Programmable Microfluidics Using Soft Lithography

J.P. Urbanski

Advisor: Todd Thorsen Hatsopoulos Microfluidics Lab, MIT January 25/2006

Soft Lithography: State of the Art...

- Areas of active bio research
 - protein crystallization, cell culturing, PCR, enzyme assays, particle synthesis, etc

• Pro:

- Integrated valves and pumps
- Rapid fabrication
- Cost

• Con:

- Application specific devices
- Complicated control

Ballagadde et al. Science (2005) - Microchemostat

... "Digital" Microfluidics?

vire bonding pads for contr

- Manipulation of discrete droplets on an electrode array using electric fields
 - "Droplet processors"

• Pro:

- Flexible operation
- Amenable to computer control
- No sample diffusion

• Con:

- Difficulties with various biological samples
- Imprecise metering/splitting
 - Affects reagent concentration
- Fabrication

Motivation

- Idea: a biological lab on a single chip
 - Input channels for reagents
 - Chambers for mixing fluids
 - Sensors for reading properties
- Combined benefits of previous approaches:
 - Use "digital" samples that can be prepared, moved, stored, measured..
 - Increased precision/robustness of soft lithography
- General purpose, programmable devices
 - Can complex procedures be automated?
 - Enabling experiments to be designed like computer programs

Outline

- 1. Motivation and Background
- 2. Our Contributions
 - 1. Sample Transport
 - 2. Sample Alignment
 - 3. Device Implementation
- 3. Future Work and Conclusions

Our approach: Soft Lithography

Multilayer Soft Lithography (MSL)

Control Mold Flow Mold Flow Mold

- Pressurized reservoirs of sample are connected via tubing
- Computer controlled micro-solenoids actuate valves
- Relative widths and pressure differences between F&C govern valve performance

Urbanski and Thies, 2005

Challenges to consider

General purpose implementation using MSL involves specific challenges:

- Evaporation
- Metering
- Sample integrity
- Transport
- Alignment

Discrete Samples

- Advantages of discrete samples
 - No sample dispersion
 - "Toolbox" methods for generating, splitting, merging, storing samples
 - Droplets can behave as microreactors

Our Approach:

- Require *arbitrary* sample manipulation
- Individually meter aqueous samples into an immiscible continuous phase
- Individually composed samples

Discrete Samples

- Advantages of discrete samples
 - No sample dispersion
 - "Toolbox" methods for generating, splitting, merging, storing samples
 - Droplets can behave as microreactors

Our Approach:

- Require *arbitrary* sample manipulation
- Individually meter aqueous samples into an immiscible continuous phase
- Individually composed samples

Ismagilov et al.

Slug Alignment – "Latching"

- Analogous to the 1-bit logic element...
- Partially closed valve

Schematic		Experiment	ļ
(a) Slug Flow			
water oil			-
	open		
(b) Latch Actuated			
\rightarrow		·	
	close		
(c) Slug Retained			
		Construction of the second	
	close	1mm	

- Enables open loop control of emulsified samples timing may be used to align slugs though the channels
- Scalable and robust

Latch Demonstration

- Aqueous slugs are dispensed into a continuous oil phase, latched, and released
- Oil port remains open

Latch Characterization

Operating Window 10 latch valve leak 8-Time (minutes) 6 50F/ 2 50C Travel to latch Retention at latch 0 50 20 30 40 60 Latch Pressure (kPa)

- Goal: determine optimal operating points to retain slugs without hindering the flow of samples
- Operating window defined by tuning latch pressures

Latch Characterization

- Goal: determine optimal operating points to retain slugs without hindering the flow of samples
- Operating window defined by tuning latch pressures

General Purpose Architecture

- Input / Output
- Rotary Mixer
- Channel Network with Purge

Details:

 J.P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe and T. Thorsen, Lab on a Chip, 2006, 6(1), 96-104.

- Addressable Storage
- Latches Mixer to Storage / Storage to Mixer

Reservoir

15

Programming and Automation

• Example program:

```
Fluid yellow = input(1);
Fluid blue = input(2);
Fluid[] gradient = new Fluid[5];
    for (int i=0; i<=4; i++) {
        gradient[i] = mix(blue, yellow, i/4.0, 1-i/4.0);
}</pre>
```


Device driver for a particular chip

 maps primitive operations (mix, store etc) to combination of valve operations

A linear gradient of two fluids (yellow and blue food colorings)

Current Focus and Implementation

- Device level
 - Quantify accuracy and error tolerance of mixing operations
 - Integrate feedback from sensors in conjunction with proof of concept biological applications
- First Model System
 - Enzyme kinetic assays using β -Galactosidase
- Metabolic Assessments of Cell Cultures
 - In collaboration with M. Johnson, D. Gardner, Colorado Center for Reproductive Medicine

Conclusions

- Demonstrated first system for digital microfluidics using soft lithography medium
- Microfluidic latch is a novel alignment mechanism, crucial for precise and scalable operation
- Using a programming language, scientists will be able to automate complex experiments without requiring microfluidic expertise

Acknowledgments

- Prof. Todd Thorsen and the Thorsen Group
- Prof. Saman Amarasinghe (CSAIL)
- Bill Thies (PhD Candidate, CSAIL)
- Christopher Rhodes (UROP, ME)
- Prof. Martin Bazant (Math)
- Jeremy Levitan (ME/Math)
- National Science and Engineering Research Council of Canada (NSERC)
- NSF

Details:

- J.P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe and T. Thorsen, *Lab on a Chip*, **2006**, 6(1), 96-104.
- http://www.cag.csail.mit.edu/biostream/

