
Design and Implementation of a Framework for

Performing Genetic Computation Through a

Volunteer Computing System

Eamon Walsh

Research Science Institute

Mentor: Luis F. G. Sarmenta

Laboratory for Computer Science

Massachusetts Institute of Technology

August 5, 1998

Abstract

This project designed and implemented a transparent software framework that allows

any genetic algorithm to be run in parallel over the Internet. The framework distributes the

population of the genetic algorithm among computers which have been volunteered to assist

in the task. However, the parameters provided to the genetic algorithm are independent of

the number of processors being used. The framework makes use of Project Bayanihan, a

volunteer computing package written in the Java programming language. A sample genetic

algorithm was created and executed using the framework, and consistent, accurate results

were obtained. Benchmark tests indicate that there is a signi�cant improvement in execution

speed when using the framework as compared to a single machine.

1 Introduction

1.1 Genetic Algorithms

One of the most promising methods for solving problems computationally is the genetic

algorithm. Genetic algorithms function by maintaining a population of chromosomes and

performing operations on that population, simulating the biological evolutionary process.

Each chromosome encodes a possible solution to the problem being solved. By manipu-

lating the chromosomes much like strands of DNA { through combination, crossover, and

mutation, the genetic algorithm produces new chromosomes from the old ones. By selecting

the chromosomes with the best solutions from successive generations, the genetic algorithm

eventually reaches a �nal, optimized result [2].

The following pseudo-code describes the work cycle of a basic genetic algorithm [6].

initialize a (random) population.

test for termination criteria (time, fitness, etc.)

while not done do

give each chromosome an evaluation (fitness)

select parent chromosomes for reproduction

produce children through genetic recombination

perform other genetic operations (mutate, etc.)

evaluate the children

select survivors to advance to the next generation

end loop

Genetic algorithms have numerous real-world applications. Their high degree of adaptibil-

ity and versatility makes them ideal for problems with sudden or unexpected conditions.

1

They are used to construct exam timetables, manage network routing, �nd maxima or min-

ima, and play complex games [6].

One weakness of genetic algorithms is their need for signi�cant computing power. The

cycle described above is slow because operations must be performed on each chromosome

every generation, and typical genetic algorithms maintain populations of thousands of chro-

mosomes. However, because the same operations are performed on each chromosome, genetic

algorithms can be made to run in parallel, and have been described as \highly parallelize-

able" [4]. Thus, one way to provide the necessary computing power is to adapt genetic

algorithms to a parallel computing environment.

1.2 Project Bayanihan

Mr. Luis F. G. Sarmenta of the MIT Laboratory for Computer Science has written a parallel

computing framework in the Java programming language. This project, Project Bayanihan,

attempts to take advantage of a computing resource already in existence { millions of personal

computers in homes and o�ces [7].

When performing computations on a single machine, the typical
ow of operations pro-

ceeds as shown in Figure 1.2a. A certain amount of work is performed, the results are

displayed, and the next batch of work is started. The
ow of operations over a Project

Bayanihan application is similiar, as shown in Figure 1.2b. In this case, however, the work is

�rst divided into many parts by the \server." The parts are then made available to \worker"

client computers who have volunteered to assist in performing the task. Each worker com-

pletes a part of the work and sends the result back to the server. Finally, these results are

2

New Work

Work Done

Results Shown

New Work

New Work

New Work

...

...

SINGLE MACHINE

SERVER

WATCHERSWORKERS

Results ShownWork Done

a b

Figure 1: Flow of computing operations: a)single machine b)Project Bayanihan

sent to \watcher" clients that display them to the user.

Through Project Bayanihan, computers can be volunteered over the Internet to assist

in a large computing problem. This framework can be used by organizations to \recruit"

computing power from interested Internet users. Such a technique has already been used by

distributed.net to solve large-scale computing problems [1]. Companies can also use Project

Bayanihan over local area networks to take advantage of existing personal computers [7].

1.3 Purpose

The ability to run genetic algorithms using Project Bayanihan would provide a way for an

organization or company to take advantage of genetic algorithms without the limitation of

providing the necessary computing power. In addition, Project Bayanihan would provide the

advantages of a parallel processing environment, making the genetic algorithm run faster.

This project designed and built a sub-framework using the Bayanihan system. The sub-

3

framework de�nes methods and data objects which can be used to run genetic algorithms

through Project Bayanihan.

2 Design

2.1 Adapting Genetic Algorithms to Project Bayanihan

When running a genetic algorithm on a single machine, the work cycle
ows as shown in

Figure 2a. The single machine must process each chromosome in the population.

CCCC

CCCCCC

CCCCCC

CC

...

Operations

Performed

Operations

Performed

1st Generation

2nd Generation

CCCCCC

CCCCCC

CCCCCC

...

Results

Results

SINGLE MACHINE PROJECT BAYANIHAN

a b

C ’s represent chromosomes in the population

Figure 2: Work
ow of a genetic algorithm: a)single machine b)Project Bayanihan

Under Project Bayanihan, however, the population can be split up and sent to many

separate computers for processing, as shown in Figure 2b. Under this design, the server

initializes the population. Then, for every subsequent generation, the population is split up

4

and sent to the worker clients. The workers perform all of the operations inside the while loop

of the genetic algorithm. The survivors are returned to the server, where they are reinserted

into the population. The cycle then repeats. The watcher clients are given information each

generation, so the user can monitor the evolution process. After the speci�ed number of

generations, the server selects the best chromosome from the population and reports it as

the �nal answer.

2.2 Issues Addressed by the Sub-Framework

In the design of the sub-framework itself, two main issues were addressed:

Adaptability. The sub-framework provides support for any genetic algorithm by al-

lowing the programmer to implement the application-speci�c parts of the algorithm. The

programmer must provide the following information to the sub-framework:

� Format for encoding information in the chromosomes

� Population size

� Number of generations before stopping

� Evaluation function for scoring the chromosomes

� Reproduction operators (mutation, crossover, etc.)

� Survival function for performing natural selection

However, the programmer can override more of the sub-framework if he or she wishes

to exert more control over its operation. For example, the default user interface can be

overridden if the programmer wishes to provide a custom graphical interface.

5

Watch
GUI

Work Result

SERVER

WorkEngine

WorkManager

Problem

WatchManager

WatchAdvocate

WatchEngineWork
GUI

WorkAdvocate

Work
Pool

Result
Pool

WORKER WATCHER
CLIENTCLIENT

Application-specific component: must be subclassed

General component: no subclassing required

Represents a call from one component to another
Separates components running on different computers

KEY

Figure 3: Project Bayanihan components in the server-worker-watcher model. Each rectangle

in the �gure represents a working part of Project Bayanihan. The arrows represent method calls

made from one part to another.

Performance. Under the framework, the population of chromosomes is divided into

groups, and each group is sent as a separate work object. If the size of the groups is too

small, network overhead causes a loss in performance. If the size is too large, the worker

clients become overloaded, and the bene�ts of parallel computing are lost. The population

size and group size, as well as the number of generations to be produced, must be speci�ed

explicitly by the programmer. In this way, the framework can be modi�ed to provide optimal

performance for any genetic algorithm.

3 Implementation

6

3.1 Internal Structure of Project Bayanihan

Project Bayanihan is written in Java, and each working part of the project is a separate Java

class (a collection of methods and data which is treated as a single object). Low-level data

transfer is handled by Hirano Object Resource Broker (HORB), a distributed object package

which allows Java objects to communicate remotely [5]. Figure 3 shows the structure of the

server-worker-watcher model used by Project Bayanihan [7].

To write an application using Project Bayanihan, the following problem-speci�c informa-

tion must be provided to the model:

� The type of work to be done (Work)

� The type of results to be returned (Result)

� Methods for creating and distributing work (Problem)

� Graphical user interfaces for the worker and watcher clients (WorkGUI, WatchGUI)

This information is provided by extending, or subclassing, Project Bayanihan compo-

nents. The outlined rectangles in Figure 3 indicate those parts of Project Bayanihan which

must be subclassed to create an application. These parts are abstract classes; they contain

unde�ned methods and thus cannot be instantiated. The subclasses written by the appli-

cations programmer implement the required methods and hold the appropriate data for the

speci�c problem being addressed [7]. The shaded rectangles in Figure 3 indicate generic

components which work for most problems and do not require modi�cation.

7

3.2 Implementing the Sub-Framework

In building the sub-framework for genetic computation, the set of possible problems was

reduced from any conceivable computational work to any genetic algorithm. Thus, most of

the information required by Project Bayanihan is the same for all cases:

� The work is always the sequence of operations in the while loop shown on page 3.

� The data being worked with and the results are always groups of chromosomes.

� The method for dividing the work is always the same: divide the population into
groups, send the groups to the workers to have the operations performed, and then
recombine them into the population. Finally, report the results to the watchers and
repeat.

� A standard user interface can be provided for all genetic algorithms, because in all
cases the data being shown to the user is chromosome evaluation.

The sub-framework provides the required subclasses for the server-worker-watcher model.

It also introduces three new classes: Chromosome, ChromosomeGroup, and ReproductionOperator.

3.3 Structure of the Sub-Framework

Table 1 summarizes the components of the genetic algorithm sub-framework.

The abstract Chromosome class contains unde�ned methods for initializing and scoring

chromosome data. Each genetic algorithm must provide a subclass of Chromosome which

implements the methods and encapsulates the algorithm-speci�c chromosome data. The

generic ChromosomeGroup class stores arbitrary-sized groups of Chromosomes, and needs no

special customization.

The GeneticWork class is an abstract class which maintains a small ChromosomeGroup

and has abstract methods associated with the operations in the while loop of a genetic

8

Component Is a Subclass of Purpose

Chromosome |{ Contains genetic data
ChromosomeGroup |{ Stores a group of chromosomes
ReproductionOperator |{ Performs a single

genetic operation
GeneticWork Work Performs evaluation, reproduction,

and survivor selection
GeneticResult Result Returns surviving chromosomes

after work is performed
GeneticProblem Problem Maintains the population;

creates and distributes work
GeneticWorkerGUI WorkGUI Displays work status information

on the worker clients
GeneticWatcherGUI WatchGUI Displays results to the user

on the watcher clients

Table 1: Summary of framework components

algorithm. When the doWork() method is called by the work engine, these operations

are performed on the chromosomes in the ChromosomeGroup, and the resulting recombined

chromosomes are returned in a GeneticResult object. Each genetic algorithm must provide

a subclass of GeneticWork which implements the required methods.

The GeneticResult class simply encapsulates a ChromosomeGroup and needs no exten-

sion.

The GeneticProblem class maintains a ChromosomeGroup object as the population.

When its createWork() method is called, it divides the population into smaller ChromosomeGroups

and assigns each one to a GeneticWork object. When a GeneticResult is returned, its

ChromosomeGroup is put back into the population, and the results are sent to the watcher

clients. When all the work is complete, createWork() is called again and the next generation

begins. Three parameters are maintained in this class: the population size, the work size,

and the maximum number of generations. These are algorithm-speci�c and are speci�ed by

9

the programmer.

Each genetic algorithmmay implement one or more subclasses of ReproductionOperator.

These subclasses contain methods for performing genetic recombination and manipulation.

They are used in the recombine() method of GeneticWork.

Finally, the GeneticWatcherGUI and GeneticWorkerGUI classes implement generic user

interfaces for viewing results of the computation. These interfaces can be overridden if

the programmer wishes to provide a custom graphical interface, but they will work for any

genetic algorithm.

CCC CCC

WORKER
CLIENTS

WATCHER
CLIENTS

CCCCCC
ChromosomeGroup

(Population)

SERVER

GeneticProblem

GeneticWork GeneticResult

ReproductionOperator

GeneticWorker-
 GUI

GeneticWatcher-
 GUI

ChromosomeGroup

KEY

WorkPool

ResultPool
WatchAdvocate

WatchManager

WatchEngine

WorkAdvocate

WorkEngine

WorkManager

May be subclassed for additional customization

ChromosomeCMust be subclassed for specific genetic algorithm

Project Bayanihan component - not seen by user

Figure 4: Structure of the genetic algorithm framework

10

Genetic Algorithm

Genetic Algorithm Framework

Server-Worker-Watcher model

Project Bayanihan

HORB Data Transfer

Figure 5: Hierarchy of framework system

Figure 4 shows the structure of the genetic algorithm sub-framework model. It is much

like the server-worker-watcher model. However, the only information needed by this model

is the speci�c parameters of the genetic algorithm. The interface to Project Bayanihan

is completely contained within the model. Figure 5 shows the complete hierarchy of the

framework system, with HORB at the lowest level, and a speci�c genetic algorithm running

at the highest level.

4 Testing

After the framework was developed, a sample genetic algorithm was written using the frame-

work and run over the Athena network at MIT. The genetic algorithm �nds the absolute

maximum value of a function f(x; y) by maintaining a population of chromosomes which

contain encoded x and y values. The genetic material is a string of 44-bits, which is divided

into two 22-bit numbers. The numbers are scaled from the range [0; 222 � 1] to the range

[�100; 100] and used as inputs to the function.

11

The score of a chromosome is equal to its function value. Thus, since the higher-scoring

chromosomes come to dominate the population, the population eventually evolves to the

point where a maximum is found [2].

The sample genetic algorithm provides the required subclassing of the GeneticWork,

GeneticProblem, and Chromosome objects. It implements two ReproductionOperators,

a mutator and a crosser. The mutator has a 5 in 1000 chance of
ipping a single bit in

the chromosome data. It serves to introduce random change in the x or y value, possibly

producing a higher-scoring chromosome. The crosser exchanges x and y data between two

chromosomes, producing a new (x; y) point which has potential for a higher score.

In addition, the standard GeneticWorkerGUI and GeneticWatcherGUI were overridden

to provide a custom graphical interface, displaying a graph of scores and a radar screen

showing the x and y points encoded in each chromosome. A screen shot of the running

algorithm is shown in Figure 6.

Two trial runs were performed. In the �rst trial, the algorithm was run with a single

worker client on one machine. In the second trial, four worker clients on separate ma-

chines were used. In each trial, the algorithm was given three functions to maximize, which

are shown in table ??. Timing measurements were taken each generation using Project

Bayanihan's built-in timer. After �ve generations, the highest-scoring chromosome in the

population was returned and it's score recorded.

12

Figure 6: Sample genetic algorithm running on the framework

13

Function 1 z = 10� jx2 + y2j

Function 2 z = �x
2+y2

1000
+ 10

Function 3 z = 1

10
(100�

p
x2 + y2)cos

p
x2 + y2

Table 2: Functions which were maximized in the trial runs. Each function has a maximum value

of z = 10 at the origin.

Max Trial 1 Trial 2 Avg. %Error

Function 1 10 9.9993 9.9983 9.9988 0.0112
Function 2 10 9.9976 9.9990 9.9983 0.0117
Function 3 10 9.9972 9.9641 9.9807 0.1935

Table 3: Accuracy of the sample genetic algorithm.

Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Avg.

Function 1 2302 2254 2212 2233 2265 2253
Function 2 2273 2279 2239 2224 2268 2257
Function 3 2245 2274 2312 2267 2254 2270
Function 1 724 569 598 817 602 662
Function 2 587 656 911 587 674 683
Function 3 620 825 646 709 753 711

Table 4: Timing measurements in milliseconds. The �rst three rows are the data from the single

machine. The last three rows are the data from the four parallel worker clients.

14

5 Results

The algorithm succeeded in �nding the maximum value of the three di�erent functions with

an error of less than 0.2% in all cases. Table 2 contains complete results.

In the �rst trial, one generation was �nished approximately every 2250 ms. In the second

trial, one generation was �nished approximately every 650 ms. Network overhead caused a

loss in performance during the second trial. Even so, the four machines working in parallel

were three times faster than the single machine. Table 3 contains the complete results of the

timing measurements.

6 Discussion

Now that the sub-framework is complete, genetic algorithms can be run in parallel over the

Internet, using computers that have been volunteered by their owners to participate. This

method of high-performance computing provides a new way for organizations and companies

to solve real-world problems using genetic algorithms.

The fact that the genetic algorithm is running over multiple computers is transparent to

the programmer using the sub-framework; no data transfer or work control routines need

to be provided. Only the parameters of the genetic algorithm itself are required, and the

sub-framework controls the execution through Project Bayanihan. The two issues discussed

in the design section were adequately addressed: the framework is robust (providing support

for any genetic algorithm), and executes quickly (outperforming single machines).

In the future, the sub-framework may be compared with other parallel computing sys-

15

tems, such as distributed.net [1] or PVM [3]. These systems use other models for distributing

work and collecting results. They also implement other user interfaces. Genetic algorithms

may be adapted to run on these systems, in which case a comparison of adaptability and

performance could be made to identify the optimal distribution model and interface.

7 Acknowledgements

Acknowledgements go �rst and foremost to my mentor, Mr. Luis F. G. Sarmenta, who pro-

vided invaluable assistance in helping me to learn the inner workings of Project Bayanihan,

as well as providing me with the necessary tools to complete the research.

I wish to thank my teacher-advisor, Mr. Don Hyatt, for his help with the application

process, as well as his constant guidance and support in all of my computer science endeavors.

Acknowledgements go next to Ramesh Johari and various other RSI alumni, who provided

assistance in the paper-writing process.

Finally, acknowledgements go to the Center for Excellence in Education for providing me

with the opportunity to conduct this research. Their generous gift is greatly appreciated.

16

References

[1] A. L. Beberg, J. Lawson, and D. McNett. \Distributed.net: The World's Fastesest Com-
puter." Online. Availible http://www.distributed.net. 11 Nov. 1998.

[2] Lawrence Davis. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold,
1991.

[3] A. Geist. PVM: Parallel Virtual Machine: A User's Guide and Tutorial for Networked
Parallelism. Cambridge: MIT Press, 1994.

[4] Joerg Heitkoetter. \The Hitchhiker's Guide to Evolutionary Computation." Online.
Availible http://www.etsimo.uniovi.es/pub/EC/FAQ/www. 30 Sep. 1998.

[5] S. Hirano. \HORB: Distributed Execution of Java Programs." Proc. WWCA '97,

Lecture Notes in Computer Science., Vol. 1274 (1997): 13pp. Online. Availible
http://ring.etl.go.jp/openlab/horb. 13 Sep. 1996.

[6] Mark Kantrowitz. \Frequently Asked Questions: Genetic Algorithms." Online. Availi-
ble http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html. 10 Aug.
1997.

[7] L.F.G. Sarmenta and S. Hirano. \Bayanihan: Building and Studying Web-Based Vol-
unteer Computing Systems Using Java." Proc. ACM Workshop on Java for High-

Performance Network Computing. (Palo Alto, 1998).

17

