conserve bits. Each of these architectures expose subword control. The first is the
rejuvenation of SIMD architectures for multimedia workloads. These architectures

include Intel’s MultiMedia eXtension (MMX) and Motorola’s Altivec [19, 24]. For

11

example, in Altivec, data paths are used to operate on 8, 16, 32, or 64 bit quantities.

The second class of compilation targets consists of embedded systems which can
effectively turn off bit slices [6]. The static information determined at compile time
can be used to specify which portions of a datapath are on or off during program
execution. Alternatively, for more traditional architectures this same information
can be used to predict power consumption by determining which datapath bits will
change over time.

The third class of compilation targets comprises fine-grain substrates such as gate
and function-level reconfigurable architectures — including Field Programmable Gate
Arrays (FPGAs) — and custom hardware, such as standard cell ASIC designs. In
both cases, architectural synthesis is required to support high-level languages. There
has been a recent surge of both industrial and academic interest in developing new
reconfigurable architectures [17].

Unfortunately, there are no available commercial compilers that can effectively
target any of these new architectures. Programmers have been forced to revert to
writing low-level code. MMX libraries are written in assembly in order to expose the
most sub-word parallelism. In the Verilog and VHDL hardware description languages,
the burden of bitwidth specification lies on the programmer. To compete in the
marketplace, designers must choose the minimum operand bitwidth for smaller, faster,

and more energy-efficient circuits.

1.2 Benefits of Automating Bitwidth Specification

Automatic bitwidth analysis relieves the programmer of the burden of identifying
and specifying derivable bitwidth information. The programmer can work at a higher
level of abstraction. In contrast, explicitly choosing the smallest data size for each
operand is not only tedious, but also error prone. These programs are less malleable
since a simple change may require hand propagation of bitwidth information across
a large segment of the program. Furthermore, some of the bitwidth information

may be dependent on a particular architecture or implementation technology, making

12

programs less portable.

Even if the programmer explicitly specifies operand sizes in languages that allow
it, bitwidth analysis can still be valuable. For example, bitwidth analysis can be used
to verify that specified operand sizes do not violate program invariants — e.g., array

bounds.

1.3 The Bitwise Compiler

Bitwise minimizes the bitwidth required for each static operation and each static
assignment of the program. The scope of Bitwise includes fixed-point arithmetic, bit
manipulation, and Boolean operations. It uses additional sources of information such
as type casts, array bounds, and loop iteration counts to refine variable bitwidths.

We have implemented Bitwise within the SUTF compiler infrastructure [25].

In many cases, Bitwise is able to analyze the bitwidth information as accurately
as the bitwidth information gathered from run-time profiles. On average we reduce

the size of program scalars by 12 — 80% and program arrays by up to 93%.

1.4 Application to Silicon Compilation

In this thesis we apply bitwidth analysis to the task of silicon compilation. In partic-
ular, we have integrated Bitwise with the DeepC Silicon Compiler [2]. The compiler
produces gate-level netlists from input programs written in C and FORTRAN. We
compare end-to-end performance results for this system both with and without our
bitwidth optimizations. The results demonstrate that the analysis techniques per-
form well in a real system. Our experiments show that Bitwise favorably impacts

area, speed, and power of the resulting circuits.

13

1.5 Contributions

This thesis’ contributions are summarized as follows:
e We formulate bitwidth analysis as a value range propagation problem.

e We introduce a suite of bitwidth extraction techniques that seamlessly perform

bi-directional propagation.

e We formulate an algorithm to accurately find bitwidth information in the pres-

ence of loops by calculating closed-form solutions.

e We implement the compiler and demonstrate that the compile-time analysis can

approach the accuracy of run-time profiling.

e We incorporate the analysis in a silicon compiler and demonstrate that bitwidth

analysis impacts area, speed, and power consumption of a synthesized circuit.

1.6 Organization

The rest of the thesis is organized as follows. Chapter 2 defines the bitwidth analysis
problem. Bitwise’s implementation and our algorithms are described in Chapters 3, 4,
and 5. Chapter 6 provides empirical evidence of the success of Bitwise. Next, Chap-
ter 7 describes the DeepC Silicon Compiler and the impact that bitwidth analysis has
on silicon compilation. Finally, we present related work in Chapter 8 and conclude

in Chapter 9.

14

Chapter 2

Bitwidth Analysis

The goal of bitwidth analysis is to analyze each static instruction in a program to
determine the narrowest return type that still retains program correctness. This
information can in turn be used to find the minimum number of bits needed to

represent each program operand.

Library calls, I/O routines, and loops make static bitwidth analysis challenging.
In the presence of these constructs, we may have to make conservative assumptions
about an operand’s bitwidth. Nevertheless, with careful static analysis, it is possible

to infer bitwidth information.

Structures such as arrays and conditional statements provide us with valuable
bitwidth information. For instance, we can use the bounds of an array to set an
index variable’s maximum bitwidth. Other program constructs such as AND-masks,
divides, right shifts, type promotions, and Boolean operations are also invaluable for

reducing bitwidths.

The C code fragment in Figure 2-1 exhibits several such constructs. This code,
which is an excerpt of the adpcm benchmark presented later in this thesis, is typical
of important multimedia applications. Each line of code in the figure is annotated

with a line number to facilitate the following discussion.

Assume that we do not know the precise value of delta, referenced in lines (1),

(7), and (9). Because it is used as an index variable in line (1), we know that its

15

(1) index += indexTable[deltal;

(2) if (index < 0) index = 0;

(3) if (index > 88) index = 88;

(4) step = stepsizeTable[index];

(5)

(6) if (bufferstep) {

(7 outputbuffer = (delta << 4) & 0xf0;

(8) 1} else {

(9) *xoutp++ = (delta & 0x0f) |

(10) (outputbuffer & 0xf0);
(11) %

(12) bufferstep = !bufferstep;

Figure 2-1: Sample C code used to illustrate the fundamentals of the analysis. This code
fragment was taken from the loop of adpcm_coder in the adpcm multimedia benchmark.

value is confined by the base and bounds of indexTable!. Though we still do not
know delta’s precise value, by restricting the range of values that it can assume, we
effectively reduce the number of bits needed to represent it. In a similar fashion, the
code on lines (2) and (3) ensure that index’s value is restricted to be between 0 and
88.

The AND-mask on line (7) ensures that outputbuffer’s value is no greater than
0xf0. Similarly, we can infer that the assignment to *outp on line (9) is no greater
than Oxff (0x0Of | 0xf0).

Finally, we know that bufferstep’s value is either true or false after the assign-

ment on line (12) because it is the result of the Boolean not (!) operation.

LOur analysis assumes that the program being analyzed is error free. If the program exhibits
bound violations, arithmetic underflow, or arithmetic overflow, changing operand bitwidths may
alter its functionality.

16

Chapter 3

Bitwise Implementation

The next three chapters describe the infrastructure and algorithms of Bitwise, a
compiler that performs bitwidth analysis. Bitwise uses SSA as its intermediate form.
It performs a numerical data flow analysis. Because we are solving for absolute
numerical bitwidths, the more complex symbolic analysis is not needed [22].

We continue by comparing the candidate data-flow lattices that were considered

in our implementation.

3.1 Candidate Lattices

We considered three candidate data-structures for propagating the numerical infor-
mation of our analysis. Figure 3-1 visually depicts the lattice that corresponds to

each data-structure.

3.1.1 Propagating the Bitwidth of Each Variable

Figure 3-1(a) is the most straightforward structure. While this representation permits
an easy implementation, it does not yield accurate results on arithmetic operations.
When applying the lattice’s transfer function, incrementing an 8-bit number always
produces a 9-bit resultant, even though it may likely need only 8-bits. In addition,

only the most significant bits of a variable are candidates for bit-elimination.

17

INT i, = MIn(INT) bR = ONT i INT 01

Lhw =32 INT o = MRX(INT)
?"1 UINT i INT o — 10 (INT i+ L INT, 1]
OgL O O /\/\

: QNT i INT o = 20 ONT i+ LINT, 0 — 11 QNT,p+ 2, INT 00

1 0< >1 0 1..-0 1 . : :

0 Upt UaL UL INT i INT i JXINT i+ 1, INT) + D G-, —15X0, OFXL, 131 (INT oy — L INT o ~UXINT, L INT, 8

Mgy W
Upr

(a) (b) (c)

Figure 3-1: Three alternative data structures for bitwidth analysis. The lattice in (a)
represents the number of bits needed to represent a variable. The lattice in (b) represents a
vector of bits that can be assigned to a variable, and the lattice in (c) represents the range
of values that can be assigned to a variable.

3.1.2 Maintaining a Bit Vector for Each Variable

Figure 3-1(b) is a more complex representation, requiring the composition of several
smaller bit-lattices [7, 20]. Although this lattice allows elimination of arbitrary bits
from a variable’s representation, it does not support precise arithmetic analysis. As an
example of eliminating arbitrary bits, consider a particular variable that is assigned
the values from the set {0105, 1002, 1102}. After analysis, the variable’s bit-vector will
be [TT0], indicating that we can eliminate the least significant bit. Like the first data
structure, the arithmetic is imprecise because the analysis must still conservatively

assume that every addition results in a carry.

3.1.3 Propagating Data-Ranges

Figure 3-1(c) is the final lattice we considered. This lattice is also the implementation
chosen in the compiler. A data-range is a single connected subrange of the integers
from a lower bound to an upper bound (e.g., [1..100] or [-50..50]). Thus a data-range
keeps track of a variable’s lower and upper bounds. Because only a single range is
used to represent all possible values for a variable, this representation does not permit
the elimination of low-order bits. However, it does allow us to operate on arithmetic
expressions precisely. Technically, this representation maps bitwidth analysis to the

more general value range propagation problem. Value range propagation is known

18

to be useful in value prediction, branch prediction, constant propagation, procedure
cloning, and program verification [18, 22].

For the Bitwise compiler we chose to propagate data-ranges, not only because
of their generality, but also because most important applications use arithmetic and
will benefit from their exact precision. Unlike a regular set union, we define the data-
range union operation (L) to be the union over the single connected subrange of the
integers where {(a;, ap) U (b, by) = (min(a;, b;), maz(an,by)). We also define the data-
range intersection operation (1) to be the set of all integers in both subranges where
{(ag, ap) M {by, by) = (max(ay, b;), min(ay, by)). The intersection of two non-overlapping
data-ranges yields the value 1 pg, which can be used to identify likely programmer
errors (e.g., array bound violations). Additionally, note that the value T pg, a part
of the lattice, represents values that cannot be statically determined, or values that

can potentially utilize the entire range of the integer type.

3.2 Data-Range Propagation

As concluded in the last section, our Bitwise implementation propagates data-ranges.
These data-ranges can be propagated both forward and backward over a program’s
control flow graph. Figure 3-3 shows a subset of the transfer functions for propagation.
The forward propagated values in the figure are subscripted with a down arrow ({),
and the backward propagated values with an up arrow (1). In general the transfer
functions take one or two data-ranges as input and return a single data-range.

Initially, all of the variables in the SSA graph are initialized to the maximum
range allowable for their type. Informally, forward propagation traverses the SSA
graph in breadth-first order, applying the transfer functions for forward propagation.
Because there is one unique assignment for each variable in SSA form, we can restrict
a variable’s data-range if the result of its assignment is less than the maximum data-
range of its type.

To more accurately gather data-ranges, we extend standard SSA form to include

the notion of range-refinement functions. For each node that is control dependent, a

19

function is created which refines the range of control variables based on the outcome
of the branch test. Consider the SSA graph shown in Figure 3-2. Range-refinement
functions have been inserted in each of the nodes directly following the branch test.
By taking control-dependent information into account, these functions facilitate a
more accurate collection of data-ranges. Thus, if the branch in the figure is taken, we
know that al’s value is less than zero. Similarly, al’s value has to be greater than or

equal to zero if the branch is not taken.

Forward propagation allows us to identify a significant number of unused bits,
sometimes achieving near optimal results. However, additional minimization can be
achieved by integrating backward propagation'. For example, when we find a data-
range that has stepped outside of known array bounds, we can back-propagate this
new reduced data-range to instructions that have already used its deprecated value
to compute their results. Beginning at the node where the boundary violation is
found, we propagate the reduced data-range in a reverse breadth-first order, using
the transfer functions for backward propagation. This halts when either the graph’s
entry node is reached, or when a fixed point is reached. Forward propagation resumes

from this point.

Forward and backward propagation steps have been annotated on the graph in
Figure 3-2 to ease the following discussion. The numbers on the figure chronologi-
cally order each step. The step numbers in black represent the backward propagation

of data-ranges. Without backward propagation we arrive at the following data-ranges:

1SSA form is not an efficient form for performing backward propagation[11]. Bitwise currently
reverts to standard data-flow analysis techniques only when analyzing in the reverse direction. If
efficiency in the less common case of backward propagation is a concern, our form of SSA could
readily be converted to SSI form, which was designed for bi-directional data-flow analyses[1].

20

® 0= a0 5283 G280
a0 = input () (D) a0 = ONT i INT 0
al=al0+1

@ al = ONT i+ 1, INT 0

l @a1=a10(31,-10 9= G190

al<o0

a2 = a2 0 G-1,-10= -1, -1

@az: DNTmin+11—‘1%\ @a4= m'lNTmaxD

a2=al:(al<0) a4 = a1 (a120) | (6) c0 = [0, INT [
a3 = a2+1 cO = a4 @cozm,QD
(#a3 = ONTy;, +2,00 @ a4 = acoas5= 0,90
@ a3=-2a0e5= 00
a5 = ga3 ad) (7) a5 = ONT i+ 2, INT 0,0

b0 = arraya5| e a5 = 0,90

Figure 3-2: Forward and backward data-range propagation. The numbers denote the order
of evaluation. Application of forward propagation rules are shown in white, while backward
propagation rules are shown in black. We use array’s bounds information to tighten the
ranges of some of the variables.

a0 = (INTin, INT az)

al = (INTpin + 1, INT n4s)
a2 = (INTpin +1,—1)

a3 = (INTmin +2,0)

a4 = (0, INTas)

a5 = (INTin + 2, INT 00)
c0 = (0, INT paz)

Let us assume we know that the length of the array, array, is 10 from its decla-
ration. We can now substantially reduce the data-ranges of the variables in the graph
with backward propagation. We use array’s bound information to clamp a3’s data-
range to (0,9). We then propagate this value backward in reverse breadth-first order
using the transfer functions for backward propagation. In our example, propagating

a3’s new value backward yields the following new data-ranges:

21

Reverse propagation can halt after a0’s range is determined (step 13). Because c0
uses the results of a variable that has changed, we have to traverse the graph in
the forward direction again. After we confine c0’s data-range to (0,9) we will have
reached a fixed point and the analysis will be complete.

In this example we see that data-range propagation subsumes constant propaga-

tion; we can replace all occurrences of a3 with the constant value 0.

22

(a) by = (bi,bn) by =by M{a; — cp,ap — ;)

¢y = {cis cn) ! ey = ¢y M{a; — bp,ap —by)
a=b+c
ar = {a,ap) + ay =ay (b + ¢, by +cp)

m) 0= (Bnon) by = by N{a; + ¢, ap + cp)
c¢:(cl,ch) 1 CT:C¢|_|<al+bl:ah+bh>
a=b-c
at = {ar, ap) ‘ ay =ap Nb —cp,bp — 1)
by = (b;,bp) by =by
(c) _ _
ci_(cl,ch) l/ CT_Cl
a=b&c
_ ¥ ay =apm(—2n=t ol 1),
ar = (a‘hah)
where n = min(bitwidth(b,), bitwidth(c,))
d) b= (b,bp) f b=bMa
a=b
a:(al,ah) + a=allb
(e) $:<al,ah> Z':$|_|<wl,$h)
{z; <x <z}
(f) $b¢ = (bl,bh) sz = mbi [l .’L‘aT
¢y = (e, cn) b e x4 = €y Ma’y
hV
% = ¢(wb7w0)
x4 = (ar, ap) + z%) = x% M (zb) Uz))
zai = (alyah> a a b c
= ml L
(&) Yy = (Y, Yn) s @ty =2ty (@t Uaty)
!
¢ <y
, VAN
C
zby = (by, ba) w m et =z Naby 1 {a,yn — 1)
wCT = (Cl, Ch) w% = w“i Il zCT Il (yl,ah)

Figure 3-3: A selected subset of transfer functions for bi-directional data-range propagation. Intermediate results
on the left are inputs to the transfer functions on the right. The variables in the figure are subscripted with the
direction in which they are computed. The transfer function in (a) adds two data-ranges, and (b) subtracts two
data-ranges. Both of these functions assume saturating semantics which will confine the resulting range to be within
the bounds of the type on which they operate. The AND-masking operation for signed data-types in (c) returns a
data-range corresponding to the smallest of its two inputs. It makes use of the bitwidth function which returns the
number of bits needed to represent the data-range. The type-casting operation shown in (d) confines the resulting
range to be within the range of the smaller data-type. Because variables are initialized to the largest range that can
be represented by their types, ranges are propagated seamlessly, even in the case of type conversion. The function
in (e) is applied when we know that a value must be within a specified range. For instance, this rule is applied to
limit the data-range of a variable that is indexing into a static array. Note that rules (d) and (e) are not directionally
dependent. Rule (f) is applied at merge points, and rule (g) is applied at locations where control-flow splits. In rule
(g), we see that z® corresponds to an occurrence of z% such that * < y. We can use this information to refine the
range of 2% based on the outcome of the branch test, 2% < y.

23

24

Chapter 4
Loop Analysis

Optimization of loop instructions is crucial — they usually comprise the bulk of
dynamic instructions. Traditional data flow analysis techniques iterate over back
edges in the graph until a fixed point is reached. However, this technique will saturate
even the simplest loop-carried arithmetic expression. That is, because the method
does not take into account any static knowledge of loop bounds, such an expression
will eventually saturate at the maximum range of its type.

Because many important applications use loop-carried arithmetic expressions, a
new approach is required. To this end, our implementation of the Bitwise compiler
identifies loops and finds closed-form solutions. We ease loop identification in SSA
form by converting all ¢-functions that occur in loop headers to p-functions [9]. These
functions have exactly two operands; the first operand is defined outside the loop,
and the second operand is loop carried. We take advantage of these properties when

finding closed-form solutions.

4.1 Closed-Form Solutions

To find the closed-form solution to loop-carried expressions, we use the techniques
introduced by Gerlek et al. [9]. These techniques allow us to identify and classify
sequences in loops. A sequence is a mutually dependent group of instructions. In

other words, a sequence is a strongly connected component (SCC) of the program’s

25

dependence graph. We can examine the instructions of the sequence to try and find
a closed-form solution to the sequence.

Thus, the algorithm begins by finding all the sequences in the loop. We then order
them according to dependences between the sequences. At this point we can classify
each sequence in turn. The algorithm for classifying sequences is shown in Figure 4-1.

A sequence’s type is identified by examining its composition of instructions. This
functionality corresponds to the SEQUENCET YPE procedure called in Figure 4-1. We
provide a sketch of our approach in Section 4.2.

Once we have determined the type of sequence the component represents, the
algorithm invokes a solver to compute the sequence’s closed-form solution. For each
type of sequence, a different method is needed to compute the closed-form solution.
If no sequence is identified, the algorithm resorts to fixed point iteration up to a user

defined maximum.

4.2 Sequence Identification

We sketch our sequence identification algorithm as follows. First, we create a partial
order on the types of expressions we wish to identify. We employ the Ezpression
lattice (Figure 4-2) to order various expressions according to set containment. For
example, linear sequences are the composition of an induction variable and loop
invariants, and polynomial sequences are the composition of loop invariants and linear
sequences. The top of the lattice (T sequence) represents an undetermined expression,
and the bottom of the lattice (L sequence) represents all possible expressions.

Next, we create transfer functions for each instruction type in the source language.
A transfer function, which operates on the lattice, is implemented as a table that is
indexed by the expression types of its source operands. The destination operand is
then tagged with the expression type dictated by the transfer function.

We proceed by classifying the sequence based on the types of its expressions and
its composition of ¢- and p—functions. For instance, a linear sequence can contain any

number of loads, stores, additions, or subtractions of invariant values. In addition,

26

LSS: InstList List x Int Cur x RangeTrip
xSSAVar Sentinel — Range x Int
Range R «+ (0,0)
Int i < Cur
while i < |List| do
if List[i] has form (a; = u(a;, amy) with tripcount tc) then
ap < Q]
(R,3) < LSS(List,i+ 1,tc Xxpr Trip, am)
else if List[i] has form (a; = g; linop C) then
ar < a; linop C XprTrip
else if List[i] has form (ax = ¢(a;,a,,)) then
a < a; U ay,
if ap = Sentinel then
return (ag, 1)
1< i+1
return (R, 1)

CLASSIFYSEQUENCE: InstList List — Void
Range Val
if |List| = 1 then
EVALUATEINST(List[0])
else
SeqType < SEQUENCETYPE(List)
if SeqType = Linear then
(Val,z) < LSS(List,0, (1,1) , NIL)
foreach Inst I € List do
ar < Val where ay, is destination of 1
else if ...

else if SeqType = Lsequence
Fix(List, MazIters)

Figure 4-1: Pseudocode for the algorithm that classifies and solves closed-form solutions
of commonly occurring sequences. The SEQUENCETYPE function identifies the type of
sequence we are considering. Based on the sequence type, we can invoke the appropri-
ate solver. We provide pseudocode for the linear sequence solver LSS. The Fix function
attempts to find a fixed-point solution for unidentifiable sequences.

27

_T;equence
invariant
linear
polynomia

geometric

Dusequence

Figure 4-2: A lattice that orders sequences according to set containment.

linear sequences must have at least one p-function!. Remember that u-functions
define loop headers, and thus denote the start of all non-trivial sequences. Trivial
sequences contain exactly one instruction, and thus, the sequence itself represents the

closed-form solution.

4.3 Sequence Example

Figure 4-3 is an example loop and Figure 4-4 is its corresponding SSA graph. In
this example all y-functions are annotated with the loop’s tripcount ({0, 64)). While
we can restrict the range of the loop’s induction variable without the annotations,
knowing the tripcount allows us to analyze other unrelated sequences.

The next step is to find all of the strongly connected components in the loop’s
body and create the sequence dependence graph. The sequence dependence graph for
the loop in Figure 4-3 is shown in Figure 4-5.

We then analyze each of the sequences according to the dependence graph. The
algorithm classifies the sequence based on the types of its constituent expressions.
The component below, from the example, is determined to be a linear sequence be-

cause it contains a p-function and a linear-type expression:

!Gerlek et al. process inner-loops first and provide mechanisms to propagate closed-form solutions
to enclosing loop nests. We consider all loops simultaneously.

28

addr = 0;
even = 0;
line = 0;

for (word = 0; word < 64; word++) {
addr = addr + 4;
even = leven;
line addr & Oxic;

Figure 4-3: Example loop.

addro= 0
even0= 0
lineO = 0
word0 = 0

v

addrl = p(addrQ addrd <
evenl= p(evenQevenl <

linel = pu(lineQ, line2) <
wordl = p(wordQ word3) <

wordl1l< 64

v

word2 = word1 :(word1< 64)
addr2 = addrl+ 4
even2= ! evenl

line2 = addr2 & Ox1c
word3 = word2+ 1

v

Figure 4-4: SSA graph corresponding to example loop.

[tripcount=<0,64

[l

29

0 tripcount=<0,64>
addrl = p(addrQaddry <0

/

4
line2 = addr2 & Ox1c -

addr2 = addrl+4 1 1
/ wordl = p(wordQ, word3)
N R word2 = word1 : (word1< 64)
linel = p(lineO, line2) everl = u(evenOevena‘ word3 = word2+ 1

ever? = leverl

tripcount=<0,64>

Figure 4-5: A dependence graph of sequences corresponding to the code in Figure 4-3.
The sequences labeled (3) and (4) are trivial sequences. In other words, the sequences are
themselves the closed-form solution. Using the tripcount of the loop, we can calculate the
final ranges for the linear sequences labeled (0) and (1). Though we do not identify Boolean
sequences such as the one marked (2), they quickly reach a fixed point.

Sequence Sum
addrl = u(addr0,addr2) (0,0)
addr2 = addrl + 4 (4,4) x (0,64) = (0, 256)

Based on the tripcount of the p-function ((0,64)) and addr0’s range ((0,0)), the
function LSS in Figure 4-1 finds the maximum range that any of the variables in
the linear sequence can possibly assume. The function steps through the sequence
summing up all of the invariants. This sum is multiplied by the total number of times
the loop in question will be executed. For this example, the function determines the
maximum range to be (0,256). At this point we set all of the destination variables in
the sequence to this range and the sequence is solved. Note that this solution makes

no distinction between the values of individual variables in the sequence.

Obtaining this conservative result is simpler than finding the precise range for each
variable in the sequence. Because there is typically little variation between ranges of

destination variables in the same sequence, this method works well in practice.

Unlike linear sequences, not all sequences are readily identifiable. In such cases
we iterate over the sequence until a fixed point is reached. For example, the sequence
labeled (2) in Figure 4-5, will reach a fixed point after only two iterations. Not

surprisingly, sequences that contain Boolean operations, AND-masks, left-shifts, or

30

divides — all common in multimedia kernels — can quickly reach a fixed-point. The

following section addresses the cases when a fixed-point is not reached quickly.

4.4 Termination

For cases in which we cannot find a closed-form solution, lattice height could lead to
seemingly boundless iteration. For example, by traversing back-edges in the control
flow graph, it could take nearly 232 iterations to reach a fixed point for typical 32-bit
integers.

In order to solve this problem, we consider what happens to a data-range after

applying a transfer function to a static assignment. The data-range either:
e reaches a fixed point, or
e monotonically decreases.

Thus it is possible to add a user-defined limit to the number of iterations. When
iteration is limited, the resulting data-range will be an improved but potentially sub-

optimal solution.

4.5 Loops and Backward Propagation

Because arrays are usually accessed within loop bodies (and are the principal form
of known bounds information), backward propagation within loops is essential. It
turns out that the DAG of sequences that was constructed for analyzing sequences
in order, provides an excellent infrastructure for backward propagation within loops.
For instance, if we find that an index variable steps beyond the range of an array in
one of the loop’s sequences, we can restrict the range, then backward propagate the
new range using the dependence information inherent in the DAG.

Note that we cannot always use backward propagation within loops. For example,
in the case of linear sequences, we do not precisely solve for the values of individual

variables in the sequence. Because the value of a linear induction variable may in

31

<0,0> (1) a = 0;
(2) for (i =0; i < 5; i++) {
(3) for (j = 0; j < 10; j++) {
<1,170> (4) a=a+1;
(5) ...indexTable[a];
(6) }
(7
(8) for (k = 0; k < 15; k++) {
<12,200> (9) a=a+ 2;
(10) %
(11) %

Figure 4-6: Sample C code used to illustrate the problems associated with backward prop-
agation within loops. The actual data-range associated with each expression in the linear
sequence is shown on the left of the figure. Our conservative solution will assign every
expression in the sequence to the value (0, 200).

fact be different in two loop nests, our conservative approximation prevents us from
restricting the entire sequence based on one variable.

Consider the example in Figure 4-6. Though the actual range of values that the
expressions on line (4) and (9) can take on are different, we conservatively set them
both to (0,200). Because of this simplification however, we cannot use the bounds
information on line (5) to restrict the sequence’s value.

Although in some cases it is non-trivial to backward propagate within loops, when
we can determine the closed form solution to a sequence, we can backward propagate
through the loop. In other words, we can backward propagate through a loop by
simply applying the transfer functions for reverse propagation to the closed form

solution.

32

Chapter 5

Arrays, Pointers, Globals, and

Reference Parameters

In traditional SSA form, arrays, pointers, and global variables are not renamed. Thus,
the benefits of SSA form cannot be fully utilized in the presence of such constructs.
This chapter discusses extensions to SSA form that gracefully handle arrays, pointers,

and global variables.

5.1 Arrays

Special extensions to SSA form have been proposed that provide element-level data
flow information for arrays [13]. While such extensions to SSA form can potentially
provide more accurate data-range information, for bitwidth analysis it is more con-
venient to conservatively treat arrays as scalars.

When treating an array as a scalar, if an array is modified we must insert a new
¢-function to merge the array’s old data-range with the new data-range. A side-effect
of this approach is that a uniform data-range must be used for every element in the
array. Another drawback of this method is that a ¢-function is required for every
array assignment, increasing the size of the code. However, def-use chains are still
inherent in the intermediate representation, simplifying the analysis. Furthermore,

when compiling to silicon this analysis determines the size of embedded RAMs.

33

5.2 Pointers

Pointers complicate the analysis of memory instructions, potentially creating aliases
and ambiguities that can obscure data-range discovery. To handle pointers, we use the
SPAN pointer analysis package developed by Radu Rugina and Martin Rinard [21].
SPAN can determine the sets of variables — commonly referred to as location sets —
that a pointer may or must reference. We distinguish between reference location sets
and modify location sets. A reference location set is a location set annotation that
occurs on the right hand side of an expression, whereas a modify location set occurs

on the left hand side of an expression.

As an example, consider the following C memory instruction, assuming that pO0 is
a pointer that can point to variable a0 or b0, and that q0 is a pointer that can only

point to variable bO:

*p0 = %q0 + 1

The location set that the instruction may modify is {a0,b0}, and the location
set that the instruction must reference is {60}. Since b0 is the only variable in the
instruction’s reference location set, the instruction must reference it. Also, because

there are two variables in the modify location set, either a0 or b0 may be modified.

Keeping the SSA guarantee that there is a unique assignment associated with
each variable, we have to rename a0 and b0 in the instruction’s modify location set.
Furthermore, since it is not certain that either variable will be modified, a ¢-function
has to be inserted for each variable in the modify location set to merge the previous

version of the variable with the renamed version:

{a1,b1} = {0} +1
a2 = ¢(a0, al)
b2 = ¢(b0, b1)

34

If the modify location set has only one element, the element must be modified,
and a ¢-function does not need to be inserted. This extension to SSA form allows us

to treat de-referenced pointers in exactly the same manner as scalars.

5.3 Global Variables and Reference Parameters

From an efficiency standpoint, maintaining def-use information is important. For this
reason, we also choose to rename global variables and call-by-reference parameters.
Because the methods of handling globals and call-by-reference parameters are similar,
this thesis only discusses the handling of global variables.

In order to establish what variables need to be kept consistent across procedure
call boundaries, we perform interprocedural alias analysis to determine the set of
variables that each procedure modifies and references. With this information, we
insert copy instructions to keep variables consistent across procedure call boundaries.
For example, if a global variable is used in a procedure, directly before the procedure
is called, an instruction is inserted to copy the value of the latest renamed version
of the global to the actual global. Before a procedure returns, all externally defined
variables that were modified in the procedure are made consistent by assigning the
last renamed value to the original variable. If there are any uses of a global variable
after a procedure call that modifies the global, another copy instruction has to be

inserted directly after the call.

35

36

Chapter 6

Bitwise Results

This chapter presents results from a stand-alone Bitwise Compiler. The compiler is
composed of the first four steps shown in Figure 6-1. Further results, after processing
with the silicon compiler backend (the last four steps in the flowchart), are presented
in Chapter 7.

The frontend of the compiler takes as input a program written in C or FORTRAN
and produces a bitwidth-annotated SUIF file. After parsing the input program into
SUIF, the compiler performs traditional optimizations and then pointer analysis [21].
The next two passes, labeled “Bitwidth Analysis”, are the realization of the algorithms
discussed in this paper. Here, the SUIF intermediate representation is converted to
SSA form, including the extensions discussed in Chapter 4 and Chapter 5. Finally,
the data-range propagation pass is invoked to produce bitwidth-annotated SUIF along
with the appropriate bitwidth reports. In total, they comprise roughly 12,000 lines
of C++ code. We first discuss the bitwidth reports that are generated after these

passes.

6.1 Experiments

The prototype compiler does not currently support recursion. Although this restric-
tion limits the complexity of the benchmarks we can analyze, it provides adequate

support of programs written for high-level silicon synthesis.

37

C or Fortran Program

SUIF Frontend]
‘ SUIE
Pointer Analysis]

SSA Conversion

Bitwidth Analysis

Data Range Propagation =g Bitwidth Reports

Annotated SUIF

[Parallelization Transformations]

Architectural Partition/Place/Route

Silicon Compiler
Backend

Architectural Synthesis

[Traditional CAD Optimizations]

Hardware Netlist
Figure 6-1: Compiler flow: includes general SUIF, Bitwise, silicon, and CAD processing

steps. The raised steps are new Bitwise or DeepC passes, and the remaining steps are
re-used from previous SUIF compiler passes.

38

| Benchmark | Type | Source | Lines | Description
softfloat Emulation | Berkeley | 1815 | Floating Point
adpcm Multimedia | UTdsp 195 | Audio Compress
bubblesort | Scientific Raw 62 | Bubble Sort
life Automata | Raw 150 | Game of Life
intmatmul | Scientific Raw 78 | Int. Matrix Mult.
jacobi Scientific Raw 84 | Jacobi Relation
median Multimedia | UTdsp 86 | Median Filter
mpegcorr Multimedia | MIT 144 | From MPEG Kernel
sha Encryption | MIT 638 | Secure Hash
bilinterp Multimedia | MMX 110 | Bilinear Interp.
convolve Multimedia | MIT 74 | Convolution
histogram | Multimedia | UTdsp 115 | Histogram
intfir Multimedia | UTdsp 64 | Integer FIR
newlife Automata | MIT 119 | New Game of Life
parity Multimedia | MIT 54 | Parity Function
pmatch Multimedia | MIT 63 | Pattern Matching
sor Scientific MIT 60 | 5-point Stencil

Table 6.1: Benchmark characteristics

Table 6.1 lists the benchmarks used to quantify the performance of Bitwise. The
source code for the benchmarks can be found at [5]. We include several contemporary
multimedia applications as well as standard applications that contain predominantly

bit-level or byte-level operations, such as life and softfloat.

6.2 Register Bit Elimination

Figure 6-2 shows the percentage of the original register bits remaining in the program
after Bitwise has run, while Table 6.2 shows the absolute number of bits saved in a
progam. Register bits are used to store scalar program variables. The lower bound
— which was obtained by profiling the code — is included for reference. For the
particular data sets supplied to the benchmark, this lower bound represents the fewest
number of bits needed to retain program correctness. That is, it forms a lower bound
on the minimum bitwidth that can be determined by static analysis, which must be

correct over all input data-sets. The graph assumes that each variable is assigned to its

39

own register. However, downstream architectural synthesis passes include a register
allocator. If variables with differing bitwidths share the same physical register, the
final hardware may not capture all of the gains of our analysis. Our metric is a
useful overall gauge because register bitwidths affect functional unit size, data path
bitwidths, and circuit switching activity.

Our analysis dramatically reduces the total number of register bits needed. In
most cases, the analysis is near optimal, which is especially exciting for applications
that perform abundant multi-granular computations. For instance, Bitwise nearly
matches the lower bound for life and mpegcorr, which are bit-level and byte-level
applications respectively.

The only applications in the figure with substantially sub-optimal performance
compared to the dynamic profile are median and softfloat. In the case of median,
the analyzer was unable to determine the bitwidth of the input data, thus variables
that were dependent on the input data assumed the maximum possible bitwidths.
Although dynamic profiling of softfloat shows plenty of opportunities for bitwidth
reduction, these opportunities are specific to particular control flow paths and were

not discovered during our static analysis of the whole program.

6.3 Memory Bit Elimination

Figure 6-3 shows the percentage of the original memory bits remaining in the program.
Table 6.3 shows the actual number of memory bits in the program both before and
after bitwidth analysis. Here memory bits are defined as data allocated for static
arrays and dynamically allocated variables. This is an especially useful metric when
compiling to non-conventional devices such as an FPGA, where memories may be
segmented into many small chunks. In addition, because memory systems are one
of the primary consumers of power in modern processors, this is a useful metric for
estimating power consumption [12].

In almost all cases, the analyzer is able to determine near-optimal bitwidths for the

memories. There are a couple of contributing factors for Bitwise’s success in reducing

40

W with Bitwise O dynamic profile

100%

80% -

60% -

40% -

20% +

softfloat
adpcm
bubblesort
life
intmatmul
jacobi
median
mpegcorr
sha
bilinterp
convolve
histogram
intfir
newlife
parity
pmatch
sor

Figure 6-2: Percentage of total register bits remaining: post-bitwidth analysis versus dy-
namic profile-based lower bound.

array bitwidths. First, many multimedia applications initialize static constant tables
which represent a large portion of the memory savings shown in the figure. Second,

Bitwise capitalizes on arrays of Boolean variables.

6.4 Bitwidth Distribution

It is interesting to categorize variable bitwidths according to grain size. The stacked
bar chart in Figure 6-4 shows the distribution of variable bitwidths both before and
after bitwidth analysis. We call this distribution a Bitspectrum. To make the graph
more coherent, bitwidths are rounded up to the nearest typical machine data-type
size. In most cases, the number of 32-bit variables is substantially reduced to 16, 8,
and 1-bit values.

For silicon compilation, this figure estimates the overall register bits that can be
saved. As we will see in the next chapters, reducing register bits results in smaller
datapaths and subsequently smaller, faster, and more efficient circuits.

Compilers for multimedia extensions can utilize bitwidth information to extract

41

Benchmark ‘ Before Bitwise ‘ After Bitwise ‘ Dynamic Profile

softfloat 2432 1057 391
adpcm 416 137 103
bubblesort 224 78 75
life 576 125 114
intmatmul 256 157 153
jacobi 160 72 57
median 224 129 66
mpegcorr 512 102 78
sha 928 821 800
bilinterp 864 394 380
convolve 64 23 23
histogram 192 131 121
intfir 128 79 68
newlife 192 62 60
parity 128 29 29
pmatch 128 30 21
sor 96 29 28

Table 6.2: The actual number of bits in the progam before and after bitwidth analysis.
The dynamic lower bound which was obtained by runtime profiling is included for reference.

higher degrees of parallelism [14]. In this context, the spectrum shows which appli-

cations will have the best prospect for packing values into sub-word instructions.

42

B with Bitwise O dyamic profile
100% a

80% -

60% -

40% -

20% A

Figure 6-3: Percentage of total memory remaining: post-bitwidth analysis versus dynamic
profile-based lower bound.

Table 6.3: The actual number of memory bits in the progam before and after bitwidth
analysis. The dynamic lower bound which was obtained by runtime profiling is included for

reference.

0% -

] T © S5 ©§& € E ®© 9o ©o s © > £ 5
8§ § 5 £ 2 8 &8 58 € 5§ 2 § € 2 £ 5 3
2 a 5 © o @ S =
= & s 9 © [} £ =T @ ®©
s T 2 © (o] o} o c > o] ° o £
c & 2 e - £ 9 = < 2 c a
7] o) = Q Q g @
2 £ € =

‘ Benchmark ‘ Before Bitwise

‘ After Bitwise

‘ Dynamic Profile

softfloat 8192 1024 1024
adpcm 118912 38727 21871
bubblesort 32768 16384 16384
life 69632 2176 2176
intmatmul 98304 55296 53248
jacobi 4096 1024 1024
median 131712 131712 103947
mpegcorr 2560 2560 2560
sha 16384 5120 4608
bilinterp 4736 4648 4600
convolve 12800 12544 12544
histogram 534528 135168 133120
intfir 64512 62400 51136
newlife 33792 2048 2048
parity 32768 31744 31744
pmatch 68608 36736 36736
sor 532512 532512 532512

43

[(]32 bits 116 bits K18 bits Hl1 bit

80% I‘
60% | ‘ ‘
40% I S R Bw I LI I 1 B
) | I | I | | | | |
00/0 I I
25 & & 5&E 88 885 58&E 8& & 5& 5& 5&E 8585 855 5E 5& 5&
8% 3% 8% 2% g% 3% 8% 2% 8% 2% 2% 2% 3% 2% 3% 2% 2%
£ £ £ £ £ £ &£ £ £ £ £ £ £ £ £ £ =
T % 8% § ¢ % ¢ ¥ § = 3 % % % % 3 =
softfloat bubblesort intmatmul median sha convolve intfir parity sor
adpcm life jacobi mpegcorr bilinterp histogram newlife pmatch

Figure 6-4: Bitspectrum. This graph is a stacked bar chart that shows the distribution
of register bitwidths for each benchmark. Without bitwidth analysis, almost all bitwidths

are 32-bits. With Bitwise, many widths are reduced to 16, 8, and 1 bit machine types, as
denoted by the narrower 16, 8, and 1 bit bars.

100%

44

| Benchmark | with/without | 32-bits | 16-bits | 8-bits | 1-bit |
softfloat with 186 48 66 | 181
softfloat without 475 6 0 0
adpcm with 15 24 14)
adpcm without 43 8 7 0
bubblesort | with 0 6 0 1
bubblesort | without 7 0 0 0
life with 3 0 6 11
life without 20 0 0 0
intmatmul | with 4 4 2 0
intmatmul | without 10 0 0 0
jacobi with 2 1) 0
jacobi without 8 0 0 0
median with 13 9 2 2
median without 13 13 0 0
mpegcorr | with 8 0 10 2
mpegcorr | without 20 0 0 0
sha with 27 2 1 0
sha without 30 0 0 0
bilinterp with 11 4 16 0
bilinterp without 31 0 0 0
convolve with 0 2 0 0
convolve without 2 0 0 0
histogram | with 3 2 2 0
histogram | without 7 0 0 0
intfir with 2 1 1 0
intfir without 4 0 0 0
newlife with 1 1 4 0
newlife without 6 0 0 0
parity with 0 1 2 0
parity without 3 0 0 0
pmatch with 0 2 1 1
pmatch without 4 0 0 0
sor with 0 1 2 0
sor without 3 0 0 0

Table 6.4: The bitspectrum in tabular format.

45

46

Chapter 7

Quantifying Bitwise’s Performance

Thus far we have shown that bitwidth analysis is a generally effective optimization
and that our Bitwise Compiler is capable of performing this task well. We now turn
to a concrete application of bitwidth analysis. We have applied bitwidth analysis
to the problem of silicon compilation. This chapter briefly discusses the design of a
high-level silicon compiler. We then quantify the impact that bitwidth analysis has

in this context.

7.1 DeepC Silicon Compiler

We have integrated Bitwise with the DeepC Silicon Compiler [3]. DeepC is a research
compiler under development that is capable of translating sequential applications,
written in either C or FORTRAN, directly into a hardware netlist. The compiler
automatically generates a specialized parallel architecture for every application. To
make this translation feasible, the compilation system incorporates the latest code
optimization and parallelization techniques as well as modern hardware synthesis
technology. Figure 6-1 shows the details of integrating Bitwise into DeepC’s overall
compiler flow. After reading in the program and performing traditional compiler op-
timizations and pointer analysis, the bitwidth analysis steps are then invoked. These
steps were described in detail in Chapters 3 and 4. The additional steps of the silicon

compiler backend are as follows. First, loop-level parallelizations are applied, followed

47

by an architectural-level partition, place, and route. At this point the program has
been formed into an array of communicating threads. Then an architectural synthesis
step translates these threads into custom hardware. Finally, the compiler applies tra-
ditional computer-aided-design (CAD) optimizations to generate the final hardware

netlist.

7.1.1 Implementation Details

The DeepC Compiler is implemented as a set of over 50 SUIF passes followed by
commercial RTL synthesis. The current implementation uses the latest version of
Synopsys Design Compiler and FPGA compiler for synthesis. A large set of the SUIF
passes are taken directly from MIT’s Raw compiler [15], whose backend is built on
Harvard’s MachSUIF compiler [23]. The backend Verilog generator is implemented
on top of Stanford’s VeriSUIF [8] data structures. Despite the large number of SUIF

passes, CAD synthesis tools consume the majority of the compiler’s run-time.

7.1.2 Verilog Bitwidth Rule

Because our compiler generates RTL Verilog for commercial tools, bitwidth informa-
tion must be totally communicated via register and wire widths. We expect confor-
mation to Verilog’s operation bitwidth rule: the bitwidth of each operation is set to
the maximum bitwidth of the containing assignment expression’s input and output
variables. For example, the bitwidth of the expression A = B + C' is the maximum

bitwidth of A, B, and C.

7.2 Impact on Silicon Compilation

As described in the previous section, the DeepC Silicon Compiler has the opportunity
to specialize memory, register, and datapath widths to match application character-
istics. We expect bitwidth analysis to have a large impact in this domain. However,

because backend CAD tools already implicitly perform some bitwidth calculation

48

during optimizations (such as dead logic elimination), accurate measurements require
end-to-end compilation. A fair comparison is to measure final silicon both with and
without bitwidth analysis.

We introduce our benchmarks in the next section, then describe the dramatic

area, latency, and power savings that bitwidth analysis enables!.

7.2.1 Experiments

We present experimental results for an initial set of applications that we have compiled
to hardware. For each application, our compilation system produces an architecture
description in RTL Verilog. We further synthesize this architecture to logic gates
with a commercial CAD tool (Synopsys). This thesis reports area and speed results
for Xilinx 4000 series FPGAs, and power results for IBM’s SA27E process — a 0.15
micron, 6-layer copper, standard-cell process.

The benchmarks used for silicon compilation are included in Table 6.1. These
applications are generally short benchmarks, but include many multimedia kernels.
It is important to note that the relatively small size of the benchmarks is dictated by
the current synthesis time of our compilation approach and not Bitwise. Also note

that there are slight variations from the benchmarks presented in Chapter 6.

7.2.2 Registers Saved in Final Silicon

We first compiled each benchmark into a netlist capable of being accepted by either
Xilinx or IBM CAD tools to produce “final silicon.” The memory savings reported
in Chapter 6 translate directly into silicon memory savings when we allow a separate
small memory for each program variable. This small memory partitioning process is
further described in [3].

Register savings, on the other hand, vary as additional compiler and CAD opti-

mizations transform the program’s variables. Variable renaming and register alloca-

!Note that we also found considerable synthesis compile time savings which are not reported
here.

49

1600

O without Bitwise B with Bitwise
1400 4--------mm-mmmmmemeo oo [}
1200 - e e e
1000 -
a
2 goo |
S
o
~ 600 4
400 |
200 |
O,
E 5 £ E £ 3 8 & § 5 & 2 5 5
3§§EE§8_68§8%”’
k=] 2 P g’ © 8, 3] g) o c
© 8 o© = E € a € S
2 ° = = £

Figure 7-1: Register bits after Bitwise optimization. In every case Bitwise saves substantial
register resources in the final silicon implementation.

100%

O analysis only B final silicon

B0V f -~

o @ W T =

wo+-{ M- B

20% -1 Nl ==

0%
adpcm life bubblesort intmatmul jacobi median ~ mpegcorr

Figure 7-2: Register bit reduction, after high-level analysis versus final silicon. The fluctu-

ation in bitwidth savings between final silicon and high-level analysis is due to factors such
as variable renaming and register allocation.

20

tion also distort the final result by placing some scalars in more than one register and
others in a shared register. Figure 7-1 shows the total FPGA bits saved by bitwidth
optimization. For Xilinx FPGA compilation, the fixed allocation of registers to com-
binational logic will distort the exact translation of this savings to chip area, as some
registers may go unused.

Our findings are very positive — the earlier bitwidth savings translate into dra-
matic savings in final silicon, despite the possibilities for loss of this information or
potential overlap with other optimizations. However, because there is not a one-to-
one mapping from program scalars to hardware registers, the exact savings do not
match. Examining Figure 7-2, we see that the percentage of bits saved by high-
level analysis are sometimes greater and sometimes less than those bits saved in final
silicon. We explain these differences as follows. First, there are many compiler and
CAD passes between high-level analysis and final silicon generation. If in any of these
passes the bitwidth information is “lost”, for example when a new variable is cloned,
then the full complement of saved bits will not be realized. On the other hand, the
backend passes, especially the CAD tools, are also attempting to save bits through
logic optimizations. Thus these passes may find savings that the current high-level
pass is not finding. Finally, variable renaming and register sharing also change the

percentages.

7.2.3 Area

Register bits saved translate directly into area saved. Area savings also result from
the reduction of associated datapaths. Figure 7-3 shows the total area savings with
Bitwise optimizations versus without. We save from 15% to 86% in overall silicon
area, nearly an 8x savings in the best case.

Note that in the DeepC Compilation system pointers do not require the full com-
plement of 32-bits. Using the MAPS [4] compiler developed for Raw, arrays have
been assigned to a set of equivalence classes. By definition, a given pointer can only
point to one equivalence class, and thus needs to be no wider than log}", S,, where

S, is the size of each memory array specified in the equivalence class. This technique

o1

O without Bitwise B with Bitwise

CLB Count

o e N T = s e e e e - e
O N © O N © o +HA N O H N NN
vmjﬂmﬂvvmﬁvmo’)m
~— vvv._wvvmvvv
E-:G)E,ta-g.“:ct.“:>\£‘—
s 5§ 25§ £ 2 ¢ &8585 % &35 3§
5 9 o - £ £ ® T Q o ® ©
8 9@ = o © e T = e £
g 5 £ = e 3
_98‘5 = o o
E = k= £

Figure 7-3: FPGA area after Bitwise optimization. Register savings translate directly into
area savings for FPGAs. In the figure, post-synthesis CLB count measures the number of
internal combinational logic blocks required to implement the benchmark when compiled
to FPGAs. Combinational logic blocks (CLBs) each include 2 four input lookup tables and
2 flip-flop registers. Wasted CLBs due to routing difficulties during vendor place and route
are not included in this result, but should reduce proportionally. The number in parenthesis
by each benchmark is the resulting bitwidth of the main datapath.

52

is further described in [2].

7.2.4 Clock Speed

We also expect bitwidth optimization to reduce the latency along the critical paths of
the circuit and increase maximum system clock speed. If circuit structures are linear,
such as a ripple carry adder, then we expect a linear increase. However, common
structures such as carry-save adders, multiplexors, and barrel shifters are typically
implemented with logarithmic latency. Thus, bitwidth reduction translates into a
less-than-linear yet significant speedup. Figure 7-4 shows the results for a few of our
benchmarks. The largest speedup is for convolve, in which the reduction of constant
multiplications increased clock speeds by nearly 3x. On the other hand, the MPEG
correlation kernel did not speed up because the original bitwidths were already close

to optimal.

7.2.5 Power

As expected, the area saved by bitwidth reduction translates directly into power
savings. Our first hypothesis was that these savings might be lessened by the fact that
inactive registers and datapaths would not consume power. Our experiments show
otherwise. The muxes and control logic leading to these registers still consume power.
Figure 7-5 shows the reduction in power achieved for a subset of our benchmarks.
In order to make these power measurements, we first ran a Verilog simulation of the
design to gather switching activity. This switching activity records when each register
toggles in the design. This information is then used by logic synthesis, along with an
internal zero delay simulation, to determine how often each wire changes state. The
synthesizer then reports average dynamic power consumption in milliWatts, which we
report here. Note that we do not include the power consumption of on-chip memories.
Furthermore, we do not attempt to decrease the total cycle count with bitwidth
reduction, giving a total energy reduction in proportion to total power savings.

We measured power for bubblesort, histogram, jacobi, pmatch, and newlife. Newlife

93

150

O without Bitwise B with Bitwise

125

MHZ)

(

Py
o
o

75

50

XC4000-09 Clock Speed

adpcm
bubblesort
convolve
histogram
intfir
intmatmul
jacobi
life
median
mpegcorr
newlife
parity
pmatch
sor

Figure 7-4: FPGA clock speed after Bitwise optimization. Benchmarks are universally
faster after bitwidth analysis when compiled to Xilinx XC4000 FPGAs (-09 speed grade)
with Synopsys. Clock speed is determined by the worst case delay reported during synthesis
and does not account for skew, etc. The actual number of CLBs on the critical paths,
ranging from 15-38 before bitwidth optimization and 7-16 afterwards, is the key factor in
determining clock speed.

o4

16

O without Bitwise W with Bitwise

14 {

—
o
n

=
o
n

Total Dynamic Power (mW)

bubblesort histogram jacobi pmatch new life

Figure 7-5: ASIC power after Bitwise optimization. Here we assume a 200MHZ clock
for the .15 micron IBM SA27E process. The total cycle count (number of clocks ticks to
complete each benchmark) is not affected by bitwidth, and thus total energy will scale
proportionally. These numbers do not include power consumed by RAM.

had the largest power savings, reduced from 14 mW to 4 mW, while the other four
benchmarks had more modest power savings. We expect that at least a portion of
these savings can be translated to the processor regime, in which power consumption

is typically hundreds of times higher.

7.2.6 Discussion

For reconfigurable computing applications, bitwidth savings can be a “make or break”
difference when comparing computational density — performance per area — to that
of conventional processors. Because FPGAs provide an additional layer of abstrac-
tion (emulated logic), it is important to compile-through as many higher levels of
abstraction as possible. Statically taking advantage of bitwidth information is a form
of partial evaluation. It can help to make FPGAs competitive with more traditional,
but less adaptive, computing solutions. Thus, bitwidth analysis is a key technology
enabler for FPGA computing.

For ASIC implementations, bitwidth savings will directly translate into reduced

1)

silicon costs. Of course, many of these cost savings could be captured by manually
specifying more precise variable bitwidths. However, manual optimization comes at
the cost of manual labor. Additionally, reducing the probability of errors is invaluable
in an ASIC environment, where companies who miss with first silicon often miss
entire market windows. As we approach the billion-transistor era, raising the level of

abstraction for ASIC designers will be a requirement, not a luxury.

26

Chapter 8

Related Work

Brooks et al., dynamically recognize operands with narrow bitwidths to exploit sub-
word parallelism [6]. Their research confirms our claim that a wide range of appli-
cations, particularly multimedia applications, exhibit narrow bitwidth computations.
Using their techniques, they are able to detect and exploit bitwidth information that
is not statically known. However, because they are detecting bitwidths dynamically,
their research cannot be applied to applications that require a priori bitwidth infor-
mation.

Scott Ananian also recognized the importance of static bitwidth information [1].
He uses bitwidth analysis in the context of a Java to silicon compiler. Because
bitwidth analysis is not the main thrust of his research, he uses a simple data flow
technique that propagates bitwidth information. Our method of propagating data-
ranges is a more precise method for discovering bitwidths.

Rahul Razdan developed techniques to successfully analyze bitwidths [20]. His
“function width” analysis is a combination of forward and backward analyses on a
vector of bits. In this sense, his analysis is similar to traditional CAD dead-bit elim-
ination algorithms. Furthermore, with the exception of the loop induction variables,
his analysis does not handle loop-carried expressions well. Razdan’s function width
analysis for his PRISC architecture helps achieve modest speedups when used in
combination with other logic-level optimizations.

Budiu et al. [7] also perform bitwidth analysis. They use methods similar to

o7

Razdan’s to improve performance in a reconfigurable device.

The data-range propagation techniques presented by Jason Patterson [18] and
William Harrison [10] are similar to those presented in this thesis. While their work
proved to be effective, they did not consider backward propagation and their tech-
niques for discovering loop-carried sequences do not include the general methods

discussed in this paper.

28

Chapter 9

Conclusion

Accurate bitwidth analysis of high-level programs requires sophisticated compiler
techniques. Prior to this work, only simple or ad-hoc approaches to automatic
bitwidth analysis have been applied. In this work we have formalized bitwidth
analysis as a value range propagation problem. We have described algorithms for
bi-directional data-range propagation and for finding closed-form solutions of loop-
carried expressions. We have presented an initial implementation which works well:
our compile-time analysis approaches the accuracy of run-time profile-based analyses.
When incorporated into a silicon compiler, bitwidth analysis dramatically reduced the
logic area by 15 — 86%, improved the clock speed by 3 — 249%, and reduced the power
by 46 — 73% of the resulting circuits. Anticipated future uses of this technique include

compilation for SIMD and low power architectures.

99

60

Bibliography

1]

2]

3]

[4]

[5]
[6]

[7]

C. Scott Ananian. The Static Single Information Form. Technical Report MIT-
LCS-TR-801, Massachusetts Institute of Technology, 1999.

Jonathan Babb. High-Level Compilation For Reconfigurable Architectures. PhD
thesis, EECS Department, MIT, Department of Electrical Engineering and Com-
puter Science, May 2000.

Jonathan Babb, Martin Rinard, Andras Moritz, Walter Lee, Matthew Frank,
Rajeev Barua, and Saman Amarasinghe. Parallelizing Applications Into Sili-
con. In Proceedings of the IEEE Workshop on FPGAs for Custom Computing
Machines (FCCM), Napa Valley, CA, April 1999.

Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Maps: A
Compiler-Managed Memory System for Raw Machines. In Proceedings of the 26th
International Symposium on Computer Architecture, Atlanta, GA, May 1999.

Bitwise Project. http://www.cag.lcs.mit.edu/bitwise.

David Brooks and Margaret Martonosi. Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance. In th International

Symposium of High Performance Computer Architecture, January 1999.

M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue inference: Detecting
and exploiting narrow bitwidth computations. In Proceedings of the EuroPar

2000 European Conference on Parallel Computing, Munich, Germany, August
2000.

61

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.S. French, M.S. Lam, J.R. Levitt, and K. Olukotun. A General Method
for Compiling Event-Driven Simulations. 82nd ACM/IEEE Design Automation
Conference, June 1995.

Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond Induction Variables:
Detecting and Classifying Sequences Using a Demand-Driven SSA Form. ACM
Transactions on Programming Languages and Systems, 17(1):85-122, January

1995.

William Harrison. Compiler Analysis of the Value Ranges for Variables. IEEE
Transactions on Software Engineering, 3:243-250, May 1977.

Richard Johnson and Keshav Pingali. Dependence-Based Program Analysis. In
Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, pages 78-89, 1993.

Johnson Kin, Munish Gupta, and William H Magione-Smith. The Filter Cache:
An Energy Efficient Memory Structure. Micro-30, December 1997.

Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in Parallelization.
In Principles of Programming Languages (POPL 98), pages 107-120.

Samuel Larsen and Saman Amarasinghe. Exploiting Superword Level Parallelism
with Multimedia Instruction Sets. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementation, Vancouver, BC, June

2000.

Walter Lee, Rajeev Barua, Matthew Frank, Devabhatuni Srikrishna, Jonathan
Babb, Vivek Sarkar, and Saman Amarasinghe. Space-Time Scheduling of
Instruction-Level Parallelism on a Raw Machine. In Proceedings of the Eighth
ACM Conference on Architectural Support for Programming Languages and Op-
erating Systems, pages 4657, San Jose, CA, October 1998.

Steven Levy. Hackers, Heros of the Computer Revolution. Dell Books, 1994.

62

[17]

18]

[19]

20]

[21]

[22]

23]

[24]

[25]

Open SystemC Initiative. http://www.systemc.org.

Jason Patterson. Accurate Static Branch Prediction by Value Range Propaga-
tion. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation, volume 37, pages 67-78, June 1995.

Alex Peleg and Uri Weiser. MMX Technology Extension to Intel Architecture.
Micro-16, pages 42-50, August 1996.

Rahul Razdan. PRISC: Programmable Reduced Instruction Set Computers. PhD
thesis, Division of Applied Science, Harvard University, (Harvard University
Technical Report 14-94, Center for Research in computing technologies), May
1994.

R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs. In
Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, pages 77-90, Atlanta, GA, May 1999.

Radu Rugina and Martin Rinard. Automatic Parallelization of Divide and Con-
quer Algorithms. In Proceedings of the SIGPLAN Conference on Programming

Language Design and Implementation, Vancouver, BC, June 2000.

Michael D. Smith. Extending SUIF for Machine-dependent Optimizations. In
Proceedings of the First SUIF Compiler Workshop, pages 14-25, Stanford, CA,
January 1996.

Jon Tyler, Jeff Lent, Anh Mather, and Huy Van Nguyen. AltiVec(tm): Bring-
ing Vector Technology to the PowerPC(tm) Processor Family. Phoenix, AZ,
February 1999.

Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jen-
nifer Anderson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall, Mon-
ica Lam, and John Hennessy. SUIF: An Infrastructure for Research on Paral-
lelizing and Optimizing Compilers. ACM SIGPLAN Notices, 29(12), December
1996.

63

