Programmable Microfluidics

Bill Thies

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Stanford University — October 3, 2007

Acknowledgements

Prof. Saman
\i]if Amarasinghe
=

csAlL NadaAmin

MIT Computer Science and
Artificial Intelligence Laboratory

JU@: J23; 428 Prof. Jeremy

xﬂ%‘; Gunawardena
&
' Natalie Andrew

Harvard Medical School

Prof. Todd Thorsen
J.P. Urbanski
David Craig

MIT Hatsopoulos
Microfluids Laboratory

Prof. Mark Johnson p

David Potter / |

Colorado Center for
Reproductive Medicine

Microfluidic Chips

* |ldea: awhole biology lab on a smgle Chlp
— Input/output SR

— Sensors: pH, glucose,
temperature, etc.

— Actuators: mixing, PCR,
electrophoresis, cell lysis, etc.

 Benefits:
— Small sample volumes
— High throughput
— Geometrical manipulation

1mm 70x real-time

« Applications:
— Biochemistry
— Cell biology
— Biological computing

Moore’s Law of Microfluidics:
Valve Density Doubles Every 4 Months

Fluidigm's Pace
sumxeumil, oook)
1000000 falr
o
lIIl|I"
100000 # Faldien’'s Commenck
DID > I R T
(BoK, 206K) e
E P 6.96
10000 50.9
o > (27,648)
o Py §58.48
o S (6,912) =
@ 1000 — ’ 8.06 .
o~ e i (2,304) .
v (2500 4.96 :
W Mux L2 (1152)
i 100 (548) - 196
o 44, (288)
= S : Moore's Law
Cell - . "
10 Sorter. ” —
First S TR
irst " e = -0
Valye . - - "~
1 i " 1- - T T 1]]]] L]] 1 T] L] 1
‘99 ‘00 ‘o1 ‘oz ‘o3 04 ‘o5 ‘06

Source: Fluidigm Corporation (http.//7www.fluidigm.com/images/mlaw _1g.jpg)

Moore’s Law of Microfluidics:
Valve Density Doubles Every 4 Months

Fluidigm ._'Ea
Ll

Source: Fluidigm Corporation (http.//7www.fluidigm.com/didIF C.htm)

Current Practice:
Expose Gate-Level Detalls to Users

B peristaltic.vi

Eile Edit OQperate Tools Browse ‘Window Help
ko 13pt Application Font if=

« Manually map experiment to the valves of the device
— Using Labview or custom C interface
— Given a new device, start over and do mapping again

Our Approach:
“Write Once, Run Anywhere”

« Example: Gradient generation

Fluid yellow = input (0);

Fluid blue = input(1);

for (int 1=0; i<=4; I++) {
mix(yellow, 1-i/4, blue, i/4);

}

 Hidden from programmer:
— Location of fluids
— Detalls of mixing, 1/0
— Logic of valve control
— Timing of chip operations

450 Valve Operations

Our Approach:

“Write Once, Run Anywhere”

Example: Gradient generation

yellow = input (0);
blue = input(l);
for (int i=0; i<=4; i++) { o)
mix(yellow, 1-i/4, blue, i/4);
}

Hidden from programmer:
— Location of fluids

— Details of mixing, 1/0O

— Logic of valve control

— Timing of chip operations

setValve(0, HIGH);
setValve(2, LOW);
setValve(4, LOW);
setValve(6, HIGH);
setValve(8, LOW);

setValve(10,
setValve(12,
setValve(14,
setValve(16,
setValve(18,

wait(2000);

setValve(14,

wait(1000);

LOW);
LOW);
LOW);
LOW);
LOW);

HIGH);

setValve(4, HIGH);
setValve(16, HIGH); setValve(18, HIGH);

setValve(19,

wait(2000);

LOW);

setValve(1l, HIGH);
setValve(3, HIGH);
setValve(5, LOW);
setValve(7, LOW);
setValve(9, HIGH);
setValve(11, HIGH);
setValve(13, HIGH);
setValve(15, HIGH);
setValve(17, LOW);
setValve(19, LOW);

setValve(2, LOW);

setValve(12, LOW);

450 Valve Operations

Our Approach:
“Write Once, Run Anywhere”

Example: Gradient generation

yellow = input (0);
blue = input(l);
for (int i=0; i<=4; i++) { o)
mix(yellow, 1-i/4, blue, i/4);
}

Hidden from programmer:
— Location of fluids

— Details of mixing, 1/0O

— Logic of valve control

— Timing of chip operations

wait(2000);
setValve(14, HIGH);
wait(1000);
setValve(4, HIGH);
setValve(16, HIGH);
setValve(19, LOW);
wait(2000);
setValve(0, LOW);
setValve(2, LOW);
setValve(4, LOW);
setValve(6, HIGH);
setValve(8, LOW);
setValve(10, HIGH);
setValve(12, LOW);
setValve(14, LOW);
setValve(16, HIGH);

| setvalve(18, HIGH);

setValve(2, LOW);

setValve(12, LOW);
setValve(18, HIGH);

setValve(l, LOW);
setValve(3, HIGH);
setValve(5, HIGH);
setValve(7, LOW);
setValve(9, HIGH);
setValve(11, LOW);
setValve(13, LOW);
setValve(15, HIGH);
setValve(17, LOW);
setValve(19, LOW);

Fluidic Abstraction Layers

Protocol Description Language
- readable code with high-level mixing ops

Silicon Analog

C

.

Fluidic Instruction Set Architecture (ISA)
- primitives for /O, storage, transport, mixing

. 2

cip 1 " chip 2

. .

X86

: &

Pentium I,
Pentium IV

Fluidic Hardware Primitives
- valves, multiplexers, mixers, latches

.

transistors,
registers, ...

Fluidic Abstraction Layers

Protocol Description Language
- readable code with high-level mixing ops

.

Fluidic Instruction Set Architecture (ISA)
- primitives for /O, storage, transport, mixing

Fluidic Hardware Primitives
- valves, multiplexers, mixers, latches

 Benefits:
— Division of labor
— Portability
— Scalability
— EXxpressivity

Fluidic Abstraction Layers

Protocol Description Language
- readable code with high-level mixing ops

.

Fluidic Instruction Set Architecture (ISA)
- primitives for /O, storage, transport, mixing

cip 1 " chip 2

. . !

Fluidic Hardware Primitives
- valves, multiplexers, mixers, latches

 Benefits:
— Division of labor
— Portability
— Scalability
— EXxpressivity

Prlmltlve 1. A Valve (Quake et al.)

*_F“T*T

Control

Layer

Flow
Layer

Prlmltlve 1. A Valve (Quake et al.)

*_F“T_*T

g

Control

Layer

Flow
Layer

0. Start with mask of channels

Primitive 1. A Valve (Quake et al.)

I S

L—L_
T . | Control 1. Deposit pattern on silicon wafer
TLL 7\
f+frJJ Layer
)
Flow

Layer

Primitive 1. A Valve (Quake et al.)

I S

—t

.| Control 2. Pour PDMS over mold
Layer - polydimexylsiloxane: “soft lithography”

1

| ;*—LE’T/* I

L

Lo

% } Thick layer (poured)

@ } Thin layer (spin-coated)

Flow
Layer

Primitive 1. A Valve (Quake et al.)

%‘_

T

711 | Control 3. Bake at 80° C (primary cure),
%%J Layer then release PDMS from mold
—

Flow
Layer

Primitive 1. A Valve (Quake et al.)

%‘_

:

EQ | Control 4a. Punch hole in control channel
dE QTJ Layer 4b. Attach flow layer to glass slide
i

e
iy iy by

Flow
Layer

Primitive 1. A Valve (Quake et al.)

%‘_

T

1., | Control 5. Align flow layer over control layer
T Layer

e

IO R —

e i

Gy iy 2y

Flow
Layer

Prlmltlve 1. A Valve (Quake et al.)

| Control 6. Bake at 80° C (secondary cure)
Layer

Flow
Layer

Prlmltlve 1. A Valve (Quake et al.)

| /. When pressure is high, control
W ‘ Contml channel pinches flow channel to
| Layer form a valve

*_F“I_*T
ch

pressure
actuator

Flow
Layer

Primitive 2. A Multiplexer (Thorsen et al.)

Bit2 Bit1 Bit0O [l flowlayer
o1 01 01

B control layer

Output 7
Output 6
Output 5
Output 4
Output 3
Output 2
Output 1
Output 0

Primitive 2. A Multiplexer (Thorsen et al.)

Bit2 Bit1 Bit0O [l flowlayer
o1 01 01

B control layer

Output 7
Output 6
Output 5
Output 4
Output 3
Output 2
Output 1
Output 0

Example: select 3=011

Primitive 2. A Multiplexer (Thorsen et al.)

Bit2 Bit1 Bit0O [l flowlayer
o1 01 01

B control layer

Output 7
Output 6
Output 5
Output 4
Output 3
Output 2
Output 1
Output 0

Example: select 3=011

Primitive 2. A Multiplexer (Thorsen et al.)

Bit2 Bit1 Bit0O [l flowlayer
o1 01 01

B control layer

Output 7
Output 6
Output 5
Output 4
Output 3
Output 2
Output 1
Output 0

Input

Example: select 3=011

Primitive 3: A Mixer (Quake et al.)

1. Load sample on top

Primitive 3: A Mixer (Quake et al.)

1. Load sample on top
2. Load sample on bottom

Primitive 3: A Mixer (Quake et al.)

1. Load sample on top
2. Load sample on bottom
3. Peristaltic pumping

Ll
Rotary Mixing

Primitive 4. A Latch (Our contribution)

 Purpose: align sample with specific location on device
— Examples: end of storage cell, end of mixer, middle of sensor

 Latches are implemented as a partially closed valve
— Background flow passes freely
— Agueous samples are caught

Primitive 5. Cell Trap

« Several methods for confining cells in microfluidic chips

— U-shaped weirs - C-shaped rings / microseives
— Holographic optical traps - Dialectrophoresis

 In our chips: U-Shaped Microseives in PDMS Chambers
RARBRE

P B R
e 4k '_ -L it D ——
P e ¢ b M w1 3 1 o b :|:H“*'j-—i
| R |
oS8 RO AN OO O
] M M) :m M1 0N "‘u :*.____l-—lll
-~ i
H-«-l.it-l-u- SEERERERE
R bﬂ -
—i ’ : ¢ 3 .

Source: Wang, Kim, Marquez, and Thorsen, Lab on a Chip 2007

Primitive 6: Imaging and Detection

« As PDMS chips are translucent,
contents can be imaged directly

— Fluorescence, color, opacity, etc.

e Feedback can be used to
drive the experiment

Fluidic Abstraction Layers

Protocol Description Language
- readable code with high-level mixing ops

.

Fluidic Instruction Set Architecture (ISA)
- primitives for 1/O, storage, transport, mixing

1 .

f‘l‘ & l S = | M Hn\ .‘
\ l | ll]l‘ % @
chip 1 chip 2 chip 3

. ! 3 .

Fluidic Hardware Primitives
- valves, multiplexers, mixers, latches

Toward “General Purpose”
Microfluidic Chips

. 4 >
yIn

nputs 1 M MW W |

Out

Abstraction 1. Digital Architecture

Recent techniques can control independent samples
— Droplet-based samples [Fairetal] A5

— Continuous-flow samples [Our contribution] j=

— Microfluidic latches [Our contribution] ’

In abstract machine, all
samples have unit volume

— Input/output a sample
— Store a sample
— Operate on a sample

Fluidic
Storage
(RAM)

et 4441

| Out

Challenge for a digital architecture: fluid loss

— No chip is perfect — will lose some volume over time

— Causes: imprecise valves, adhesion to channels, evaporation, ...
— How to maintain digital abstraction?

Maintaining a Digital Abstraction

Electronics

Soft error
Handling?

=

Randomized
Gates [Palem]

=

Replenish charge
(GAIN)

g gl piai g

Loss of charge

High-Level
Language

Instruction Set

Architecture (ISA)

Hardware

Microfluidics /

Expose loss in language
- User deals with it

2 o o »

Expose loss in ISA /
- Compiler deals with it

o o o

Replenish fluids?
- Maybe (e.g., with water)
- But may affect chemistry

s gl pin §

Loss of fluids

Abstraction 2: Mix Instruction

 Microfluidic chips have various mixing techno
— Electrokinetic mixing [Levitan etal] NS
— Droplet mixing [Fair et al.]] J
— Rotary mixing [Quake et al] W -

ogies

|

|t

e

« Common attributes: T |

i

— Abllity to mix two samples in equal proportions, store result

e Fluidic ISA: mix (int src,, int src,, int dst)
— Ex: mix(1, 2, 3) Storage Cells Mixer

— To allow for lossy transport, only 1 unit of mixture retained

Gradient Generation in Fluidic ISA

Gradient Generation in Fluidic ISA

wait(2000):;
setValve(14, HIGH);
wait(1000):
setValve(4, HIGH);
setValve(16, HIGH);
setValve(19, LOW);
wait(2000);
setValve(0, LOW);
setValve(2, LOW);
setValve(4, LOW);
setValve(6, HIGH);
setValve(8, LOW);
setValve(10, HIGH);
setValve(12, LOW);
setValve(14, LOW);
setValve(16, HIGH);

| setvalve(18, HIGH);

setValve(2, LOW);

setValve(12, LOW);
setValve(18, HIGH);

setValve(l, LOW);
setValve(3, HIGH);
setValve(5, HIGH);
setValve(7, LOW);
setValve(9, HIGH);

setValve(11, LOW);

setValve(13, LOW);

setValve(15, HIGH);

setValve(17, LOW);
setValve(19, LOW);

Direct Control
- 450 valve actuations
- only works on 1 chip

abstraction

L

input(0, 0);
input(1, 1);
input(0, 2);
mix(1, 2, 3);
input(0, 2);
mix(2, 3, 1);
input(1, 3);
input(0, 4);
mix(3, 4, 2);
input(1, 3);
input(0, 4);
mix(3, 4, 5);
input(1, 4);
mix(4, 5, 3);
mix(0, 4);

Fluidic ISA

- 15 instructions
- portable across chips

Implementation: Oil-Driven Chip

NN

Input 1 @

+—| [||Wastel|| | |
, Mixer
-

Waste

N

N

W W

—ta Il 1L

Inputzl [T
| 7€ Storage Cells

.

_*__

e

/\T\r \r\+ »\\

Flow Layer Control Layer

Inputs

Storage Cells | Background Phase

Wash Phase Mixing

Chip 1

8

Oll

— Rotary

Implementation: Oil-Driven Chip

mix (S;, S,, D) {
1. Load S,
2. Load S,
3. Rotary mixing
4. Store into D

Inputs | Storage Cells

Background Phase

Wash Phase

Chip 1 2 8

Oill

Implementation 2: Air-Driven Chip

Inputs Waste

T]

— ' ,
+ E | it | - Air
: . \ . . M

+7
Storage Cells
+7
—
Water + (hcasacecaraaras TR
Vent 4 |
+ Flow Layer Control Layer
Inputs | Storage Cells | Background Phase | Wash Phase Mixing
Chip 1 2 8 Qil — Rotary
Chip 2 4 32 Air Water In channels

Implementation 2: Air-Driven Chip

mix (S;, S,, D) { S S S
1. Load S, == o
2.Load S,

3. Mix / Store into D
4. Wash S,
5. Wash S,

} Water +— g

- Air

Vent +— ..
50x real-time .L Flow Layer Control Layer

Inputs | Storage Cells | Background Phase | Wash Phase Mixing

Chip 1 2 8 Qil — Rotary

Chip 2 4 32 Air Water In channels

Fluidic Abstraction Layers

Protocol Description Language
- readable code with high-level mixing ops

. .

Fluidic Instruction Set Architecture (ISA)
- primitives for 1/O, storage, transport, mixing

Fluidic Hardware Primitives
- valves, multiplexers, mixers, latches

Abstraction 1. Managing Fluid Storage

Fluidic
ISA

input(0, 0);
input(1, 1);
input(0, 2);

mix(1, 2, 3);

input(0, 2);

mix(2, 3, 1);

input(1, 3);
input(0, 4);

mix(3, 4, 2);

input(1, 3);
input(0, 4);

mix(3, 4, 5);

input(1, 4);

mix(4, 5, 3);

mix(0, 4);

[] out = new [8];
yellow, blue, green;
out[0] = input(0);
yellow = input(0);
blue = input(l);
green = mix(yellow, blue);
yellow = input(0);
out[1] = mix(yellow, green);
yellow = input(0);
blue = input(l);
out[2] = mix(yellow, blue);
yellow = input(0);
blue = input(l);
green = mix(yellow, blue);
blue = input(l);
out[3] = mix(blue, green);
out[4] = input(1);

1. Storage
Management

« Programmer uses location-independent Fluid variables
— Runtime system assigns & tracks location of each Fluid
— Comparable to automatic memory management (e.g., Java)

Abstraction 2: Fluid Re-Generation

Fluid[] out = new Fluid[8];

Fluid yellow, blue, green; Fluid]] out = new Fluid[8];

out[0] = input(0); Fluid yellow = input(0);

yellow = input(0); Fluid blue = input(1);

blue = input(1); Fluid green = mix(yellow, blue);
green = mix(yellow, blue); _ _

yellow = input(0); out[0] = yellow;

out[1] = mix(yellow, green): ‘ out[1] = mix(yellow, green);
yellow = input(0); out[2] = green;

blue = input(1); out[3] = mix(blue, green);

out[2] = mix(yellow, blue): out[4] = blue;

yellow = input(0); 2. Fluid Re-Generation
blue = input(1);

green = mix(yellow, blue);
blue = input(l);

out[3] = mix(blue, green);
out[4] = input(1);

« Programmer may use a Fluid variable multiple times
— Each time, a physical Fluid is consumed on-chip
— Runtime system re-generates Fluids from computation history

Custom Re-Generation

e Some species cannot be regenerated by repeating history
— e.g., if selective mutagenesis has evolved unigue sequence

 Users can extend Fluid class, specify how to regenerate
— e.g., run PCR to amplify sequence of interest

class extends {

// Return array of fluids that are equivalent to this fluid
[] regenerate() {
amplified = performPCR(this, cycles, primerl, primer2, ...);
[] diluted = dilute(amplified, Math.pow(2, cycles));
return diluted,;

}

// Return minimum quantity of this fluid needed to generate others
iInt minQuantity() {
return 1;

}

}

Unique Fluids Prohibit Re-Generation

« Some Fluids may be unique, with no way to amplify
— E.g., products of cell lysis

e Users can express this constraint using a UniqueFluid:

class extends { f = lysisProduct();
[] regenerate() { [] diluted = dilute(f);
throw new EmptyFluidException(); | | for (int i=0; i<diluted.length; i++) {
} analyze(diluted[i]);
} }

« Can compiler verify that unique fluids used only once?

— Unique (linear) types is a rich research area in prog. languages
[Wadler] [Hogg] [Baker] [Minsky] [Boyland] [Fahndrich & DeLine]

— But solutions often require annotations & do not handle arrays
— Practical approach: verify in simple cases, warn about others
- Opportunity for programming language research

Abstraction 3. Arbitrary Mixing

[] out = new Fluid[8];

yellow = input(0); [] out = new Fluid[8];

blue = input(l); yellow = input (0);

green = mix(yellow, blue); blue = input (1);
out[0] = yellow; ‘ out[0] = yellow;
out[1] = mix(yellow, green); out[1] = mix(yellow, 3/4, blue, 1/4);
out[2] = green; out[2] = mix(yellow, 1/2, blue, 1/2);
out[3] = mix(blue, green); out[3] = mix(yellow, 1/4, blue, 3/4);
out[4] = blue; out[4] = blue;
2. Fluid Re-Generation 3. Arbitrary Mixing

 Allows mixing fluids in any proportion, not just 50/50
— Fluid mix (Fluid F,, float p,, Fluid f,, float F,)
- Returns Fluid that is p, parts F, and p, parts F,
— Runtime system translates to 50/50 mixes in Fluidic ISA

— Note: some mixtures only reachable within error tolerance ¢

Abstraction 3. Arbitrary Mixing

[] out = new Fluid[8];
yellow = input (0);
blue = input (1);

out[0] = yellow;

out[1] = mix(yellow, 3/4, blue, 1/4);
out[2] = mix(yellow, 1/2, blue, 1/2);
out[3] = mix(yellow, 1/4, blue, 3/4);
out[4] = blue;

=

3. Arbitrary Mixing

 Allows mixing fluids in any proportion, not just 50/50

[] out = new Fluid[8];
yellow = input (0);
blue = input (1);

for (int i=0; i<=4; i++) {

outfi] = mix(yellow, 1-i/4, blue, i/4); |

}

4. Parameterized Mixing

— Fluid mix (Fluid F,, float p,, Fluid f,, float F,)
- Returns Fluid that is p, parts F, and p, parts F,

— Runtime system translates to 50/50 mixes in Fluidic ISA
— Note: some mixtures only reachable within error tolerance ¢

Abstraction 4: Cell Traps

« Unlike fluids, cells adhere to
a specific location on chip

— To Interact with cells, need
to move Fluids to their location

 CellTrap abstraction establishes a fixed chamber on chip
— Fundamental capability: fill with a given fluid (incl. cell culture)

class CellTrap {

/[establish a new, empty location on chip
CellTrap();

I/ replace contents of cell trap with new fluid; return old contents
UniqueFluid drainAndRefill(Fluid newContents);

I/ regenerate contents of cell trap; return drained fluid as needed
Fluid drainAndRegenerate();

Abstraction 4: Cell Traps

celltrap = new CellTrap(); I/ setup cell culture
for (int i=0; I<N; i++)
celltrap.drainAndRefill(cellCulture);
celltrap.drainAndRefill(distilledWater); /[analyze cell metabolites
metabolites = drainAndRegenerate();
analyzeWithIndicators(metabolites);

celltrap.drainAndRefill(antibodyStain); // stain cells for imaging

- Must schedule all uses of metabolites before staining
— Otherwise, runtime error
— Like unique variables, difficult to verify safety in general case
— But thanks to language, compiler can give useful warnings

Abstraction 5: Timing Constraints

 Precise timing is critical for many biology protocols
— Minimum delay: cell growth, enzyme digest, denaturing, etc.
— Maximum delay: avoid precipitation, photobleaching, etc.
— Exact delay: regular measurements, synchronized steps, etc.

 Simple API for indicating timing constraints:
— fluid.useBetween(N, M) — celltrap.useBetween(N, M)

- Schedule next use of a Fluid (or drain of a CellTrap)
between N and M seconds from time of the call

- Also becomes part of Fluid’s regeneration history

 Note: may require parallel execution @ @
— Fluid f1 = mix(...); fl.useBetween(10, 10);
— Fluid 2 = mix(...); f2.useBetween(10, 10); 10 10
— Fluid f3 = mix(f1, f2); @

Scheduling the Execution

« Scheduling problem has two parts:
1. Given dependence graph, find a good schedule
2. Extract dependence graph from the program

1. Finding a Schedule

Abstract scheduling problem:
— Given task graph G = (V, E) with [min, max] latency per edge
— Find shortest schedule (V — Z) respecting latency on each edge

- Case 1. Unbounded parallelism
o Can express as system of linear difference constraints
e Solve optimally in polynomial time

-> Case 2: Limited parallelism
e Adds constraint: only k vertices can be scheduled at once
e Can be shown to be NP-hard (reduce from PARTITION)
 Rely on greedy heuristics for now

2. Extracting Dependence Graph

« Static analysis difficult due to aliasing, etc.
— Requires extracting precise producer-consumer relationships

e Opportunity:
Perform scheduling at runtime, using lazy evaluation
— Microfluidic operations are slow = computer can run ahead
— Build dependence graph of all operations up to decision point

« Hazard: constraints that span decision points
— Dynamic analysis cannot look into upcoming control flow
— We currently prohibit such constraints — leave as open problem

BioStream Protocol Language

* Implements the abstractions vellow = input (0);
— Full support for storage management, blue = input (1);
fluid re-generation, arbitrary mixing [out = new Fluid[8];
— Partial support for cells, timing for (Inti=0; I<=4; i++)
out[i] = mix(yellow, 1-i/4,
blue, i/4);

« Implemented as a Java library
— Allows flexible integration with general-purpose Java code

« Targets microfluidic chips or auto-generated simulator

Architecture Description
er Code :
= - Double camera(Fluid f);

¥ I ¥
BioStream Library Simulator Generator
‘ |
Fluidic ISA h
L

Microfluidic chip Microfluidic simulator

Applications in Progress

1. What are the best indicators for oocyte viability?

- With Mark Johnson’s and
Todd Thorsen’s groups

- During in-vitro fertilization,
monitor cell metabolites and
select healthiest embryo for implantation

2. How do mammalian signal transduction pathways
respond to complex inputs? Hw | k| — Fowine

I === (Control line
- With Jeremy Gunawardena’s l i ll| e
’ : A S S,
and Todd Thorsen’s groups Ié 1

) . T} iC - .:T:%:%: I_
- Isolate cells and stimulate with —-— HIIE T—t’PZ?_____T_

square wave, sine wave, etc. %ﬁ#=
M

Generating Complex Signals

cells = new 0;
... Il setup cell culture
while (true) {
float target = targetSignal(getTime());
Fluid f = mix(EGF, target,
WATER, 1-target);
cells.drainAndFill(f);
cells.useAfter(10*SEC);

Video courtesy David Craig

Target Signal

[EGF]

Time

Additional Applications

o Killer apps: react to feedback, redirect the experiment

— Recursive-descent search Tk

— Fixed-pH reaction Program Biology
— Directed evolution Intelligence Experiment
— Long, complex protocols Nl

« Application to biological computation

— Many emerging technologies:
DNA computing, cellular signaling, biomolecular automata, ...

— But not yet able to assemble, sustain, and adapt themselves
— Microfluidics provides a scaffold to explore underlying biology

Compiler Optimizations

Algorithms for Efficient Mixing

e Mixing is fundamental operation of microfluidics
— Prepare samples for analysis
— Dilute concentrated substances
— Control reagant volumes
B Analogous to ALU operations on microprocessors

« How to synthesize complex mixture using simple steps?
— Many systems support only 50/50 mixers
— Should minimize number of mixes, reagent usage
— Note: some mixtures only reachable within error tolerance ¢

B Interesting scheduling and optimization problem

Why Not Binary Search?

0 3/8 1

—

\1/2/
‘\J /4 0

‘ET\HZ/
3/8 @

— e m) 5 inputs, 4 mixes

Why Not Binary Search?

0 3/8 1

—

\1 / Z/
0\9/4 0

\%M

m) 4 inputs, 3 mixes

\1/2/

O\J /4 0

‘\R1 /2/
3/8 g =) 5 inputs, 4 mixes

\>‘4/

Min-Mix Algorithm

« Simple algorithm yields minimal number of mixes
— For any number of reagents, to any reachable concentration
— Also minimizes reagent usage on certain chips

Min-Mix Algorithm: Key Insights

1. The mixing process can be represented by a tree.

A B

'\/
\/‘

5/8 A 3/8 B

Min-Mix Algorithm: Key Insights

1. The mixing process can be represented by a tree.

d 2-d
3 1/8 A B
2 1/4
1 1/2 \ /
\ /‘
5/8 A 3/8 B

2. The contribution of an input sample to the overall mixture
is 29, where d is the depth of the sample in the tree

Min-Mix Algorithm: Key Insights

1. The mixing process can be represented by a tree.

d 2-d

3 18 |1 A B 1
2 1/4 |0 1
1 1/2 |1 \ /

2. The contribution of an input sample to the overall mixture
is 29, where d is the depth of the sample in the tree

3. In the optimal mixing tree, a reagent appears at depths

corresponding to the binary representation of its overall
concentration.

d

4
3
2
1

2-d
1/16
1/8
1/4

1/2

Min-Mix Algorithm

« Example: mix 5/16 A, 7/16 B, 4/16 C

A
Al
A=5
=0101

N

/

B=7

=0111

B C
\./

D=

C=4
=0100

 In paper. pseudocode, proof of correctness / optimality

Work In Progress

CAD Tools for Microfluidic Chips

— Most groups use Adobe lllustrator or AutoCAD g

 Microfluidic design tools are in their infancy | ,_L

— Limited automation; every line drawn by hand i =

 Due to fast fabrication, redesign is very frequent
— Student can do multiple design cycles per week

First Step: Automatic Routing

e First target: automate the routing of control channels
— Connecting valves to pneumatic ports is very tedious
— Simple constraints govern the channel placement

: [=] autoCaD Electrical - [C:\bill'talks!,07-04-13-micra =]
¢ A u to CA D p I u g I n ;i File Edit Yiew Insert Format Tools Draw Dimension Modify Projects Components ires
h . Pamel Layout Window Help =121 =l
au to m at eS t I S __,I ¢ O " Contral j = f_"_, I. BylLayer j
tas k BioCAD E

— Developed
With Nada Amin

=l

L

-

REEREAL) +oce

Related Work

Aguacore — builds on our work, ISA + architecture [Amin et al.]

Automatic generation / scheduling of biology protocols
— Robot scientist: generates/tests genetic hypotheses [King et al.]
— EDNAC computer for automatically solving 3-SAT [Johnson]

— Compile SAT to microfluidic chips [Landweber et al.] [van Noort]
— Mapping sequence graphs to grid-based chips [Su/Chakrabarty]

Custom microfluidic chips for biological computation

— DNA computing [Grover & Mathies] [van Noort et al.] [McCaskill] [Livstone,
Weiss, & Landweber] [Gehani & Reif] [Farfel & Stefanovic]

— Self-assembly [Somei, Kaneda, Fujii, & Murata] [Whitesides et al.]

General-purpose microfluidic chips
— Using electrowetting, with flexible mixing [Fair et al.]
— Using dialectrophoresis, with retargettable GUI [Gascoyne et al.]
— Using Brallle displays as programmable actuators [Gu et al.]

Conclusions

 Abstraction layers for
programmable microfluidics

— General-purpose chips
— Fluidic ISA

— BioStream language

— Mixing algorithms

P \
N
B
WS
[8
J s
Ly

» Vision for microfluidics: =

everyone uses standard chip g . ",_,j. Al H
* Vision for software:
a defacto language for experimental science

— Download a colleague’s code, run it on your chip

— Compose modules and libraries to enable complex
experiments that are impossible to perform today

http://cag.csail.mit.edu/biostream

Extra Slides

How Can Computer Scientists Contribute?

 Applying the ideas from our field to a new domain
— Sometimes requires deep adaptations (e.g., digital gain)

e Qur contributions:
— First soft-lithography digital architecture with sample alignment
— First demonstration of portability: same code, multiple chips
— New high-level programming abstractions for microfluidics
— First O(lg n) mixing algorithm for lossy unit volumes (vs O(n))

 Open problems:
— Adapt unique (linear) types to microfluidics
— Sound scheduling under timing constraints
— Dynamic optimization of slow co-processors (lazy vectorization?)
— Mixing algorithms for different ISA’s (e.g., lossless mixing)
— Generate a CAD layout from a problem description

