
Sabotage-Tolerance Mechanisms for Volunteer Computing Systems

Luis F. G. Sarmenta
�

Ateneo de Manila University
Loyola Heights, Quezon City, Philippines

lfgs@admu.edu.ph, http://www.cag.lcs.mit.edu/bayanihan/

Abstract

In this paper, we address the new problem of protect-
ing volunteer computing systems from malicious volun-
teers who submit erroneous results by presenting sabotage-
tolerance mechanisms that work without depending on
checksums or cryptographic techniques. We first analyze
the traditional technique of voting, and show how it re-
duces error rates exponentially with redundancy, but re-
quires all work to be done at least twice, and does not work
well when there are many saboteurs. We then present a
new technique called spot-checking which reduces the er-
ror rate linearly (i.e., inversely) with the amount of work to
be done, while only costing an extra fraction of the origi-
nal time. We then integrate these mechanisms by presenting
the new idea of credibility-based fault-tolerance, which uses
probability estimates to efficiently limit and direct the use of
redundancy. By using voting and spot-checking together,
credibility-based fault-tolerance effectively allows us to ex-
ponentially shrink an already linearly-reduced error rate,
and thus achieve error rates that are orders-of-magnitude
smaller than those offered by voting or spot-checking alone.
We validate this new idea with Monte Carlo simulations,
and discuss how credibility-based fault tolerance can be
used with other mechanisms and in other applications.

1 Introduction

In recent years, there has been a rapidly-growing interest
in volunteer computing systems, which allow people from
anywhere on the Internet to contribute their idle computer
time towards solving large parallel problems. Probably the
most popular examples of these are distributed.net, which
gained fame in 1997 by solving the RSA RC5-56 challenge
using thousands of volunteers’ personal computers around
the world [2], and SETI@home, which is currently em-
ploying hundreds of thousands of volunteer machines to

�

The work described in the paper was done while the author was at the
Massachusetts Institute of Technology, Cambridge, MA, USA.

search massive amounts of radio telescope data for signs
of extraterrestrial intelligence [9]. A number of academic
projects have also ventured to study and develop volunteer
computing systems, including some, like our own Bayani-
han [8], that promote web-based systems using Java [1, 4].
Even the commercial sector has joined the fray, with a num-
ber of new startup companies seeking to put volunteer com-
puting systems to commercial use, and pay volunteers for
their computer time [3, 6, 7].

The key advantage of volunteer computing over other
forms of metacomputing is its ease-of-use and accessibility
to the general public. By making it easy for anyone – even
casual users – on the Internet to join in a parallel compu-
tation, volunteer computing makes it possible to build very
large global computing networks very quickly, as proven
by the success of SETI@home and distributed.net. This
same advantage, however, also creates a new problem: if
we allow anyone to join a computation, how do we prevent
malicious volunteers from sabotaging the computation by
submitting bad results?

This problem is relatively new and unstudied. To date,
most research in “fault-tolerance” in the context of par-
allel computing has been focused on what we may call
“failure-tolerance” or “crash-tolerance”, where all faults are
assumed to be in the form of stopping faults – faults where
one or more of the processing elements, or the communi-
cation network links between them, simply stops generat-
ing or transmitting data, either temporarily or permanently.
Little research has been done on protecting against faults
where the processors do not stop producing data, but in-
stead produce bad data. Even less research has been done
on cases where these bad data are generated intentionally
and maliciously by hostile parties.1

This is actually not very surprising because until re-
cently, most parallel computing has been done within

1Actually, in the field of distributed systems, much research is being
done on this problem in the form of Byzantine agreement. See, for ex-
ample, [5]. However, the emphases and goals in these works tend to be
different from those of researchers who use parallel computing for high-
performance computation, and thus their results tend to be impractical,
inefficient, or both, when used in such contexts.

1

single-machine supercomputers, where the processors and
the network connecting them are all physically located in
the same place and under the control of the owner of the
computation. In such systems, the primary, if not the only,
source of faults would be the hardware itself. Since hard-
ware faults are relatively rare and generally tend to cause ei-
ther stopping faults or random data corruption, it has mostly
been possible to either simply ignore the possibility of er-
rors, or use parity and checksum schemes to detect data
corruption errors and treat uncorrectable errors as stopping
faults (i.e., invalidate the entire answer, making it equivalent
to no answer at all).

Today, however, as more and more parallel computing is
being done on network-based systems where the processing
elements are not only physically distributed but also owned
by different people, these traditional fault-tolerance mech-
anisms are becoming insufficient. While parity and check-
sum schemes work well against random hardware errors,
they are not effective against intentional attacks by mali-
cious volunteers – or saboteurs – who can disassemble the
code, figure out the checksum-generating part, and be able
to produce valid checksums for bad data. Thus, there is a
need for new sabotage-tolerance mechanisms that work in
the presence of malicious saboteurs without depending on
checksums or cryptographic techniques.

In this paper, we present such techniques. We begin with
the traditional technique of voting, and present new mecha-
nisms such as spot-checking, backtracking and blacklisting.
We then integrate these mechanisms by presenting the new
idea of credibility-based fault-tolerance, which uses proba-
bility estimates to efficiently limit and direct the use of re-
dundancy. We validate this new idea with Monte Carlo sim-
ulations, and discuss how credibility-based fault tolerance
can be used with other mechanisms and in other applica-
tions.

2 Models and Assumptions

Computational Model. In this paper, we assume a work-
pool-based master-worker model of computation, which is
used in practically all volunteer computing systems today,
as well as in many grid systems, metacomputing systems,
and other wide-area network-based parallel computing sys-
tems in general.2 In this model, a computation is divided
into a sequence of batches, each of which consists of many
mutually-independent work objects. At the start of each
batch, these work objects are placed in a work pool by the
master node, and are then distributed to different worker
nodes who execute them in parallel and return their results
to the master. When the master has collected the results

2Also, although most message-passing and shared-memory programs
do not fall under this model, they can be implemented on work-pool-based
systems by using the BSP model of computation [8].

for all the work objects, it generates the next batch of work
objects (possibly using data from the results of the current
batch), puts them in the work pool, and repeats this whole
process.

Error rate. We define the error rate, � , as the ratio of
bad results or errors among the final results accepted at the
end of the batch. Alternatively, we can also define it as the
probability of each individual final result being bad, such
that on average, the expected number of errors in a batch of�

results would be given by � � .
For simplicity, we assume for the most part that batches

are independent of each other, such that errors in one batch
do not affect the next. Moreover, in designing our mech-
anisms, we assume that there is a non-zero acceptable er-
ror rate, ������� , and aim to make the error rate lower than
it. Some “naturally fault-tolerant” algorithms such as ge-
netic algorithms, video rendering, and some statistics ap-
plications, can tolerate having a relatively large fraction
(1% or more) of the individual final results being bad, and
thus have high acceptable error rates. In other applications
which do not tolerate any errors at all, ������� must be set to
make the probability of getting any errors at all correspond-
ingly small. For example, suppose that a computation has
10 batches of 100 work objects each, and the batches are
dependent on each other such that a single error in any of
the 10 batches will cause the whole computation to fail. In
this case, to make the probability that the whole computa-
tion would fail, �
	 fail � , less than �� , the error rate � , which
is the probability of an individual result failing, must be at
most ��������� �
	 fail ����	�������������� � ��� ������ � ����������� .
Fortunately, although this error rate may seem small, we
show in Sect. 4 how such low error rates can be achieved
with only a small increase in redundancy.

Saboteurs. We assume that a faulty fraction, , of the
worker population, � , are saboteurs. The master node
(which we assume is trustworthy) may not know the ac-
tual value of , but is allowed to assume an upper bound on
it, such that no guarantees need be made if the real faulty
fraction is greater than the assumed bound.

For simplicity, we assume that all workers, including
saboteurs, run at exactly the same speed, such that the work
objects are uniformly and randomly distributed among the
workers and saboteurs. Thus, since each result we receive
is equally likely to come from any of the workers, the orig-
inal error rate – i.e., the expected error rate without fault-
tolerance – would simply be .

Sabotage Rate and Collusion. For simplicity, we model
each saboteur as a Bernoulli processes with a probability !
of giving a bad result, and assume that ! , called the sabo-
tage rate, is constant in time and the same for all saboteurs.

2

Note that this assumes that workers and saboteurs are inde-
pendent of each other and do not communicate. In particu-
lar, in cases where saboteurs do not always give bad results,
we assume that the saboteurs do not agree on when to give
a bad result, but decide to do so independently.

However, if two or more saboteurs happen to decide to
give a bad result for a particular work entry, we will assume,
unless otherwise stated, that their bad answers would match.
This allows saboteurs to “vote” together, and is not only
a conservative assumption since intuitively, we can expect
lower final error rates if saboteurs cannot vote together.

Redundancy and Slowdown. To measure the efficiency
of fault-tolerance mechanisms, we consider redundancy and
slowdown. Redundancy is defined as the ratio of the average
total number of work objects actually assigned to the work-
ers in a batch when using the mechanism,

� ��������� , vs. the
original number of work entries,

�
. Slowdown is defined

as a similar ratio between the running times of the compu-
tation with and without the use of the mechanism. In gen-
eral, redundancy leads to an equivalent slowdown, since we
assume that there are many times more work objects than
workers, so that there are no idle workers most of the time.
For example, a mechanism that on average does all the work
twice will generally take twice as long. Note however, that
in some cases – especially when workers can join, leave, or
get blacklisted in the middle of a batch – slowdown may be
different from redundancy. If workers leave, for example,
then the remaining workers must take over their work. This
increases the slowdown, even though the total amount of
work, and thus the redundancy is the same.

In general, fault-tolerance mechanisms should aim to (in
order of priority): (1) minimize the final error rate as much
as possible, or at least reduce it to an acceptable level, (2)
minimize redundancy, and (3) minimize slowdown.

3 Basic Mechanisms

3.1 Majority Voting

We can easily implement the traditional scheme of ma-
jority voting by using a modified eager scheduling work
pool [1, 8] as shown in Fig. 1. Here, the master continu-
ously goes through the work entries in the work pool in
round-robin fashion, until the done flags of all work entries
are set. The done flag of each work entry is left unset un-
til we collect � matching results for that work entry, thus
implementing an � -first voting scheme.

This scheme has an expected redundancy of � ��	��	� � ,
and an error rate that shrinks roughly exponentially in � , as
shown in Figure 2.3 This exponentially shrinking error rate

3More precisely,
����� ��������������� ��!#"%$&�' !
(*) �,+.-/ 0 � & �1-2+

VotingWorkPool
nextUnDoneWork

Work
0

m=2

Work
1

Work
2

Work
3

Done, res=GDone, res=A

pidres

P1A

pidres

P2B

pidres

P4Q

pidres

P1H

pidres

P2Z

pidres

P3G

P4GP3A

Figure 1. Eager scheduling work pool with � -first major-

ity voting.

1.E-22

1.E-20
1.E-18

1.E-16

1.E-14

1.E-12
1.E-10

1.E-08

1.E-06

1.E-04
1.E-02

1.E+00

1 2 3 4 5 6
m

er
r

2.E-01 1.E-01 1.E-02

1.E-03 1.E-04

Figure 2. Error rate of majority voting for various values

of 3 and 4 .

means that voting works very well in systems with small4 , and furthermore, that it gets increasingly better as 4 de-
creases. Thus, in systems with very low error rates to begin
with, such as hardware systems, it does not take much re-
dundancy to shrink the error to extremely low levels.

Unfortunately, however, voting also has its drawbacks.
First, it is inefficient when 4 is not so small. As shown in
Fig. 2, for example, at 465 798;: , doing all the work at least3<5>= times still leaves an error rate larger than 1%. Sec-
ondly, and more importantly, it has a minimum redundancy
of 2, regardless of 4 and the target error rate, ?�@�ABA . For these
reasons, voting is only practical in cases where: (1) the 4 is
small (i.e., 4DCFEHGI:), and (2) either (a) we have enough
idle or spare nodes to take on the extra load without causing
additional slowdown (as in the case of hardware-redundant
triple modular redundancy systems), or (b) a slowdown of
at least 2 (or in general 3) is deemed to be an acceptable
price to pay to reduce errors.

J9K�L M�N#O%PBO�Q�R
, which is bounded by

L SUTVLWPBOXTYRWR ZM�LWPBOXMBTYRW[\9L N#O%P�R [8, 10].

3

3.2 Spot-Checking

In cases where either is large, or our maximum accept-
able error rate is not too small, we can use a novel alter-
native we call spot-checking. In spot-checking, the master
node does not redo all the work objects two or more times,
but instead randomly gives a worker a spotter work object
whose correct result is already known or will be known by
checking it in some manner afterwards. Then, if a worker
is caught giving a bad result, the master backtracks through
all the results received from that worker so far, and invali-
dates all of them. The master may also blacklist the caught
saboteur so that it is prevented from submitting any more
bad results in the future.

Because spot-checking does not involve replicating all
the work objects, it has a much lower redundancy than vot-
ing. If we assume that the master spot-checks each worker
with a Bernoulli probability � , called the spot-check rate,
then the redundancy, on average, will be just ����	�� � � � . For
example, if � � ��� , then 10% of the work the master
gives would be spotter works. This means that on average,
the master gives out 	�����	�� ����� � � � � ��� ��� � work objects
during the course of a batch with

�
real work objects.

3.2.1 Spot-checking with Blacklisting

Even with this low redundancy, however, spot-checking can
still achieve very low error rates. To see this, consider the
case where caught saboteurs are blacklisted and never al-
lowed to return or do any more work (at least within the
current batch). In this case, errors can only come from sabo-
teurs that survive until the end of the batch. Assuming that
a saboteur is given a total of � work objects, including spot-
ter works, during a batch (where � is the saboteur’s share in
the total work, i.e.,

� ��� , plus the ����	��	� � � redundancy of
spot-checking and the extra load that the remaining workers
have to take when a worker gets blacklisted), then the av-
erage final error rate with spot-checking and blacklisting,��� ����� , can be computed as:

��� ����� 	 �	� � � � ! � � ! 	��2� � ! ��

	��2� ��� 	��	� � ! �
 (1)

where ! is the sabotage rate of a saboteur, is the fraction of
the original population that were saboteurs, 	�� � � ! ��
 is the
probability of a saboteur surviving through � turns, and the
denominator represents the fraction of the original worker
population that survive to the end of the batch, including
both good and bad workers.

Closer analysis of this function [8] shows that it has max-

imum at roughly �!��� ����� 	 �	� � � ����� � (� ������
�� ��� 0 and has a

maximum value that can be bounded as follows:

�� �� ����� 	 �	� � ���
�2� �

� �"! (2)

Intuitively, this means that if a saboteur knows � in advance,
then it should set its sabotage rate to be �!��� ����� , since a higher
sabotage rate would lead to a saboteur being caught too
quickly, while having a lower sabotage rate would lead to
fewer errors in the end. Even if saboteurs optimize their sab-
otage rates in this way, however, Eq. 2 says that the average
error rate cannot be larger than ���� ����� . That is, spot-checking
reduces worst-case average error rate linearly with � (for
a constant). Thus, to reduce the error rate, it is to the
master’s advantage to make the batches longer so that � is
larger.

3.2.2 Spot-checking without Blacklisting

Unfortunately, it may not always be possible to enforce
blacklisting. Although we can blacklist saboteurs based
on email address, it is not too hard for a saboteur to cre-
ate a new email address and volunteer as a “new” person.
Blacklisting by IP address would not work either because
many people use ISPs that give them a dynamic address
that changes every time they dial up. Requiring more verifi-
able forms of identification such as home address and a tele-
phone number can turn away saboteurs, but would probably
turn away many well-meaning volunteers as well.

It is thus useful to consider the effectivity of spot-
checking when blacklisting cannot be enforced. Unfortu-
nately, in these cases, saboteurs can increase the error rate
significantly by leaving after doing only a limited number
of work objects, # , and then rejoining under a new identity.
We can show [8] that this changes the upper bound on the
worst-case average error rate to � � # . This is significantly
worse than before, because unlike Eq. 2, this does not shrink
inversely with � , and thus cannot be expected to shrink with
the length of a batch. The best thing that a master can do in
this case, is to try to force saboteurs to stay longer (i.e., in-
crease #) by making it hard for them to forge a new identity
or by imposing delays.

If our batches are not too long, then we can impose a rule
that new users would not be allowed to join until the next
batch, so that a saboteur does not gain anything by leaving
early. In this case, the error rates would be the same as in
Sect. 3.2.1. This scheme is not practical if batches are long,
however, since it would waste the potential power of good
volunteers who would be forced to wait for the next batch.

4 Credibility-based Fault-Tolerance

In this section, we present a new idea called credibility-
based fault-tolerance that not only address the shortcom-
ings of blacklisting, but more significantly, provides a
framework for combining the benefits of voting, spot-
checking, and possibly other mechanisms as well.

4

CredWorkPool
nextUnDoneWork

Work
0

CrW = 0.8
Work
999

CrW= 0.999
Done, res=J

Work
1

CrW = 0.492

. . .

Work
997

CrW = 0.967. . .
Work
998

CrW = 0.9992
Done, res=Z

�
= 0.999, assuming f ≤ 0.2

pid
P1

res
A

CrG = 0.8
CrR

0.8

Worker P1

k 0
Crp = 0.8

Worker P2

k 6
Crp = 0.967

Worker P6

k 6
Crp = 0.967

Worker P7

k 125
Crp = 0.998

Worker P8

k 3
Crp = 0.933

Worker P9

k 200
Crp = 0.999

pid
P2

res
H

CrG = 0.492
CrR

0.967
pid
P6

res
B

CrG = 0.492
CrR

0.967
pid
P2

res
G

CrG = 0.967
CrR

0.967
pidres

CrG = 0.9992
CrR

P6Z 0.967
pid
P8

res
M

CrG = 0.0008
CrR

0.933
pid
P9

res
J

CrG = 0.999
CrR

0.999
P7Z 0.998

Figure 3. A credibility-enhanced eager scheduling work pool (using Eq. 6 and Eq. 7).

4.1 Overview

The key idea in credibility-based fault-tolerance is the
credibility threshold principle: if we only accept a result
for a work entry when the conditional probability of that
result being correct is at least some threshold � , then the
probability of accepting a correct result, averaged over all
work entries, would be at least � . This principle implies
that if we can somehow compute the conditional probability
that a work entry’s best result so far is correct, then we can
mathematically guarantee that the error rate (on average)
will be less than some desired ������� , by simply leaving the
done flag unset until the conditional probability of the best
result reaches the threshold � � �2� ������� .

To implement this idea, we attach credibility values to
different objects in the system, as shown in Fig. 1, where
the credibility of some object � , written ����	�� � , is defined
as an estimate of the conditional probability, given the cur-
rent observed state of the system, that object � is, or will
give, a good result. As shown, we have four different types
of credibility: that of workers (�����), results (���
), result
groups (�����), and work entries (����). The credibility
of a worker depends on its observed behavior such as the
number of spot-checks it has passed, as well as other as-
sumptions such as the upper bound on the faulty fraction,
 . In general, we give less credibility to new workers who
have not yet been spot-checked enough, and more credibil-
ity to those who have passed many spot-checks and are thus
less likely to be saboteurs or have high sabotage rates. The
credibility of a worker determines the credibility of its re-
sults, which in turn determine the credibility of the result
groups in which they respectively belong. The credibility
of a result group (which is composed of matching results
for a work entry) is computed as the conditional probability

that its results are correct, given their credibilities, and the
credibilities of other results in other result groups for the
same work entry. Finally, the credibility of the best result
group in a work entry gives us the credibility of the work
entry itself, and gives us an estimate of the probability that
we will get a correct result for that work entry if we accept
its currently best result.

In the course of running a parallel batch, the credibili-
ties of the objects in the system change as either: (1) work-
ers pass spot-checks (thereby increasing the credibilities of
their results and their corresponding groups), (2) matching
results are received for the same work entry (thereby form-
ing result groups, whose credibilities increase with their
size), or (3) workers get caught (thereby invalidating their
results, and decreasing the credibilities of their correspond-
ing result groups). Assuming there are enough good work-
ers, the credibility of each work entry � eventually reaches
the threshold as the master gathers enough matching results
for a work entry � , or the solvers of the results in � pass
enough spot-checks to make the credibilities of their results
go up, or both. When this happens, the work entry is marked
done and the server stops reassigning it to workers. All this
continues to happen for all undone work entries until all the
work entries reach the desired threshold � � � � ������� , at
which point, the batch ends. At this point, assuming that
our credibilities are good estimates of the conditional prob-
abilities they represent, the expected fraction of final results
that will be correct should be at least � , and the error rate
would thus be at most ������� .

Note that this scheme automatically trades-off perfor-
mance for correctness. It is similar to voting except that
here, � is not determined in advance, but is determined dy-
namically, being made just as large as it needs to be for a
work entry. Unlike traditional voting, however, we do not

5

have to redo a work entry many times (or at all) if its result
was done by a worker which has been spot-checked many
times and thus has a very high credibility. In this way, a
work object is only repeated however many times it takes
to achieve the desired correctness level, but no more. This
makes credibility-based fault-tolerance very efficient, and
as will be shown in Sect. 5.2, allows it achieve very low er-
ror rates with little redundancy.

4.2 Calculating Credibility

A key trick in this technique is computing the credibility
values correctly. In general, there are many possible credi-
bility metrics, corresponding to different ways of observing
the current state of the system, as well as different ways of
computing or estimating the conditional probability of cor-
rectness based on observations. In this section, we present
particular metrics that we have found to be effective.

4.2.1 Credibility of Workers and their Results

Without Spot-checking. Without spot-checking, the
credibility of a worker, and thus of its results, must be
taken solely from assumptions that we are willing to make.
In most cases, if we can assume a bound on the faulty
fraction of the worker population, then we simply let
���
� 	 � � � ��� for all workers, since is the probabil-
ity that a worker chosen at random would be bad. In some
cases, we can assign some workers different credibilities –
e.g., if we know that workers from certain domains can be
trusted, or that those from another domain tend to be sabo-
teurs.

With Spot-checking and Blacklisting. If we have spot-
checking, then we can use the number of spot-checks passed
by a worker,

�
, to estimate how likely a worker is to give

a good result. Intuitively, the more spot-checks a worker
passes, the more confident we can be that the worker is a
good worker, or at least does not have a very high sabotage
rate. (Note that we do not need to consider the credibility of
workers who are spot-checked and caught, since these are
removed from the system.)

If we have blacklisting, then we can compute the credi-
bility of a worker ��� � 	 � � from

�
as one minus the condi-

tional probability of receiving a bad result from a worker,
given that the worker has survived

�
spot-checks. This

probability is similar to that in Eq. 1, and can be computed
and bounded as follows:

�
	 result from � is bad � � survived
�

spot-checks �
� ! 	��2� ! ���
	�� � �"�� 	��2� ! � � (3)

�
�2� �� ! (for any !) (4)

This gives us the following credibility metric for spot-
checking with blacklisting:

���
� 	 � � � ������� �2�
�2� �� ! (5)

which is a strict lower bound on the conditional probability
of a worker � giving a good result.

Note that this equation does not apply to workers that
have not yet been spot-checked, i.e., whose

�
is � . In this

case, we can just set ����� 	 � � � ��� . Alternatively, we
can choose to just ignore results from workers that have not
yet been spot-checked.

Without Blacklisting. Unfortunately, deriving a worker’s
credibility in the case when there is no blacklisting is not
as straightforward. In general, the probability of errors is
higher, so we need to assign lower credibilities to workers.
Deriving an exact conditional probability like Eq. 5, how-
ever, is difficult, since saboteurs can leave and come back in
under new identities, creating many different possible cases
to consider. Thus, we take a different approach.

First, we note that if we assume that workers who leave
or get caught rejoin immediately, then the faulty fraction of
the worker population stays constant at around . This im-
plies that the probability of a randomly chosen worker be-
ing bad is around , and thus the probability of a randomly
chosen answer being bad is ! , where ! is the sabotage
rate of the saboteurs. Unfortunately, however, we do not
know ! . We can, however, derive a reasonable estimate,
�! , based on

�
, and use that instead. One such estimate is

�! � ��� � , which we can intuitively arrive at by noting that a
saboteur with a sabotage rate of ��� � would have an average
survival period of

�
spot-checks. Using this estimate gives

us the following credibility metric for spot-checking with
no blacklisting:

����� 	 � � � ��� � � �2� � (6)

As shown in Sect. 5.2, this metric proves to work well in
simulations, where it always achieved the desired final error
rate �2� � , without overly sacrificing performance.

Credibility of Results. For now, we will simply assume
that the credibility of a result � , ����	 	�� � , is simply equal
to ���
� 	���� ��	�
 ���� � where ��� ��	�
 ���� is the worker which pro-
duced the result. In general, however, it is possible to distin-
guish it from the solver’s credibility. For example, we may
give results received later lower credibility to guard against
saboteurs who give good results at the beginning to earn
credibility, but then start giving more bad results later on,
once they know their credibility is high already.

6

4.2.2 Credibility of Result Groups and Work Entries

If a work entry � has only one result � � so far, then
��� 	 � � is simply ���
	 	�� � of the result, which, under our
assumptions, is equal to the credibility ����� 	�� � � ��	�
 ������ . If
a work entry has several results, then we divide the results
into � groups, ��� , for ������� � , with �	� members re-
spectively, and then compute the credibility for each group
based on the conditional probability of correctness, given
the current combination of results received so far. This can
be computed as:

����� 	
����� (7)

� �
	
��� good ���
	 all others bad �
�
	 get � groups, where each ��� has �	� members �

�
�
	
��� good ������ � �
	
�

� bad �
�
�� � � �
	
�

� bad ��
��
� � � �
	
�

� good ��� ���� � �
	
� � bad �

where �
	
��� good � is the probability of all the results in
��� being good, computed as ������ � � ���
	 	���� � � for all re-
sults ��� � in group ��� , and correspondingly, �
	
��� bad � is
the probability of all the results in ��� being bad, given as
������ � � 	�� � ���
	 	���� � � � . Figure 3 show some examples of
how Eq. 7 is used (note especially works 1 and 998).

4.3 Using Credibility

4.3.1 Voting and Spot-checking Combined

Although credibility-based fault-tolerance can be used with
voting alone or spot-checking alone, it is best used to in-
tegrate voting and spot-checking together. In this case, we
start with all workers effectively having a credibility of �;�
and start collecting results. If the credibility threshold � is
low enough, and the batch is long, then by the time we go
around the circular work pool, the workers may have al-
ready gained enough credibility by passing spot-checks to
make their results acceptable. In these cases, we do not
need to do voting and we can reach our desired error rates
with only ����	���� � � redundancy due to the spotter works.
If � is high, then spot-checking would not be enough, so
we start reassigning work, collecting redundant results, and
voting.

If we did not use spot-checking, we would eventu-
ally reach the threshold after a slowdown proportional to
roughly
 	�� 	�� � � ���
 	�� 	��F� ���
� 	 � � � �
 	���� ������� . Spot-
checking, however, effectively reduces the base of this log-
arithm, � � ���
� 	 � � , linearly in time, and thus allows us
to reach the desired threshold in much less time than with
voting alone. In Sect. 5.2, for example, we show that at
 �! � and � � ��� ,

� � ��������� , and � �! ��� , we can

reach an error rate of � �������" with an average slowdown
of only around 3 compared to � -first voting’s 32.

Another advantage of using credibility is that it works
well even if we cannot enforce blacklisting. By using the
credibility metric from Eq. 6, we effectively neutralize the
effect of saboteurs who only do a few pieces of work and
then rejoin under a new identity. As shown in Sect. 5.2,
there is now no advantage to doing so, and in fact, it seems
that there is now more incentive for a saboteur to stay on for
longer periods.

4.3.2 Spot-checking by Voting

Although using credibility with voting and spot-checking
already works quite well, we can gain even more perfor-
mance by using voting for spot-checking.

So far, we have assumed that a master spot-checks a
worker by giving it a piece of work whose correct result is
already known. Since this implies that either the master it-
self, or one of a few fully-trusted workers, must do the work
to determine the correct result, we generally assume that �
needs to be small (i.e., less than ���). Since

�
is roughly� � , this limits the rate at which credibilities increase and

thus limits performance.
Fortunately, we can attain much better performance by

using credibility-based voting as a spot-checking mecha-
nism. That is, whenever one of a work entry’s result groups
reaches the threshold (such that the work entry can be con-
sidered done), we increment the

�
value of the solvers of the

results in the winning group, while we treat those in the los-
ing groups as if they had failed a spot-check (i.e., we remove
them from the system and invalidate their other results).

If we assume that we have to do all the work at least
twice, which implies that all results returned by a worker
would have to participate in a vote, then using these votes
to spot-check a worker implies that a worker will get spot-
checked at least

� � � times – i.e., ��� � times more than
before. This implies a corresponding decrease in the error
rate and a corresponding increase in the credibility of good
workers, which in turn allows the voting to go even faster.

Note that this technique is only made possible by us-
ing credibility-based voting to begin with. Naı̈vely using
traditional majority voting to spot-check workers would be
dangerous because the chance of saboteurs outvoting good
workers and thus getting them blacklisted would be signif-
icant, especially if is not small. Credibility-based voting
works because it guarantees that we do not vote until the
probability that the vote will be right is high enough. Thus,
it limits the probability of good workers being outvoted to
a very small value. Note, however, that some “bootstrap-
ping” is required here. That is, we cannot start using vot-
ing for spot-checking until the result groups actually start
reaching the threshold and voting. This implies that: (1)

7

spot-checking by voting is only beneficial when the redun-
dancy is already at least 2, and (2) we need to maintain nor-
mal spot-checking (at least for the first few batches) to allow
the workers to gain enough credibility to reach the threshold
early enough.

5 Simulation Results

5.1 The Simulator

To verify our theoretical results, we have developed a
Monte Carlo simulator that simulates the behavior of an
eager scheduling work pool in the presence of saboteurs
and various fault-tolerance mechanisms [8]. To simulate
the workers and saboteurs, we create a list of � worker en-
tries and randomly select �� of them to be saboteurs. We
then simulate a computation done by these workers by go-
ing through the list in round-robin manner, each time simu-
lating the action of the current worker contacting the master
to return a result (for the work object it received in its previ-
ous turn) and to get new work. This assumes, as in Sect. 2,
that all workers have exactly the same speed, so that the
work is equally distributed among the workers, and each
worker gets to take a turn before any other worker is al-
lowed to take a second turn.

For our experiments, we ran 100 runs of simulated com-
putation, each consisting of a sequence of 10 batches of� � ��������� work objects each, done by � � ��� workers.
These numbers were chosen to be small enough to be simu-
latable in a reasonable amount of time, but large enough to
provide good precision (i.e., the smallest measurable error
rate is � � ��� � �) and to prevent blacklisting from killing
all the saboteurs too early. In addition, the work-per-worker
ratio,

� ��� ��� � , was chosen to be large enough to show
the effects of spot-checking, while still being representative
of potential real applications. Also, having the computation
go through 10 batches allows us to see the benefits of let-
ting good workers gain higher credibility over time. When
doing blacklisting, we only do batch-limited blacklisting,
which means that we allow blacklisted nodes to return at
the start of the next batch. However, these return with a
different worker ID and a clear record. Specifically, a re-
turning saboteur’s

�
is set back to 0 and its credibility is

correspondingly reset.

5.2 Results

Figures 4 to 9 show the experimental results we get from
running our Monte Carlo simulator.

Figure 4 plots the resulting slowdown and error rate from
majority voting given different values of the initial faulty
fraction (assuming a sabotage rate of 1). (This graph is
like Fig. 2 turned on its side, except that � is replaced by

1

1.5

2

2.5

3

3.5

4

4.5

5

1.E-071.E-061.E-051.E-041.E-031.E-021.E-011.E+00
err

sl
o

w
d

o
w

n

0.2

0.15

0.1

0.05

0.01

Figure 4. Majority voting. Slowdown vs. maximum final

error rate at various values of and � ��� ��� ���
	 .

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s

er
r

0.99 0.999 0.9999 0.99999 0.999999

Figure 5. Credibility-based voting with spot-checking and

blacklisting. Error rate vs. ! at ��� ��� � ��� � � ��� � � 	 .

slowdown, and the values of are different.) As shown,
when is large, majority voting requires a lot of redundancy
to achieve even relatively large error rates. Extending the
line for � ��� theoretically, we find that it would take a
slowdown of more than 32 to achieve a final error rate of
� � �����" . Note, however, that the slope becomes less steep
as becomes smaller. (Only one point for � ��� ��� is
shown because the other points resulted in no errors in our
experiments.)

Figure 5 shows the results of using credibility-based vot-
ing and spot-checking with blacklisting, using the credibil-
ity metric ���
� 	 � � � ����� from Eq. 5. Here, each group of
points corresponding to a credibility level is divided into
three curves corresponding to � ��� � ��� � and ��� � � , re-
spectively. Most significantly, this plot shows that, as in-
tended, the average error rate never goes above ��� � , re-
gardless of ! and .

One thing that is not shown in Fig. 5 is that while the

8

1

1.5

2

2.5

3

3.5

4

4.5

5

1.E-071.E-061.E-051.E-041.E-031.E-021.E-011.E+00
err

sl
o

w
d

o
w

n

0.2

0.1

0.05

Figure 6. Credibility-based voting with spot-checking and

blacklisting. Slowdown vs. maximum final error rate at

� � ��� ��� � � � � � ��� ��������� at various values of .

maximum error rate remains roughly the same (as limited
by � � �), more and more redundancy is being needed to
guarantee the bounds on the error rate. Figure 6 shows the
slowdown incurred in achieving the maximum error rate for
a particular value of and � . Note how the slopes of the
lines here are much better than those in simple majority
voting, thus allowing us to achieve lower error rates in less
time. For example, whereas majority voting would have re-
quired a slowdown of more than 32 to achieve an error rate
of � � �����" for � ��� , here we only need around 3. Also
note that in some cases, spot-checking can be enough to re-
duce down to the threshold �X� � without requiring voting,
as shown by the points with slowdown less than 2.

Figure 7 shows how credibility-based fault-tolerance
works even in cases without blacklisting, wherein saboteurs
come back under a new identity after they are caught, or af-
ter doing # work objects without being caught.4 In this case,
we use the credibility metric ����� 	 � � � ��� � from Eq. 6, and
measure the error rate at various values of ! for � ���
and � � ��� ������� . As shown, even without blacklisting,
we successfully guarantee that the error rate never exceeds
� � � � � � ��� ��� , regardless of # . Interestingly, although
error rates start high at # � � and decrease with # as pre-
dicted in Sect. 3.2.2, at some point above # � � � , the error
rates get dramatically larger, and stay roughly constant. It
is not clear why this happens, but we suspect that it is be-
cause saboteurs who stay until the next batch gain are able
to carry over their credibility record and cause more errors
in succeeding batches.

Finally, Figs. 8 and 9 show the results of using
credibility-based voting to spot-check workers. Figure 8

4We assume pessimistically that a saboteur knows when it is caught. If
a master does not tell a saboteur that it has been caught but simply ignores
its results, then we expect to get better error rates.

0.E+00

5.E-06

1.E-05

2.E-05

2.E-05

3.E-05

3.E-05

0 50 100 150 200 250

l

er
r

stay for l or until caught stay until caught

Figure 7. Credibility-based voting with spot-checking, no

blacklisting. Error rate vs. length-of-stay # at � ���
and � � ��� ������� .

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s

er
r

0.99 0.9999 0.999999

Figure 8. Credibility-based voting with spot-checking

by voting, no blacklisting. Error rate vs. ! at �
��� � ��� � � ��� � � for various thresholds � , assuming sabo-

teur stays until caught and then rejoins immediately.

shows how it guarantees that the error rate threshold is
reached (in fact, it seems that error rates from this scheme
tend to be smaller overall), and Fig. 9 shows the slowdown.
As shown, the slope here is even better than that of the case
with blacklisting. Here, we can now achieve an error rate of
less than � � �����" from � ��� , with just a little over 2.5
redundancy. Comparing this with majority voting as shown
in Fig. 4, this shows that for the same slowdown, we get an
error rate which is almost ����� times better.

6 Conclusion

In this paper, we have proposed new mechanisms for
addressing the largely unstudied problem of sabotage-
tolerance, and have demonstrated the potential effectivity of

9

1

1.5

2

2.5

3

3.5

4

4.5

5

1.E-071.E-061.E-051.E-041.E-031.E-021.E-011.E+00
err

sl
o

w
d

o
w

n

0.5

0.2

0.1

Figure 9. Credibility-based voting with spot-checking by

voting, no blacklisting. Slowdown vs. maximum final er-

ror rate at � � ��� ��� � ��� ������� � and ��� ����������� at various

values of , assuming saboteur stays until caught and

then rejoins immediately.

these mechanisms through mathematical analysis and sim-
ulation. A logical next step for research, therefore, is to
implement and apply these techniques to real systems, and
start benefitting from them. This should not be too difficult
because the master-worker model to which these mecha-
nisms apply is widely used today not only in volunteer com-
puting systems but in other metacomputing and grid com-
puting systems as well.

In this process of applying these mechanisms, questions
may arise with respect to assumptions or implementation
details. Some variations that we can explore in further re-
search, for example, include:

� Handling cases where saboteurs can collude on when
to vote together. This would imply a change in
�
	
��� bad � in Eq. 7.

� Incorporating the use of checksums. A worker which
submits a result that fails a checksum would be treated
as if it had been spot-checked and caught submitting a
bad result.

� Incorporating the use of encrypted computation tech-
niques such as using a random number to encode the
computation to prevent saboteurs from voting together
by preventing their bad results from matching. This
would imply a change in �
	
��� bad � of any result
groups containing more than 1 result, since the proba-
bility that those groups would be formed by bad results
would now be very small.

� Handling saboteurs that are not Bernoulli processes.
As described in Sect. 4.2.1, we can assign different
credibilities to a worker’s results depending on when

they were received. Or, we can derive a new metric for
���
� 	 � � depending on the worker � ’s age and other
factors.

In the light of these questions, one of the most significant
contributions of this paper is the generality of the credi-
bility threshold principle – which can be used as long as
we can derive the net effect of new assumptions or mecha-
nisms on the conditional probabilities of results being cor-
rect. Thus, credibility-based fault-tolerance is not limited
to just using voting or spot-checking as described here, or
to making the assumptions we made here, but can be used
with other mechanisms and be adapted to other assumptions
as well.

References

[1] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff,
Charlotte: Metacomputing on the Web, in Proc. 9th
Intl. Conf. on Parallel and Distributed Computing Sys-
tems (1996).
http://cs.nyu.edu/milan/charlotte/

[2] A. L. Beberg, J. Lawson, D. McNett, dis-
tributed.net home page.
http://www.distributed.net

[3] Entropia home page.
http://www.entropia.com/

[4] P. Cappello, B.O. Christiansen, M.F. Ionescu, M.O.
Neary, K.E. Schauser, and D. Wu, Javelin: Internet-
Based Parallel Computing Using Java, in Proc. ACM
Workshop on Java for Science and Engineering Com-
putation (Las Vegas, 1997).
http://javelin.cs.ucsb.edu/

[5] N. A. Lynch. Distributed Algorithms. Morgan Kauff-
man Publishers, Inc., 1996.

[6] Popular Power home page.
http://www.popularpower.com/

[7] Process Tree home page.
http://www.processtree.com/

[8] L.F.G. Sarmenta, Volunteer Computing, Ph.D. thesis.
Dept. of Electrical Engineering and Computer Sci-
ence, MIT, Cambridge, MA, Dec., 2000.

[9] SETI@home.
http://setiathome.ssl.berkeley.edu/

[10] Y. A. Zuev, The Estimation of Efficiency of Voting
Procedures, in Theory of Probability and its Applica-
tions, Vol. 42, No. 1, March, 1997.
http://www.siam.org/journals/tvp/42-
1/97594.html

10

