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Soft Lithography: State of the Art...
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— Integrated valves and pumps
— Rapid fabrication
— Cost

 Con:
— Application specific devices

— Complicated control

Ballagadde et al.
Science (2005)
- Microchemostat

e M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer and S.R. Quake, Science, 2000, (288), 113-116.



“Digital” Microfluidics?
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Motivation

« |dea: a biological lab on a single chip
— Input channels for reagents
— Chambers for mixing fluids
— Sensors for reading properties

« Combined benefits of previous approaches:

— Use “digital” samples that can be prepared, moved, stored,
measured..

— Increased precision/robustness of soft lithography

 General purpose, programmable devices
— Can complex procedures be automated?
— Enabling experiments to be designed like computer programs
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Our approach: Soft Lithography

spin coat photoresist on silicon wafer
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Multilayer Soft Lithography (MSL)

pressure
actuated valve

Control Mold

Flow Mold

* Pressurized reservoirs of sample are
connected via tubing

« Computer controlled micro-solenoids
actuate valves

* Relative widths and pressure
differences between F&C govern valve
performance

Urbanski and Thies, 2005 7



Challenges to consider

General purpose implementation using MSL
Involves specific challenges:

« Evaporation

* Metering

e Sample integrity
e Transport

« Alignment



Discrete Samples

Advantages of discrete samples .S . g 200)
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Our Approach:

Require arbitrary sample |
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Discrete Samples

Advantages of discrete samples

— No sample dispersion

— “Toolbox” methods for generating,
splitting, merging, storing samples
— Droplets can behave as microreactors

Our Approach:

Require arbitrary sample

manipulation

Individually meter aqueous
samples into an immiscible

continuous phase

Individually composed
samples

Ismagilov et al.
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Slug Alignment — “Latching”

« Analogous to the 1-bit logic element...
« Partially closed valve Soft Lithography Valve

Schematic Experiment

 Enables open loop control of emulsified samples —
timing may be used to align slugs though the channels

e Scalable and robust 1



Latch Demonstration

 Aqueous slugs are dispensed into a continuous oll
phase, latched, and released

* Qil port remains open
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Latch Characterization

Operating Window
10,

valve |
8 — -
Latch Width

i
2 8
= Flow
¢ 4 Width |
3 50F/ e —————————

2 50C T

—o— Travel to latch
0 —a— Retention at latch |
20 30 40 50 60

Latch Pressure (kPa)

e Goal: determine optimal
operating points to retain
slugs without hindering the
flow of samples

e Operating window defined
by tuning latch pressures



Latch Characterization
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General Purpose Architecture
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Programming and Automation

« Example program:

Fluid yellow = input (1) ;

Fluid blue = input(2);

Fluid[] gradient = new Fluid[5];
for (int i=0; i<=4; i++) {

gradient [i] = mix(blue, yellow, i/4.0, 1-i/4.0);

» Software language allows simple | e
programs to be written — without i - --
requiring knowledge of the device FE e 4 [
architecture i

» Device driver for a particular chip _
— maps primitive operations (mix, e i
store etc) to combination of valve |
operations W

A linear gradient of two fluids
(yellow and blue food colorings) 16



Current Focus and Implementation

e Device level

— Quantify accuracy and error tolerance of mixing
operations

— Integrate feedback from sensors in conjunction with
proof of concept biological applications

o First Model System
— Enzyme kinetic assays using B-Galactosidase

e Metabolic Assessments of Cell Cultures

— In collaboration with M. Johnson, D. Gardner,
Colorado Center for Reproductive Medicine
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Conclusions

 Demonstrated first system for digital microfluidics
using soft lithography medium

« Microfluidic latch is a novel alignment mechanism,
crucial for precise and scalable operation

e Using a programming language, scientists will be
able to automate complex experiments without
requiring microfluidic expertise

18
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