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Abstract: The Threaded Abstract Machine (TAM) refines dataflow execution models to address the critical
constraints that modern parallel architectures place on the compilation of general-purpose parallel programming
languages. TAM defines a self-scheduled machine language of parallel threads, which provides a path from dataflow-
graph program representations to conventional control flow. The most important feature of TAM is the way it exposes
the interactionbetween the handling of asynchronous message events, the scheduling of computation, and the utilization
of the storage hierarchy.

This paper provides a complete description of TAM and codifies the model in terms of a pseudo machine language
TL0. Issues in compilation from a high level parallel language to TL0 are discussed in general and specifically in
regard to the Id90 language. The implementation of TL0 on the CM-5 multiprocessor is explained in detail. Using
this implementation, a cost model is developed for the various TAM primitives. The TAM approach is evaluated on
sizable Id90 programs on a 64 processor system. The scheduling hierarchy of quanta and threads is shown to provide
substantial locality while tolerating long latencies. This allows the average thread scheduling cost to be extremely low.

1 Introduction

Dataflow execution models have evolved considerably since their original formulation[1, 15], reflecting an improved
understanding of hardware implementation techniques[1, 18, 16, 20, 31, 36], parallel programming languages[27, 30],
compilation methods[38, 43], and resource management strategies[9, 34]. Several hybrid models[5, 12, 23, 28]
have been formulated which eliminate operand matching, avoid redundant synchronization, or use more conventional
processor organizations. In addition, message driven models[14] demonstrate that the architecture need not dictate
the format and handling of tokens, or rather, messages. The Threaded Abstract Machine (TAM) draws together these
diverse investigations into a coherent execution model that can be implemented efficiently on a variety of machine
architectures. It extends previous work by paying particular attention to utilization of the storage hierarchy in the
context of dynamic scheduling and asynchronous message handling. TAM defines a scheduling hierarchy that reflects
the underlying storage hierarchy and allows the compiler to control the dynamic scheduling of computation.

TAM is easily understood independent of its dataflow heritage as a general framework for self-scheduling parallel
threads. Threads enable other threads and generate messages, which are received asynchronously from the com-
munication network and in turn enable threads. The key issues addressed by TAM are how resources are shared
among threads, how scheduling is structured to make efficient use of resources, and how arbitrary parallelism can be
represented.

TAM forms a bridge between traditional dataflow and control flow execution models. We have utilized TAM
primarily as an intermediate step in compiling the high-level dataflow language Id90 to conventional parallel machines,
including the Thinking Machines CM-5. Compiling down to TAM involves translating a dataflow graph into control
flow among a collection of threads. A code-generator translates from TAM to the target machine, optimizing for
specific characteristics of the instruction set. Thus, TAM decouples development of novel parallel languages and
innovation in parallel machine architecture, while providing a meaningful interface between the two. Hardware design

1This report appears in the Journal of Parallel and Distributed Computing, Special Issue on Dataflow, vol 18, June 1993.
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alternatives can be evaluated by how they accelerate TAM primitives, weighted by the frequency of use of these
primitives in programs.

This paper provides a complete description of TAM as an interface between the high-level compilation process of
parallel languages and the low-level code generation for emerging parallel machines. We begin by placing TAM in
this broad context to understand how the issues it addresses arise from the combination of features desirable in parallel
languages and the technology constraints on parallel machines. The description centers around an implementation of
TAM called TL0 (Thread Language Zero). While some details of TL0 are influenced by Id90, the concepts it embodies
are applicable to parallel languages and machines in general.

Consider for a moment the evolution of sequential machines and languages. Modern sequential programming
languages allow the programmer to build arbitrary dynamic data structures and to realize sophisticated algorithms on
these structures using complex control flow. In contrast, first-generation languages directly reflected the capabilities of
the underlying hardware. Fortran, for example, did not support dynamic data structures or recursive control structures.
The insistence on supporting these concepts in the Algol family of languages led to the development of abstract
machines which demonstrated how to map the concepts to conventional hardware structures[25, 33]. This route proved
more effective than supporting the language concepts directly in hardware[26].

By analogy, many current parallel languages remain close to the underlying machine, constraining the programmer
to local data structures and static parallelism. For example, most extensions of Fortran and C with send/receive message
passing provide exactly one thread of control per physical processor and a crude abstraction of communication channels.
An emerging class of languages[7, 21, 24, 27] lets the programmer define arbitrary parallel data structures spread across
the machine and dynamically spawn computations to perform coordinated actions on these data structures. Dataflow
machines attempt to realize these concepts directly in hardware. TAM, instead, demonstrates how they can be mapped
efficiently onto conventional parallel machines.

A second analogy can be drawn with sequential machines, where technological constraints enforced a consensus
on the machine structure — pipelined, single-chip processors operating on a large register set. The RISC view held
that the architecture should provide a set of efficient primitives, rather than general solutions, allowing the compiler to
optimize for frequently occurring simple cases. For the foreseeable future, parallel machines will consist of a number
of processor-memory modules interconnected through a high-speed network. Processors operate directly on local
memory and communicate with each other by transmitting messages through the network. Access to a remote memory
location involves delivering a request to the remote processor associated with the memory and receiving a reply at
some later time. Some machines will provide hardware support to accelerate the formatting, sending, and handling of
certain messages, such as remote memory accesses, but the fundamental structure of the machine is unchanged. TAM
defines simple primitives for initiating and handling communication events, allowing the compiler to optimize the use
of these primitives in a manner consistent with the high-level language semantics.

Compiling for parallel machines is complicated because data structure accesses may involve long-latency com-
munication and because multiple threads of control, at least one per processor, must be coordinated. To keep the
utilization of each processor at an acceptable level, it is important to treat remote accesses as split-phase operations,
that is, to continue executing instructions while the access completes[17, 35]. In some cases this can be accomplished
using prefetching techniques, but in general multiplexing several logical threads of control onto each processor, called
multithreading, is required. Coordinating threads of control on separate processors presents similar concerns, but the
latencies involved are usually longer and potentially unbounded. The time for a response is determined by the logic
of the program, rather than by hardware parameters. In general, it is necessary to provide multiple threads of control
per processor to ensure forward progress, so it is natural to allow execution to proceed while events are pending. The
challenge in multithreading is to keep the cost of thread switching low enough not to compromise the advantages.
When a thread issues a remote reference it must be suspended and the next ready thread must be scheduled. When
the reference completes it must synchronize with the computation to re-enable the waiting thread. Dataflow research
has focused on the obvious costs: scheduling and synchronizing threads. However, optimizing scheduling costs while
ignoring the effects on the storage hierarchy leads to unrealistic solutions. Instead, TAM exposes the scheduling of
threads so that the compiler can coordinate scheduling with the usual management of the storage hierarchy. To aid in
this coupling, TAM allows groups of related threads to be scheduled together. This reduces the cost of scheduling and
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permits the compiler to manage storage resources, e.g., registers and local variables, across several threads. Finally,
giving priority to related threads tends to improve cache behavior. Overall, the effect is that data can be kept at smaller
and faster levels of the storage hierarchy.

To demonstrate the effectiveness of the TAM execution model, we have designed a threaded machine language,
called TL0, and implemented a compilation path from Id90 to TL0. This uses the front-end of the MIT dataflow
compiler, which produces program graphs[41] for the TTDA and Monsoon, with additional passes to partition the
graph into threads and synthesize the control flow. The TL0 code is used as a machine independent intermediate
form and can be input into a variety of code generators. To date, we have implemented code generators to translate
into either C or machine code augmented with Active Messages[45] or conventional message passing as the network
interface. The code generator described in this paper targets the CM-5 multiprocessor, consisting of Sparc processors
with a memory mapped network interface.

The paper is organized as follows. Section 2 describes TAM in detail, emphasizing how the storage and scheduling
hierarchies are exposed to the compiler. Section 3 discusses the mapping of high-level parallel languages to TAM. The
compilation process of Id90 to TL0 is used as an example to show how the compiler can construct “storage directed”
scheduling policies. Section 4 describes the implementation of TL0 on a CM-5 multiprocessor, focusing on the costs
of scheduling and of accessing the network. These are combined with run-time statistics in Section 5 to demonstrate
the effectiveness of the TAM scheduling hierarchy. Section 6 relates TAM to other parallel execution models and
Section 7 summarizes the results and discusses open research problems.

2 The Threaded Abstract Machine

This section describes the TAM execution model. We begin with a general description of the model as a whole and
then describe each aspect in more detail. The detailed descriptions can be skipped on a first reading. TAM differs
in philosophy from traditional dataflow models in that it exposes communication, synchronization, and scheduling so
that a high level language compiler can attempt to optimize for important special cases. The compiler can produce
efficient message handling code that is closely integrated with the scheduling of computation. The integration presents
some subtle trade-offs since efficient message handling and efficient computation place opposing demands on the use
of the storage hierarchy. TAM retains an explicit storage hierarchy to allow the compiler to mediate these demands on
a case-by-case basis.

2.1 Concepts

A TAM program is a collection of code-blocks, where each code-block consists of several threads and inlets. Typically
a code-block represents a function or loop body in the high level language program. Threads correspond roughly to
basic blocks. The activation frame is the central storage resource and the critical concept for understanding TAM. As
suggested by Figure 1, the frame provides storage for the local variables, much like a conventional stack frame. It
also provides the resources required for synchronization and scheduling of threads, as explained below. Invoking a
code-block involves allocating a frame, depositing arguments into it, and initiating execution of the code-block relative
to the newly allocated frame. The caller does not suspend upon invoking a child code-block, so it may have multiple
concurrent children. Thus, the dynamic call structure forms a tree, rather than a stack, represented by a tree of frames.
This tree is distributed over the processors, with frames as the basic unit of work distribution. Finer grain parallelism
is not wasted; it is used to maintain high processor utilization. Thread parallelism within a frame is used to tolerate
communication latency and instruction parallelism within a thread is used to tolerate processor pipeline latency.

Initiatingexecution of a code-block means enabling threads of computation, where each thread is a simple sequence
of instructions that cannot suspend. Each of the arguments to a code-block potentially enables a distinct thread. A
processor may host many ready frames, (the activation tree is usually much larger than the number of processors)
each with several enabled threads. The TAM scheduling queue is a two-level structure comprising a collection of
frames, each containing one or more addresses of enabled threads in a region of the frame called the continuation
vector. The compiler is permitted to specialize the frame-level structure, but typically it is a linked list of frames per
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processor. When a frame is scheduled, threads are executed from its continuation vector until none remain. The last
thread schedules the next ready frame. Thus, the frame defines a unit of scheduling, called a quantum, consisting of
the consecutive execution of several threads. This scheduling policy enhances locality by concentrating on a single
frame as long as possible.

Instructions in a thread include the usual computational operations on registers and local variables in the current
frame. The basic control flow operation is to enable, or FORK, another thread to execute in the current quantum. The
SWITCH operation conditionally forks one of two threads. Threads are also enabled as a result of message arrivals. Each
code-block contains a collection of inlets, which are compiler-generated message handlers for the remote accesses
and call/return linkage. For example, arguments to a code-block invocation are sent to inlets of the code-block with
the newly allocated frame as the context. Inlets typically deposit message data into the designated frame and post
threads into its continuation vector. Precedence between threads, i.e., data dependences and control dependences, are
enforced using synchronization counters within the frame. Synchronizing threads have an associated entry count which
is decremented by forks and posts of the thread. The thread is enabled when the count reaches zero.

Observe that TAM threads are self-scheduled; there is no implicit dispatch loop in the model. Thus, the compiler
can control the scheduling by how it chooses to generate forks, posts, and entry counts. There is also no implicit saving
and restoring of state, so the compiler manages storage in conjunction with the thread scheduling that it specifies.
Since threads do not suspend, values that are local to a thread can clearly be kept in registers. In addition, whenever
the compiler can determine that a collection of threads always execute in a single quantum, it can allocate values
accessed by these threads to registers. As shown in Section 5 below, observed quanta are usually much larger than what
static analysis could determine, because several messages arrive for a frame before it is actually scheduled. Since the
frame switch is performed by compiler generated threads, it is possible to take advantage of this dynamic behavior by
allocating values to registers based on expected quantum sizes and saving them if an unexpected frame switch occurs.

Accessing the global heap does not cause the processor to stall, rather it is treated as a special form of message
communication. A request is sent to the memory module containing the accessed location while threads continue to
execute. The request specifies the frame and inlet that will handle the response. If the response returns during the
issuing quantum, the inlet integrates the message into the on-going computation by depositing the value in a frame or
register and enabling a thread. However, if a different frame is active when the response returns, the inlet deposits the
value into the inactive frame and posts a thread in that frame without disturbing the register usage of the currently active
frame. The global heap supports synchronization on an element-by-element basis, as with I-structures [4]. Thus, there
are two sources of latency in global accesses. A hardware communication latency occurs if the accessed element is
remote to the issuing processor and, regardless of placement, a synchronization latency occurs if the accessed element
is not present, causing the request to be deferred.

Compared to dataflow execution models, TAM simplifies the resource management required to support arbitrary
logical parallelism. A single storage resource, activation frames, that is naturally managed by the compiler as part of
the call/return linkage represents the parallel control state of the program, including local variables, synchronization
counters, and the scheduling queue. TAM embodies a simple two-level scheduling hierarchy that reflects the underlying
storage hierarchy of the machine. Parallelism is exploited at several levels to minimize idle cycles while maximizing
the effectiveness of processor registers and cache storage.

The remainder of this section provides a more precise specification of TAM and its realization in TL0. It is included
for completeness and as grounding for the empirical data presented later. However, it may be skimmed on first reading
without compromising the main line of reasoning.

2.2 Storage Model

The TAM storage model includes four distinct regions: code storage, frame storage, registers, and heap storage. TAM
code storage contains code-blocks representing the compiled form of the program. It appears identical to all processors
and is accessible through fast local operations.

Frame storage is assumed to be distributed over processors, but each frame is local to some processor and
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Figure 1: TAM activation tree and embedded scheduling queue. For each function call, an activation frame is allocated.
Each frame, in addition to holding all local variables, contains counters used to synchronize threads and inlets, and
provides space for the continuation vector — the addresses of all currently enabled threads of the activation. On each
processor, all frames holding enabled threads are linked into a ready queue. Maintaining the scheduling queue within
the activation keeps costs low: enabling a thread simply consists of pushing its instruction address into the continuation
vector and sometimes linking the frame into the ready queue. Scheduling the next thread within the same activation is
simply a pop-jump.

only accessed from that processor.2 Work is distributed over processors on a frame invocation basis.3 Interframe
communication is potentially interprocessor communication and is realized by sending values to inlets relative to the
target frame (see � 2.5).

A TAM processor contains data registers of various types and four special address registers: FP, the address of
the current frame, IP, the address of the current thread instruction, IFP, the address of the target frame for the current
inlet while it is executing, and IIP, the address of the current inlet instruction. A frame is running on a processor when
it is referenced by the FP. Instructions can access registers or frame slots, relative to FP. In addition, the processor
contains a local continuation vector (LCV) which holds addresses of threads forked within the current quantum. This
can be viewed as a fast, short-lived extension of the remote continuationvector (RCV) in the frame, just as data registers
extend the frame data storage. The processor switches from one activation frame to the next under instruction control,
so there is no implicit management of registers. Typically, the register partitioning is realized by software convention.4

Heap storage contains objects that are not local to a code-block invocation, including statically and dynamically
allocated arrays. Heap storage is assumed to be distributed over processors and is accessed through split-phase fetch
and store operations, described below. In addition to data, each heap location holds a small number of tag bits,
providing element-by-element synchronization as required for I-structures, M-structures, and thunks[4, 19].

In summary, the TAM data storage hierarchy is composed of three levels: registers, local frames, and heap-allocated

2This condition can be weakened without disturbing the model if frame migration is supported directly in hardware. However, TAM does not
require such sophisticated hardware support.

3Parallel iterations of a loop are treated as a restricted form of function call. Each chunk of iterations has an associated frame.
4Separate hardware register sets are permitted, but access to thread registers from inlets should be provided, otherwise additional restrictions

must be placed on inlets.
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structures. Registers are the least expensive to access, however their content is short-lived. Accessing locals from the
frame is more expensive, essentially a local memory access, however, they persist throughout an invocation. Placement
of data between frame and registers is under compiler control. The two-level scheduling policy increases the probability
that frame accesses will be in the cache. Heap allocated structures are potentially in remote memory and are generally
accessed through split-phase instructions with a corresponding inlet.

2.3 Program Structure

A TAM program is a collection of code-blocks and global structure definitions. A code-block contains declarations,
inlets, and threads. Threads represent the computational body of the code-block and inlets specify the interface through
which the code-block receives messages including arguments, return values, and heap-access responses. Each inlet is
a message handler to receive a specific message. Threads and inlets are straight-line sequences of instructions.

Each code-block defines its frame layout and register usage. The frame layout includes: local variables, entry
counters, the RCV, and an inter-frame scheduling data structure used to locate other ready frames. Synchronizing
threads statically identify their entry counter, containing the number of remaining dependences. The compiler is
responsible for initializing entry counters prior to the first fork or post of the corresponding thread. Typically, this is
done in an initialization inlet and in threads forming a loop.

The RCV holds pointers to enabled threads while the frame is ready but not running. Logically, each enabled thread
is described by a continuation comprising a frame pointer and an instruction pointer. However, since the continuation
is stored in its frame, rather than in some auxiliary scheduling storage, only the instruction pointer is recorded in the
RCV. The scheduling queue is built by linking together frames, so the processor obtains the frame pointer when it
switches to the frame, as discussed below. The size of the RCV is specified by the compiler and must be sufficient to
hold the maximum number of concurrently enabled threads.

Initialized global structures are arrays or records which are allocated in the heap and initialized at program-load
time. These are used, for example, to represent constant arrays and function closures over zero arguments.

2.3.1 Threads

A TAM thread is a sequence of instructions which executes from beginning to end without suspension or branching. It
executes in the context of an activation frame accessible through FP. All control instructions (FORK, SWITCH, and STOP)
are thread based. FORK attempts to enable a thread in the current code-block. SWITCH is a conditional fork to one
of two threads. Any fork to a synchronizing thread involves decrementing the associated entry counter and enabling
the thread if it reaches zero. A thread may contain zero, one, or many forks. Each thread is terminated by a STOP

instruction, which causes the next enabled thread in the current frame to be executed.5 Threads can also be enabled
via interframe communication, as follows.

2.3.2 Inlets

An inlet is a sequence of instructions that handle a specific message, i.e., the message format and message processing
are coded in the instruction sequence of the handler. An inlet executes in the context of a frame specified in the
message, via IFP. Typically, an inlet will receive the data of the message, store it into specific slots in the associated
frame, and enable specific threads relative to that frame. Enabling a thread from an inlet, POST, is distinct from enabling
one from a thread, FORK, and has a different optimization goal. The FORK enables computation that is closely related
to the current processor state and attempts to maximize the coupling between the two threads. The POST may enable
computation that is unrelated to the current processor state, so it tries to affect that state as little as possible. In addition,
the POST is responsible for entering the frame into the scheduling data structure if the target frame had no enabled
threads.

5Many researchers have come to use thread to mean a collection of instructions that executes without synchronization. Under this definition,
a single instruction sequence may be part of different threads at different times. TAM threads are static and form a partition of the program.
The dynamic quantity sought by the looser definition can be identified as a collection of TAM threads that are control dependent from a single
synchronizing thread.
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Inlets may preempt threads, but they may not preempt other inlets. (The model can easily be adapted to allow
inlets to execute on a separate network processor with access to the frame store, but we will not consider that extension
here.) To allow conditionals within inlets, an inlet may FORK or SWITCH to another inlet. The fork is handled just as
within threads.

2.4 Execution Model

The processor executes instructions within the current thread sequentially until a STOP instruction is encountered. At
that point a thread address is removed from the LCV and loaded into IP, initiating the next thread. When no threads
remain in the LCV, STOP transfers control to a leave-thread specified in the frame. The leave-thread typically loads
the next frame pointer into FP, loads the enter-thread address from that frame into the LCV and performs a STOP. The
enter-thread typically copies the threads accumulated in the RCV to the LCV and performs a STOP, thereby starting the
new quantum.

The TAM scheduling queue is a data structure obtained by linking together frames. The compiler defines the
representation of this frame level structure by the code it places in the leave-thread. (TL0 provides a short-hand
notation for simple scheduling structures, such as a list of frames per processor, to facilitate experimentation.) The
compiler can also insert register saves in the leave thread and restores in the enter thread, if register values are carried
across quanta.

The model intentionally does not specify the representation of the LCV. In translating TAM to a conventional
machine, the LCV is simply a stack. The leave-thread address is placed at the bottom of the stack. FORK pushes an
instruction address; STOP pops an address and jumps to it. Code generators will typically combine the last fork in
a thread with the stop, producing a simple branch instead of push-pop-jump, as discussed in Section 4. A machine
designed to execute TAM directly might represent the LCV as a queue to facilitate instruction prefetching on enabled
threads. As discussed in Section 3, placing stronger constraints on the LCV implementation would allow more effective
register usage.

Inlet execution may preempt the current thread when a message arrives, but certain TAM instructions must be
performed atomically. The address of the inlet is loaded into IIP and the frame address specified in the message is
loaded into IFP. Forked inlets have priority over the thread.

If the compiler can determine that two threads will execute in the same quantum, it can elect to carry values in
registers from one to the other. Note, however, that the processor does not switch away from the running frame when
inlets execute, so several threads may accumulate in the RCV before a ready frame runs. Also, split-phase operations
may complete during the issuing quantum. Thus, the set of threads executed during a quantum may include many
potential points of suspension.

2.4.1 Code-Block invocation

Invoking a code-block involves first allocating a frame. The caller sends arguments to inlets, established by convention,
in the code-block relative to the newly allocated frame. The inlets are executed upon message arrival (possibly
interrupting a thread on the processor holding the frame), store the values in the frame, and post threads of the
code-block body for later execution. The activation thereby becomes ready, meaning that it has threads waiting to be
executed, and it is linked into a pool of ready frames. Execution then continues with the interrupted thread. Eventually,
the new frame is scheduled and its enabled threads are executed as described above.

Depending on its communication pattern, an invocation goes through one or more scheduling quanta. At some
point it usually sends return values back to inlets of its caller. The frame is explicitly released when it is no longer
required. The means of determining when frames are allocated and released depends on the high-level language; no
automatic management is embedded in TAM.
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2.5 Messages, inlets and atomicity

Communication between frames is performed by sending messages. A messages is sent to a specific inlet of a particular
activation, identified by its frame address. The format of the message data is arbitrary. Although an inlet could in
principle parse the message and dispatch on various alternatives, it is intended that the compiler produce specific
handlers for specific formats so that no run-time message parsing is required.

The SEND operation packs a number of data values into a message and sends it to the inlet of the target activation.
Execution then proceeds with the instructions following the SEND. When the message is received, processing of the
current thread is interrupted and the receiving inlet is executed. After completing the inlet, processing continues with
the interrupted thread.

To facilitate dispatching to the inlet quickly at message reception, the header of an incoming message contains
the destination frame and inlet addresses. The context available to the inlet is the inlet registers and the locals of the
receiving frame. The interrupted frame pointer (FP) and the inlet frame pointer (IFP) are also available. If the message
is sent to the interrupted activation (i.e., if IFP � FP) the thread registers can be used in the inlet to deliver the data into
registers instead of frame slots. However, if IFP

�
� FP, accessing the thread registers will have unpredictable effects.

In either case, certain locations in the interrupted frame may be accessed to link the new frame onto the scheduling
queue.

To support the inlet model, an implementation of TAM must guarantee certain operations to be atomic relative to
certain others. A SEND must be atomic relative to SENDs executed in inlets (i.e., at interrupt time) to prevent generation
of garbled messages. FORK (including the synchronization test), POST, SWITCH and STOP must be atomic relative to
each other, since they require updates of synchronization counters and the RCV. Inlets are non-preemptive, so they are
atomic relative to other inlets.

Threads initiate a heap access using IFETCH and ISTORE instructions. These are specialized forms of SEND that
deliver a request message to the processor holding the accessed element and name the local inlet that is to handle the
response. The requesting processor continues executing threads while the request is being serviced. The requests are
typically handled by generic inlets that access the element and its synchronization bits. In some cases, such as fetches
of an empty element, the inlet may in fact have to defer the response by enqueueing the request on the element. In all
cases, a response is eventually returned to the inlet and frame specified in the request.

3 Compiling to TAM

The overall goal in compiling to TAM is to produce code that is latency tolerant, yet obtains processor efficiency and
locality. TAM exposes parallelism, scheduling, and communication to the compiler and makes each cost explicit.
Exposing the costs gives the compiler a clear optimization goal and allows it to map the various constructs of the
parallel language to the best suited TAM primitives. On the other hand, TAM places the responsibility for correctly
resolving several issues, such as management of frames, ordering of threads, and usage of local storage on the compiler.
Although the source language for our compiler is the dataflow language Id90, the TAM parallel execution model is
well suited for implementing other parallel languages. This section discusses the key aspects of the compilation
process from a high-level parallel language down to TAM, including the representation of parallelism, communication,
synchronization, scheduling, storage management, and the use of the storage hierarchy. These issues are addressed
both in general and in the context of Id90.

3.1 A simple parallel program in TL0

To illustrate several of the compilation issues, we consider the following trivial program which computes the Fibonacci
numbers. The source of parallelism is the recursive calls to fib. Arguments must be communicated to these parallel
calls and the final result requires synchronization of the two partial results.

def fib n = if (n < 2) then 1 else fib (n-1) + fib (n-2);
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We will use the corresponding TL0 code, shown in Figure 2, to explain various compilation aspects of TAM. For
this section only a high level understanding of TAM is required. A more detailed discussion of TL0 is provided in
Section 4.

Let us begin our execution scenario after the invocation of some frame � of the functionfib. The first thread to be
executed is Thread 0 which contains the conditional expression, with a test of the integer argument contained in frame
location islot1 and a fork of either Thread 1 or Thread 2 based on the result of the comparison. (TL0 frame slots and
registers are statically typed and referenced symbolically. The actual size of each type is implementation dependent.)

Thread 2 generates parallelism by allocating two frames for the recursive calls. This example allocates one frame
locally and one remotely. The FALLOC sends a requests to a system inlet that handles frame allocation. FALLOC is
a split-phase operation, because the allocation may require sending a request to another processor. The responses to
the frame allocations are returned to inlets 1 and 3, respectively. Assuming that the local allocation happens in-line,
Inlet 3 is likely to interrupt Thread 2. Inlet 3 enables Thread 4 for execution. Therefore, at the end of Thread 2, � will
continue with Thread 4, after which � will have no more enabled threads (unless the remote allocation has already
returned), so a swap is performed (via Thread 8) to another ready frame on the local processor (possibly the newly
allocated frame). Eventually, Inlet 1 will be triggered to receive a pointer to the remotely allocated frame into frame
slot pfslot1. It posts Thread 3 using the default frame scheduling policy and enables the frame.

Thread 3 computes an argument value in a register and sends it to Inlet 0 of the frame for the first recursive call. The
return frame pointer and return inlet are sent as well. The argument/result linkage of a parallel call can be viewed as a
very general form of split-phase operation; eventually, the result will return to Inlet 2. In the meantime, the argument
message triggers Inlet 0 for the callee frame, which receives the three values into the frame, initializes the frame with
an empty RCV, sets the enter and leave threads and posts Thread 0, where our description began. Eventually the callee
sends back its result.

The results from the recursive calls trigger Inlets 2 and 4, both of which post Thread 5, a synchronizing thread
using sslot0 as a counter. The second post is successful, so when � is run the addition is performed and the result is
sent back to the caller in Thread 6. This final thread also releases the frame � .

The register usage policy in this example is to have the registers vacant across potential suspension points. However,
the result value is carried in a register from either Thread 1 or Thread 5 to Thread 6, since no synchronization point
intervenes in either case.

This simple example illustrates the interplay between representation of parallelism, communication, synchroniza-
tion, scheduling, storage management and use of the storage hierarchy. We now consider these issues in greater
depth.

3.2 Representation of Parallelism

Parallel languages provide a variety of ways to express parallelism, e.g., function calls, loops, co-routines, tasks, or
futures. The coarsest grain of parallelism is represented in TAM by frames, which can be distributed over processors.
Finer grain parallelism within a frame is represented by threads, which can be used to mask communication latency.
Lastly, instruction level parallelism can be exploited within a thread. The compiler must manage the parallelism in the
program by mapping it to the appropriate TAM level.

The preceding description of TAM tacitly assumes parallelism is expressed in terms of some form of parallel
call, however, all other forms of parallelism can also be represented using the frame mechanism. The parallel call is
challenging because it can generate an arbitrary amount of parallelism, as in the unfolding of the call tree in fib.
This must be mapped onto a fixed set of physical processors. The chunk of work associated with a frame need not
correspond exactly to a user-defined function in the program: it may be desirable to execute individual expressions in
parallel, as with futures[24], or to inline several calls to use a single frame. Frames could also represent the state of
individual tasks, communicating through messages. The dynamic allocation of frames implies that the task structure
need not be static. In fact, non-strict functional languages[42] behave at the TAM level like co-operating processes,
since the child may need to return certain results in order for the parent to make further progress and deliver additional
arguments.
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CBLOCK FIB.pc

FRAME_BODY RCV=3 % frame layout, RCV size is 3 threads
islot1.i islot1.i islot2.i % argument and two results
pfslot1.pf pfslot2.pf % frame pointers of recursive calls
sslot0.s % synch variable for thread 6
pfslot0.pf jslot0.j % return frame pointer and inlet

REGISTER % registers used
breg0.b ireg0.i % boolean and integer temps

INLET 0 % recv parent frame ptr, return inlet, argument
RECEIVE pfslot0.pf jslot0.j islot0.i
FINIT % initialize frame (RCV,my_fp,...)
SET_ENTER 7.t % set enter-activation thread
SET_LEAVE 8.t % set leave-activation thread
POST 0.t "default"
STOP

INLET 1 % receive frame pointer of first recursive call
RECEIVE pfslot1.pf
POST 3.t "default"
STOP

INLET 2 % receive result of first call
RECEIVE islot1.i
POST 5.t "default"
STOP

INLET 3 % receive frame pointer of second recursive call
RECEIVE pfslot2.pf
POST 4.t "default"
STOP

INLET 4 % receive result of second call
RECEIVE islot2.i
POST 5.t "default"
STOP

THREAD 0 % compare argument against 2
LT breg0.b = islot0.i 2.i
SWITCH breg0.b 1.t 2.t
STOP

THREAD 1 % argument is <2
MOVE ireg0.i = 1.i % result for base case
FORK 6.t
STOP

THREAD 2 % arg >=2, allocate frames for recursive calls
MOVE sslot0.s = 2.s % initialize synchronization counter
FALLOC 1.j = FIB.pc "remote" % spawn off on other processor
FALLOC 3.j = FIB.pc "local" % keep something to do locally
STOP

THREAD 3 % got FP of first call, send its arg
SUB ireg0.i = islot0.i 1.i % argument for first call
SEND pfslot1.pf[0.i] <- fp.pf 2.j ireg0.i % send it
STOP

THREAD 4 % got FP of second call, send its arg
SUB ireg0.i = islot0.i 2.i % argument for second call
SEND pfslot2.pf[0.i] <- fp.pf 4.j ireg0.i % send it
STOP

THREAD 5 SYNC sslot0.s % got results from both calls (synchronize!)
ADD ireg0.i = islot1.i islot2.i % add results
FORK 6.t
STOP

THREAD 6 % done!
SEND pfslot0.pf[jslot0.j] <- ireg0.i % send result to parent
FFREE fp.pf "default" % deallocate own frame
SWAP "default" % swap to next activation
STOP

THREAD 7 % enter-activation thread
STOP % no registers to restore...

THREAD 8 % leave-activation thread
SWAP "default" % swap to next activation
STOP % no registers to save...

Figure 2: TL0 code for function fib
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At the other extreme, parallelism may be limited to a single loop. In this case, a set of frames each holding the
local variables of a different iteration of the loop body may be allocated on a set of processors. Under TAM, this can
be easily extended to handle nested loop parallelism, where each loop frame maintains several frames for iterations of
the inner loop[32]. The assignment of iterations to frames can be addressed by a variety of policies. A very general
form of parallel loop structure, called k-bounded loops[11], is used in compiling Id90. In this scheme, the amount of
parallelism, i.e., the number of frames, is determined at the time the loop is invoked, possibly depending on values
within the program. The loop builds a ring of � frames and cycles through them. Each iteration detects its own
completion and sends a signal to the previous frame indicating that the frame is ready for the next iteration. Nested
loops produce a ring of rings.

Allocating a frame for a chunk of computation does not guarantee that the computation will operate in parallel with
other frames, but gives it the opportunity to do so. For example, two frames could co-routine by exchanging messages.
The Id90 compiler aggressively exploits parallelism in function calls and loops by allocating frames.

When allocating a frame, it must either be allocated locally or on another processor. TAM provides mechanisms
to control the placement of frames, but does not dictate how to use it. Thus, the compiler or run-time system must
allocate frames in a manner that provides adequate load balancing. For highly irregular parallel problems it is difficult
for the compiler to determine the mapping statically, so dynamic load balancing techniques provided by the run-time
system are needed.

3.3 Frame Storage management

The representation of dynamic parallelism presents a fundamental storage management challenge. TAM allows storage
management to be addressed within the specific structure of the high-level language, but dictates that it will take place
in terms of explicit allocation and release of frames. The size of the frame is fixed at the time of allocation. This
should be contrasted with providing an arbitrary collection of stacks, as with typical “threads packages”. If each
frame were provided with a stack, a large chunk of the address space would need to be provided per frame. Parallel
languages typically generate a large amount of tightlycontrolled parallelism, so the generality of an arbitrary collection
of stacks is not required. Under TAM, the compiler can (and must) map these specific parallel structures onto frames.
For example, recursive call structures are supported by allocating multiple frames. The linkage between frames is
expressed in terms of messages sent to inlets in the target frame.

The management of frames is typically integrated with the calling convention. In a sequential language, arguments
and results are deposited in predefined locations on the stack, or passed in registers. In TAM, argument and result
passing is represented in terms of inter-frame communication. The caller sends arguments to predefined inlets of the
callee and the callee sends results back to inlets specified by the caller. Two additional arguments are passed to the
callee: the parent frame pointer and the return inlet number. If tail call optimization is performed, the caller can pass
it’s own return frame pointer and inlet directly to the callee. The Id90 compiler augments each function with code to
detect the completion of all computation, so that the frame is released by the last thread in the code-block (cf. Thread 6
in the fib example above). K-bounded loops detect completion of each iteration and include additional code to release
the ring of frames when the entire loop finishes.

3.4 Communication

Sharing of information and coordination of activity among portions of the program are represented in TAM via sends
to inlets and heap requests delivered to inlets. This encourages a latency tolerant style of code-generation. When a
remote access is initiated, the computation continues; the response will be received asynchronously and will enable
whatever computation depends on it. The execution model places no limit on the number of outstanding messages,
although architectural factors such as latency, overhead, or available bandwidth may introduce a practical limit[10].
The communication model is efficient because no buffering is required in the communication layer. Storage to receive
the message is pre-allocated in the frame so that the inlet can move the data directly from the network interface to the
frame[45].
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The Id90 compiler generates a specialized message handler for each heap reference, function argument, and result
in the program text. This specialization reduces the message size, since the message format is encoded in the inlet,
and reduces the cost of message handling, since no parsing is required.

Currently, remote references to global data structures are handled by generic remote reference message handlers.
These handlers are executed on the processor on which the accessed data element resides. The handlers perform
synchronization if needed, access the data element, and send the reply back. In our compilation scheme for Id90, the
only case where a message handler may need buffering is when a read must be deferred: a continuation consisting of
the requesting processor, inlet, and frame is enqueued on the element so that the read can be completed when the data
is written.

There are various techniques the compiler can employ to make the code latency tolerant. By issuing several remote
requests in the same thread, the latency of multiple requests can be overlapped. By issuing remote requests as early
as possible, the latency can be overlapped with computation not dependent on the reply. This non-speculative form of
prefetching can be achieved by pulling remote references as far up in a thread as possible, and by ensuring that threads
with remote references get scheduled first. In both cases there must be adequate parallelism available to overlap the
communication latency with computation. If the program does not not have enough parallelism, techniques such as
loop unrolling may be applied to introduce it. In general, the more parallelism a program exploits, the more storage
resources it needs. Thus a tradeoff has to be struck between good latency tolerance and storage requirements[13].

3.5 Storage hierarchy

Compilers for sequential languages manage the placement of data between registers and call frame locations based on
the analysis of a single flow of control. The basic technique is to construct an interference graph describing which
variables may have overlapping lifetimes. Variables are then assigned to available registers with priority given to the
ones most frequently used. The compiler uses all the registers that are available. Depending on the calling convention,
it may be necessary to save variables to the call frame across calls. Register allocation is more involved under TAM
because the ordering among threads can be affected by the order of message arrivals, as well as the evaluation of
conditionals. The analysis must track the interleaving of multiple flows of control which causes the interference graph
to be much denser. Furthermore, establishing a large register footprint is at odds with fast frame scheduling.

The compiler can easily allocate values to registers within a thread and across threads that are provably within the
same quantum. If it allocates values to registers that cross possible suspension points, than it can use the enter and
leave threads to save and restore register values between quanta. In the function fib above, registers are only used
where it is possible to statically determine that the threads execute in the same quanta. For example, ireg0 is defined
in Thread 1 or Thread 5 and is used in Thread 6. Given that the second recursive call is allocated locally, Thread 2
(allocating the frame) and Thread 4 (sending the argument) will typically execute in the same quantum. This would
allow islot1 to be kept in a register6.

Processor efficiency can be improved by sending messages directly out of the processor registers into the network
and by receiving messages into registers. For example, the message handlers that receive the frame pointers for the
recursive calls in fib (inlet 2 and inlet 4) may check to see whether the caller frame is currently running. If so, the
callee frame pointer can be placed directly into a register instead of into the caller frame. As a consequence, the callee
frame pointers can be accessed from registers by the threads that use them for sending the arguments. In the case that
the caller frame is not currently running, the inlet will deposit the callee frame pointers into the frame, and the enter
thread will load them into registers when the frame gets scheduled.

3.6 Synchronization

For sequential languages, the instruction ordering and control flow produced by the compiler ensures that all forms
of data and control dependencies are enforced. In a parallel setting, additional explicit synchronization is needed,
especially when non-blocking remote communication is use. For example, a computational thread has to synchronize

6The current compiler for which statistics are presented in Section 5 does not yet perform these optimizations.
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with the reply of a remote request before using its value. Similarly, a thread that needs values produced by two other
threads, has to synchronize on both threads having completed. Dataflow machines have both forms of synchronization
built into their execution model. Explicit control flow in TAM provides two ways to enforce data and control
dependencies. Inside a thread, the linear ordering of instructions determines their execution order. Across threads, the
use of explicit synchronization counters and control primitives, such as FORK, SWITCH, and POST, specifies the order in
which the threads get executed and allows computation to synchronize with communication. The compiler orders the
instructions within a thread, and initializes the synchronization counters, such that all data and control dependencies
are enforced. This is straight-forward for static dataflow graphs, where all dependencies are visible at compile time
and no cycles exist[37].

3.7 From dataflow graphs to threads

Non-strict languages, such as Id90, introduce an additional compilation issue. In general, any input to a function,
including arguments, heap access responses, and results returned from subordinate calls, can potentially depend in
some manner upon an output of the function, including returned results, stores to heap locations, and arguments passed
to subordinate calls. (Somewhere outside the function body, some output may be used in deriving an input to the
function.) These dependencies may go through any number of levels of indirection and usually cannot be identified
at compile time. Thus, the task of the compiler in partitioning the dataflow graph into threads is to prove where such
external dependencies cannot exist.

There are three basic partitioning techniques: certain dependence, dependence sets, and demand sets. If a node
� is connected by certain dependence arcs to node � , then � must precede � . There can be no hidden dependence
in the reverse direction or the original dataflow graph would deadlock. If there is no certain dependence between a
pair of nodes, they are apparently independent and we must prove that one cannot depend on the other through some
external effect. This is accomplished by examining how portions of the graph interact with the external interface.
Dependence analysis uses sets of inputs to establish independence. Given two apparently independent nodes in the
dataflow graph, if they both depend unconditionallyon the same set of inputs, neither can depend on the other, since the
dependence would need to be conveyed through one of the inputs[22]. Demand analysis uses sets of outputs to establish
independence. If two apparently independent nodes unconditionally affect the same set of outputs then neither can
depend on the other, since the dependence would have to be conveyed through one of the outputs[38]. The compiler
repeatedly reduces the dataflow graph into macro nodes representing threads using analysis of dependence sets (input
nodes on which a node depends) and demand sets (output nodes that depend on the node) to drive the reduction
process. Recent work shows how this analysis can be carried out globally[44]. Improvements in partitioning increase
the thread length, decrease the number of dynamic scheduling events, and reduce the total number of synchronizations
by eliminating redundant ones.

4 Implementation of TAM

This section describes an implementation of TAM on the CM-5 multiprocessor[40]. The discussion is centered around
the thread language TL0 which takes a position on many of the alternatives left open in TAM by defining an instruction
set with precise semantics. TL0 is a machine independent assembly language for TAM and the concrete target for
the compilation process described in the previous section. By dividing up the compilation process into two separate
phases, from Id90 to TL0 and then from TL0 to native code, we isolate high level compilation issues from the specific
hardware support for threaded execution.

A TL0 program, like the one in Figure 2, is composed of code-blocks consisting of the activation frame layout,
registers, and the code for the threads and inlets which execute relative to the frame. Each frame slot and register is
statically typed and reuse across types is not possible. The TL0 storage hierarchy consists of an unlimited number
of machine registers, frame storage and the global heap. TL0 instructions can operate directly on registers or on the
activation frame. TL0 has five different instruction categories.

ALU instructions use a standard three-address format and operate on typed variables in registers and the frame.
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Operand (32-bits) location access costs
instr. cycles

Register 0 0
Constant 0–2 0–2
Cache 1 2–3
DRAM 1 20

�

�
: 32-byte cache-line refill

Table 1: Access cost to each level of the local storage hierarchy on a CM-5 node.

Network access is provided by SEND and RECEIVE instructions. SEND is used in threads to send an arbitrary number
of values to an inlet of another frame. Receive is the first instruction in an inlet and stores the message data
fields into frame slots or registers.

Thread control is expressed using FORK and SWITCH instructions, and each thread is terminated by a STOP instruction.
TL0 uses boolean variables to represent the result of a comparison; which is then used by the SWITCH instruction.

Frame scheduling is expressed using POST and SWAP. Although it is possible to generate the code that explicitly
manages frame allocation and scheduling, currently, a small set of “high-level” instructions are used to facilitate
experimentation. All of the “high-level” instructions take a policy argument which conveys the compiler’s intent
to the code generator.

Heap access is provided via a variety of fetch and store instructions. Conceptually, these instructions simply send a
message to the memory controller holding the designated location. The response for a fetch is received by an
inlet, but there are no explicit acknowledgments of stores.

The remainder of this section presents the mapping of the storage model and the implementation of these instruction
categories on the CM-5 processor by describing the optimizations performed and the cost in terms of instruction and
cycle counts for the most interesting TL0 instructions. Section 5 combines them with instruction frequency statistics
to draw a comprehensive picture of the effectiveness of TAM.

4.1 TL0 on the CM-5 multiprocessor

The CM-5 is a massively parallel MIMD computer based on the Sparc processor. Each node consists of a 33 Mhz
Sparc RISC processor chip-set (including FPU, MMU and 64 KByte direct-mapped write-through cache), 8 MBytes
of local DRAM memory and a network interface. The nodes are interconnected in two identical disjoint “hypertrees”
(also described as an incomplete fat tree), and a broadcast/scan/prefix control network.7

4.1.1 Storage model

Mapping the TL0 storage hierarchy onto the CM-5 is relatively straight-forward. TL0 registers are mapped onto Sparc
registers as described below. Activation frames are allocated in local memory and are expected to reside mostly in the
cache. The heap is divided into two regions, one for small arrays which are allocated local to a node and the other
for large arrays which are spread across the nodes such that logically consecutive elements are mapped onto different
processors. Program code is placed on every processor.

Since TL0 does not limit the number of available registers, it is the responsibility of the code generator to spill
excess TL0 registers to the activation frame. TL0 instructions allow frame relative addressing. To accommodate the
Sparc instruction set, operands to instructions residing in the frame must be temporarily loaded into registers. Table 1
summarizes the cost of accessing operands at the various levels of the storage hierarchy. In all of the remaining sections
the cost of TL0 expansions are based on the frame operands already being in registers. Section 5 presents the program
dependent cost of bringing operands from the frame into the registers.

7Each node may also contain vector units which we do not address in this paper.
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Register Function
Zero (g0) Hard-wired to 0
LCV (g1) Pointer to top of local continuation vector
Self (g2) Node ID
FP (g3) Frame pointer
Cbbase (g4) Pointer to origin of current code-block
Izero (g5) Offset to base of heap tags
NI (g6) Network Interface base address
Queue (g7) Pointer to frame scheduling queue

Table 2: Reserved special-purpose registers hold important variables and constants used by the TL0 implementation
to provide fast scheduling of computation and network access.

The TL0 registers are implemented on the CM-5 as a flat register file in a single register window. Register windows
cannot be used between function invocations because the computation unfolds as a tree rather than as a stack.8 Further,
due to the tight coupling between threads and inlets it proves to be more efficient to partition a single window, than
for inlets to run in a second window. The single register window is divided into three categories: special-function
registers, thread registers and inlet registers. The special-purpose registers (g0–g7), as shown in Table 2, hold important
variables and constants used by the TL0 implementation. The TL0 IP and IIP registers are both mapped to the Sparc
PC register. There are sixteen thread registers (i0–i7 and l0–l7) which are fully under control of the register allocator.
The eight inlet registers (o0–o7) are generally reserved for inlets but may be used by the register allocator between
successive network polls to hold thread temporaries. The RECEIVE instruction at the beginning of an inlet typically
moves the message from the network interface FIFOs into inlet registers and uses the IFP to store the message data
into the frame locations.

4.1.2 Arithmetic and logic instructions

Once the operands have been loaded into registers most TL0 arithmetic and logical operations map into a single
machine instruction. A few instructions such as ABS, MAX, MIN require short instruction sequences and integer divide,
and multiply are implemented by calling a library routine. Table 3 summarizes the costs of the basic instructions.

Operation costs
instr. cycles

Integer arithmetic
Add, sub, logical 1 1
Integer multiply 19–54 21–56
Divide 15–40 30-100

Floating-point arithmetic 1 5–7

Table 3: Mapping of TL0 arithmetic and logic instructions to the Sparc.

4.1.3 Sending messages

The TL0 SEND instructioncan send a message of arbitrary length to an inlet of another frame. The CM-5 implementation
limits the message to three 32-bit words of arguments and uses the first two words of the message for the frame pointer
and the inlet start address. The code generator will convert a SEND of a longer messages into multiple sends. Since each
SEND is paired with an inlet, the code generator also creates new inlets, each of which receives a piece of the original
message. The new inlets all synchronize before executing any code dependent on reception of the logical message.

8Using the multiple windows to cache the registers of several activations is not an efficient alternative since switching among register sets requires
a kernel trap.
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The network interface (NI) is attached to the node MBUS and consists of a pair of memory mapped FIFO queues
for each of the two data networks. Accessing the network interface costs 7 cycles for 32-bit accesses and 8 cycles
for 64-bit accesses. The implementation of the SEND pushes the message into the outgoing FIFO using store-double
instructions. The cost of SEND is shown in Table 4. Note that a global register is reserved to point to the base address
of the memory mapped NI. After pushing the message into the FIFO, a status register in the NI indicates whether the
message was accepted. The NI discards the message if the network is backed-up, and the message must be resent
explicitly. The cost of a SEND is relatively high because access to the NI requires uncached loads and stores. For this
reason, sends to the local node are special-cased in software, even though the CM-5 hardware supports loop-back.

Operation costs
instr. cycles

Send message to local frame
Overhead 4 4
Push word 1 1

Send message to remote frame
Overhead 10 25
Push word 1/2 4

Table 4: Costs for sending a message limited to three 32-bit words of arguments. Access to the network interface
involves uncached loads and stores which take 7–8 cycles each.

The CM-5 has two identical disjoint networks. The two networks are used separately to avoid deadlock: all
messages sent from thread level use one of the networks and the other network is reserved for replies sent back from
inlets. This has the consequence that if the outgoing network is backed-up, then a send at thread level must accept
incoming messages on both networks and that sends at inlet level (which are really replies) must accept incoming
messages only on the reply network.

4.1.4 Receiving messages

In TL0, when a message is received an inlet is invoked. The first instruction of the inlet is a RECEIVE, which specifies
the frame slots where the message data is to be stored. On the CM-5 the arrival of a message can be detected either
by enabling message interrupts or by polling the network interface regularly. Dispatching a message interrupt into
the user program incurs approximately 140 cycles of overhead. Although multiple messages can typically be received
during one invocation of the interrupt handler, thereby amortizing the overhead over several messages, the overhead is
still high. Furthermore, the cost of the FORK, SWAP, and I-structure operations would increase if message interrupts are
used, due to maintaining atomicity in accessing synchronization variables, the frame queue, and local heap structures.
The strategy employed in the CM-5 implementation is to explicitly poll the network once in every thread. If the thread
contains an instruction which might access the network, then the poll is combined with that instruction. All other
threads have an explicit poll inserted at the end of the thread. If a message has arrived, the appropriate inlet is called.
Table 5 shows the cost of polling the network and the cost of running an inlet.

4.1.5 Thread scheduling

In TL0, thread control is realized by the FORK, SWITCH, and STOP instructions. The distinction between synchronizing
and non-synchronizing threads is indicated by a SYNC statement placed at the beginning of synchronizing threads.
The SYNC statement contains the name of the synchronization variable; which is initialized by setting its value to the
appropriate entry count before any attempt is made to fork the thread. Although the SYNC declaration is placed at
the beginning of the thread, the synchronization test (decrement and test for zero) is performed as part of the FORK

instruction. Non-synchronizing FORKs do not require the decrement and test and thus are cheaper than synchronizing
ones.

Conditional control flow is implemented in TL0 through compare instructions which set a boolean variable and
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Operation costs
instr. cycles

Explicit poll 3 9
Poll as part of a send 2 2
Message handling

Inlet overhead 6 13
Receive 32-bit word 1 1

2 6

Table 5: Cost of polling the network and of running an inlet. The inlet overhead includes dispatching to the inlet and
returning from the inlet. The receive cost refers to transferring message data into the activation frame.

a SWITCH instruction which forks one of two threads depending on a boolean. For the Sparc, the code generator
attempts to allocate the result of the compare to the condition-code register and to propagate the condition to all
SWITCH instructions based on that comparison9. The SWITCH itself is essentially translated into an if-then-else around
two FORKs.

The code generator specializes the last FORK in a thread into a fall through or branch, which eliminates the STOP at
the end of the thread. The remaining FORK instructions translate into a push onto the LCV. A STOP ends a thread by
popping the next thread from the LCV and jumping to it. A summary of the instruction and cycle counts involved in
the various cases is shown in Table 6.

Operation costs
instr. cycles

Fork a thread
Fall through 0 0
Branch to thread

unsynchronizing 1 1
successful sync. 3 4
unsuccessful sync. 4 8

�

Push thread onto LCV
unsynchronizing 3 5
successful sync. 6 10
unsuccessful sync. 4 7

Switch one of two threads fork+2 fork+2
Stop and pop thread from LCV 3 5
Initialize sync. counter 2 4

Table 6: Cost of TL0 thread synchronization and scheduling instructions. For FORK several variations are shown,
depending on whether a FORK can be combined with a stop and optimized into a branch, whether the target thread is
synchronizing and whether the synchronization was successful or not.

�
: The cost of unsuccessful sync. branch does

not include the cost of the STOP that is executed to end the thread since the synchronization fails.

The LCV is implemented as a stack of 16-bit offsets from the current code-block base (kept in a register) to the
beginning of the enabled threads. A push onto the LCV consists of three instructions: setting the offset, storing it into
the LCV and incrementing the top of LCV pointer which is kept in a register. The pop-jump for a STOP adds the offset
to the code-block base as part of the Sparc jump instruction. The bottom-most offset on the LCV always points to the
activation’s leave thread, which is responsible for switching to the next frame.

9No optimization is required when mapping these TL0 instructions to architectures without conditions codes, e.g., the MIPS or Motorola 88k.
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4.1.6 Frame scheduling

In TL0 the details of frame allocation and scheduling operations are hidden from the Id90 compiler behind a small
number of high-level instructions. Exposing the details for a specific target machine would be straight-forward, but
doing so in a machine independent manner seems difficult. To give the compiler control over frame allocation and
scheduling, the appropriate TL0 instructions take a “policy” argument which conveys the compiler’s intent to the code
generator. The policies are arbitrary names (strings) on which the two parties agree. Currently, the compiler uses
default, local, remote, and cyclic frame allocation policies and default, fifo and lifo frame scheduling policies.

FALLOC instruction is an example of the high-level instructions that take a policy. It allocates the frame for a new
activation and passes a number of arguments to its inlet 0. The choice of processor is controlled by the policy attached
to the instruction. Instead, the compiler could directly output the TL0 code which would choose the processor, allocate
a new frame, and finally, send a message to inlet 0 of the new frame. The FFREE instruction deallocates a frame,
possibly the current frame. Typically, this is followed by a SWAP which terminates the current activation.

For the Sparc, the RCV is implemented similarly to the LCV using 16-bit offsets. The pointer to the top of the RCV
is kept in the frame, not in a register. Initially, the RCV is empty and the frame is not part of the scheduling queue.
As messages for the activation arrive, inlets are executed and enable threads into the RCV using the POST instruction.
The cost of a POST (shown in Table 7) is generally higher than that of a FORK and depends not only on whether the
target thread is synchronizing or not, but also on the state of the frame. If the frame is idle (i.e., it has no threads in its
RCV), then it will have to be enqueued onto the ready queue. In addition for both idle and ready frames, the cost of
manipulating the pointer to the top of the RCV is higher than for the LCV since it is in the frame, not a register.

Operation costs
instr. cycles

Post a thread from inlet
Idle frame

unsynchronizing 12 18
successful sync. 15 23
unsuccessful sync. 4 7

Ready frame
unsynchronizing 9 14
successful sync. 12 19
unsuccessful sync. 4 7

Running frame
unsynchronizing 5 7
successful sync. 8 12
unsuccessful sync. 4 7

Swap to next frame
first 3 threads 14 26
per extra 4 threads 6 12

Table 7: Cost of TL0 frame synchronization and scheduling operations.

If the target thread is for the running frame, then instead of pushing onto the RCV, the POST instruction can push
the thread onto the LCV. Thus, for the cost of a compare between the FP and IFP, the cost of a POST can be brought
down to that of a FORK and remote requests which return during the issuing quantum save on the cost of SWAPs and
POSTs.

At the end of a quantum the leave thread of the activation is executed; it is responsible for switching to the next
frame. In TL0 the SWAP instruction selects the next frame according to a specified policy, places the new frame’s leave
thread as a sentinel at the bottom of the LCV, copies the RCV onto the LCV (4 threads at a time using double-word
loads and stores) and jumps to the enter thread.
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4.1.7 Heap access

Implementing synchronizing data structures (such as I-structures and M-structures) presents three challenges: repre-
senting the presence bits, checking and updating their state on every access, and maintaining the lists of deferred reads.
The Id90 type system requires that each structure element is represented by 64 data bits and 3 presence bits, which
must be simulated in software. For each 8-byte I-structure element one tag byte is allocated. The tags are stored in a
memory area disjoint from the data area. A global register (Izero) holds the offset from data address zero to tag address
zero. I-structure addresses are represented such that the tags of element � are stored in the byte at location � and
the data is stored in the 8 bytes starting at location 8� � Izero. All I-structure accesses must check the tag byte before
reading or writing the data. Deferred reads are enqueued as a linked list, the head of which is stored in the structure
element. Each link in the list holds the node, inlet, and frame information necessary to satisfy the read when a write
to that element occurs. When initializing and allocating I-structures the tags of eight elements can be initialized using
a single store-double instruction.

TL0 provides a special syntax for issuing remote references (e.g., IFETCH and ISTORE). Each instruction specifies
the base and offset of the I-structure being accessed. The expansion first calculates the node and address of the element
being accessed. Then, the expansion determines if the access is a local access and, if so, performs it inline. Otherwise,
a request is sent to the node that contains the element. The different cases are reflected in the costs specified in Table 8.

Operation costs
instr. cycles

I-structure fetch
Local, data present 8 11
Local, data not-present 25 58
Remote

Initiate request 18 38
Service, data present 29 91
Service, data not-present 39 115

I-structure store
Local, no waiting fetches 9 15
Local, waiting fetches 18 30
Remote

Initiate request 18 38
Service 13 44

I-structure allocate (� words) 5 � 4 � �8 � 6 � 7 � �8 �
Table 8: Access to global data structures with synchronization on a per-element basis. Local fetches are special-cased.
The entries for remote requests include the cost of the request send and the receive by the serving node. The remote
service numbers include the cost of the reply and the cost of starting the overhead for the inlet that receives the reply.
The cost of a fetch of an empty element includes the cost of both enqueueing a continuation on the element and
for fulfilling the request when the write occurs allowing the request to be satisfied. I-structure allocation includes
initializing all tags to empty, but the time spent in the memory manager for allocation is not included.

4.2 Discussion

This section has shown that the scheduling costs at the two levels of the hierarchy are distinct. Most thread scheduling
can be optimized away and the remainder costs a few cycles each. Not well represented in the cycles counts are the
costs due to the memory hierarchy. On the Sparc processor used in the CM-5, loads and stores take multiple cycles
each. On the next generation processors, accesses to the LCV will be cached and thus execute in a single cycle, whereas
accesses to the RCV are less likely to be cached and thus will cost more. The cost difference between thread and frame
scheduling is thus likely to increase. The cost of thread scheduling can be further reduced by taking advantage of the
prefetch possibilities offered by the LCV. A thread ending in a pop-jump could load the next thread address early-on
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and pass the address to the instruction prefetch unit.
The cost tables in this section show clearly that communication is still rather expensive. Sending an argument to a

remote frame costs about fifty processor cycles while accessing a remote heap location costs on the order of a hundred
(five cache misses). The main cause for this high cost on the CM-5 is the slow access to the network interface across
the node memory bus. Placing the NI on the cache bus or integrating it into a co-processor, for example as proposed
in the MIT/Motorola *T project[29], would reduce the overhead of messages considerably.

5 Dynamic Measurements

In this section we present empirical data based on the implementation of TAM described above to validate the TAM
approach and its effectiveness on current parallel machines. The data is obtained on the CM-5 multiprocessor using a
version of the code-generator which inserts a few instructions into the threads and inlets to collect roughly one hundred
dynamic statistics on each processor. At the end of the program, the overall counts are accumulated. This provides
TL0-level dynamic instruction frequencies, which characterize the requirements of Id90 programs. The frequency
of dynamic scheduling events is obtained as well. We see that the TAM scheduling hierarchy is indeed effective in
grouping together a sizable number of threads, which reduces the cost of thread scheduling and improves the use of
the storage hierarchy. Applying the instruction costs presented in Section 4, we can estimate the fraction of execution
time devoted to each aspect of program execution.

5.1 TL0 instruction frequency

Figure 3 shows the dynamic frequency of the basic TL0 instruction categories on six benchmark programs ranging
from 50 to 1,100 lines. These were developed by other researchers in the context of other platforms, especially the
GITA dataflow graph interpreter and the Monsoon dataflow machine. QS is a simple quick-sort using accumulation
lists. The input is a list of random numbers. Gamteb is a Monte Carlo neutron transport code[6]. It is highly recursive
with many conditionals. The work associated with a particle is unpredictable, since particles may be absorbed or
scattered due to collisions with various materials, or may split into multiple particles. Splitting is handled by recursive
calls to the trace particle routine. Particles are independent, but statistics from all particle traces are combined into
a set of histograms represented as M-structures. The input consists of 8192 initial particles. Paraffins[3] enumerates
the distinct isomers of paraffins. Simple[2, 8] is a hydrodynamics and heat conduction code widely used as an
application benchmark, rewritten in Id90. It integrates the solution to several PDEs forward in time over a collection
of roughly 25 large rectangular grids. Each iteration consists of several distinct phases that address various aspects
of the hydrodynamics and heat conduction. Simple is irregular, due partly to the relationship between the phases,
which traverse the data structures in different ways. In addition, table look-ups are performed inside of the grid-point
calculation and boundaries are handled specially. The problem size is a 128x128 grid. Speech determines cepstral
coefficients for speech processing. MMT is a simple matrix operation test using 4x4 blocks; two double precision
identity matrices of size 60x60 are created, multiplied, and subtracted from a third.

The programs toward the left of Figure 3 exhibit very fine-grain parallelism. Observe that they are control intensive.
The moderate blocking and regular structure of MMT shows a significant contrast. We will focus primarily on the
two large programs, Gamteb and Simple, as these include a variety of usage patterns and exhibit significantly different
instruction mixes.

Figure 4 shows the speedup obtained on the CM-5 for the two application benchmarks. In both applications we
observe a linear speedup beyond a small number of processors. At 64 processors the performance is comparable
to that on a 16-node Monsoon configuration (8 processor nodes and 8 I-structure nodes). Although communication
latency is tolerated, roughly half the processor is lost to message handling overhead in Gamteb and three-quarters in
Simple. The difference is attributable to the remote reference rates in the two programs, as discussed below. On the
high end, this correlates with the speedup obtained on the full machine; on the low end it correlates with the number of
processors required before any significant speedup is obtained. Although the programs could be tuned to obtain better
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Figure 3: Dynamic instruction mix statistics for several benchmark programs. ALU includes integer and floating-
point arithmetic, messages includes instructions executed to handle messages, heap includes global I-structure and
M-structure accesses, and control represents all control-flow instructions including moves to initialize synchronization
counters. The final column shows the arithmetic mean of the distributions.
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Figure 4: Speedup for Gamteb and Simple from one to sixty four processors on the CM-5
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QS Gamteb Paraffins Simple Speech MMT

Ave TL0 Insts. per Thread 2.6 3.2 3.1 5.3 6.3 17.6
Threads per Quanta 11.5 13.5 215.5 7.5 16.7 530.0

RCV Size when Scheduled 1.1 1.6 1.3 1.4 1.0 1.6
Threads forked during Quantum 8.8 10.2 168.4 4.1 11.7 406.6
Threads posted during Quantum 1.5 1.6 45.7 1.9 4.0 121.9

Quanta per Invocation 4.1 3.4 2.7 4.8 21.7 3.4

Table 9: Dynamic scheduling characteristics under TAM for two programs on a 64 processor CM-5

performance on this particular machine, our goal is to evaluate TAM in the regime of implicit parallelism and implicit
data placement. In what follows, we examine the execution behavior in more detail.

5.2 Scheduling hierarchy

Table 9 indicates the effectiveness of the two-level scheduling hierarchy under long remote access latency and parallel
execution. We see that depending on the application the compiler generates threads of about 3 to 17 TL0 instructions.
However, anywhere from 7 to 530 threads execute in each quantum. The cost of posting and swapping the frame
is amortized over this amount of work. Further, if register allocation is performed across threads, there are roughly
forty TL0 instructions, to work with, rather than five to ten. Below (Figure 5) we show that each TL0 instruction is
about 17 Sparc cycles, making the average quantum a few hundred cycles long. Viewed another way, a typical frame
experiences about four periods of activity during its lifetime. This is comparable to a function in a sequential language
that makes three calls.

The origin of the threads comprising a quantum is given in the middle rows Table 9. We see that when a frame
is run, it has usually accumulated multiple threads. Since each successful post of a thread requires multiple posts
(e.g., in Gamteb 2.5 posts are required before a thread is pushed onto the RCV), a sizable amount of data will have
been accumulated in the frame before it is scheduled. As a result, several potential synchronization events are passed
without suspension and many threads are forked while the frame is running.

Typically, more than one message response arrives during the quantum in which it was issued, triggering further
activity. Notice, Ifetches that are serviced locally and not deferred will complete during the issuing quantum. In fact,
due to the amount of time it takes to issue a remote Ifetch, if the requests are not deferred, any series of four requests
will generally cause a response in the same quantum.

Latency tolerance occurs in two ways: within a quantum and across quanta. Within the quantum, multiple requests
are issued and before the quantum ends more than one of them will have completed and returned. Between quanta
there is sufficient parallelism that when one frame finishes its quantum other frames have accumulated work to do.

5.3 Handling Remote Access

The large quanta size is achieved in spite of a fairly high remote reference rate. Table 10 shows the breakdown of
split-phase operations for the two programs. For heap accesses, fetch and store operations are divided further to show
the fraction of accesses to an element that is local to the processor issuing the access. The I-structure allocation policy
recognizes two I-structure mappings. I-structures that are smaller than some threshold are allocated within a single
processor, while those larger than the threshold are interleaved across processors. Small structures are allocated on the
processor that requests the allocation, if space is available. We see that in Gamteb almost all the I-stores are local under
this policy, as are one quarter of the fetches. Gamteb allocates many small tuples dynamically as particles are traced
through the geometry. Under this policy, these are created and filled in on one node, but only a quarter of the I-fetches
are local. Simple, on the other hand, operates mostly on large grids interleaved over the machine. No correspondence
is established between the data structures and the computations that access them. As a result, the cost of an average
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Split-Phase Type Gamteb 8192 Simple 128

I-Fetch 33.3 66.3
Local 26.4 2.1
Remote 73.6 97.9

I-Store 20.1 9.1
Local 99.1 15.2
Remote 0.9 84.8

Send 33.7 19.1
other 12.9 5.5

Table 10: Breakdown of split-phase operations into instruction types and locality. In Gamteb local allocation of small
structures allows most of the stores and many of the fetches to be serviced without network access. Localization in
Simple is much less successful, since the data structures are large and no correlation is established between program
and data mapping.

remote reference for Simple is higher than for Gamteb (which is reflected in Figure 5).
By extending our attention to another layer in the memory hierarchy, the heap, we can try to avoid latency as well

as tolerate it. In order to reduce the number of remote references and the communication overhead, we introduce
caching of remote references. For programs like Simple, where the remote reference rate is high and the number of
deferred Ifetches is low (23%), the cache works remarkably well. Besides seeing the immediate effect of lowering
remote references from 97% to 21%, it boosts the quantum size from 7.6 threads to 12.6.

5.4 Net Scheduling Cost

The two level scheduling hierarchy in TAM is supported by three basic scheduling operations: SWAP and POST at the
frame level and FORK at the thread level. The quantum sizes above imply that FORK is by far the most frequent. Table 11
shows the result of the optimizations which specialize general FORK and SWITCH instructions into less costly jumps
and branches. FORKs and SWITCHes that were executed at the bottom of the thread are listed as jumps and branches,
respectively. The rows labeled with ‘sync’ are for the FORKs and SWITCHes to synchronizing threads. The row labeled
‘other’ represents the SWITCH instructions executed with both a synchronizing and non-synchronizing target. The rows
labeled ‘push’ represent those control instructions that are unchanged.

The most common control transfer operation executed is the synchronizing, unconditional fork. Roughly half the
pushes are simplified in favor of jumps or branches. In addition to the cost of enabling the thread, there is the cost of
the STOP instruction, which is executed when a thread ends without a jump or successful branch, or about half the time.
The bottom line is that, on average, the thread fork is performed in seven cycles.

The POST instruction has varying costs depending on whether it is executed for an idle, ready, or running frame
(see Table 7). If most POSTs are executed when a frame is either ready or running, as is the case for the two benchmark
programs, then the average cost of the POST instruction will be close to that of a FORK instruction. In Simple, on
average, for each quantum, one post occurs to an idle frame, 0.4 occur while it is ready, and 1.9 occur while the frame
is running, yielding an average cost of 9.4 cycles per post. The net result is that the average POST instruction, which
handles both frame and thread level scheduling jobs, is only 30% more expensive than the average FORK.

5.5 TL0 Thread Structure

We now examine the structure of threads in more detail. Our compilation regime produces threads of about five
instructions each, which, given TL0’s frame relative addressing and single instruction network access, makes it
roughly the length of a typical basic block. This is not surprising given that FORK is the only form of control transfer
in TL0. The first row of Table 12 shows the fraction of non-synchronizing threads. This would seem to indicate

23



Type Cycle Cost Gamteb Simple

Fork a thread
Fall through 0.0 3.9% 0.8%
Branch to thread

unsynchronizing 1.0 3.2% 2.6%
successful sync. 4.0 8.2% 9.8%
unsuccessful sync. 8.0 21.7% 29.2%

Push thread onto LCV
unsynchronizing 5.0 0.1% 0.4%
successful sync. 10.0 16.6% 20.0%
unsuccessful sync. 7.0 13.1% 27.4%

Switch a thread
Branch to thread

unsynchronizing 2.0 5.2% 4.0%
successful sync. 5.5 4.5% 0.6%
unsuccessful sync. 9.5 7.9% 1.3%

Push thread onto LCV
unsynchronizing 6.5 5.4% 1.0%
successful sync. 12.0 1.9% 0.3%
unsuccessful sync. 8.5 7.7% 2.1%

Percentage of TL0 instructions 28.2% 15.0%
Average Cost 7.04 cycles 7.23 cycles

Table 11: Sparc cycle count and frequency of the different thread control transfer operations for Gamteb and Simple.
As shown in Section 4 the code generator can specialize FORK and SWITCH to fall through or a branch.

Thread Characteristics QS Gamteb Paraffins Simple Speech MMT

Non-synchronizing Threads 60.7% 40.6% 66.5% 45.9% 65.0% 73.4%
Average entry for synchronizing Thread 2.4 2.5 3.0 3.7 4.4 7.0
Inlets per Threads 0.3 0.4 0.2 1.1 1.2 1.6
Ave TL0 Insts. per Inlet 4.0 5.1 3.0 3.4 3.0 3.0

Table 12: Dynamic thread characteristics under TAM for two programs on a 64 processor CM-5

that threads are much larger with branching permitted. However, more than half of the non-synchronizing threads are
posted from inlets and these would remain distinct threads even under the looser definition.

The second row shows the average entry count for synchronizing threads. Under traditional dataflow execution
mechanisms the entry count would be two. Grouping together the nodes that depend on a single matching event to form
a thread, as on Monsoon or EM-4, will not change the entry count. Our partitioning algorithm is more aggressive and
will group larger collections of nodes together to form a thread with a greater entry count. In addition, it also eliminates
redundant forks, thereby reducing the entry count. The combination of entry count and thread length indicate the cost
of each scheduling event and the amount of work per event.

The last two rows indicate the split of work between message handling and thread processing. From this we see
that about one third to one half the program is directly related with handling the network. A simple inlet contains three
instructions: receive, post, and stop. However, inlets also initialize thread entry counts, accounting for the remaining
portion of the instructions per inlet.
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5.6 Summary

The CPT is the work involved in an average TL0 instruction. This is obtained by multiuplying the frequency of each
instructionwith the cost in cycles for that instruction. Figure 5 shows the CPT for each of the benchmark programs. The
CPT is further broken down into bars showing the contribution resulting from each TL0 instruction class. In addition,
the Operand bar at the top reflects the memory access penalty in bringing data into registers for ALU instructions,
assuming a 5% miss rate. The Atomicity bar at the bottom accounts for the overhead introduced by polling. The Heap
bar has been split into three distinct implementation components. We see that the focus on efficient thread scheduling
pays off, as this represents only 10 to 30 percent of the total costs. By comparison, one half to three quarters of the time
is spent in the processor network interface. Even though the handling of these messages is very efficient; the simple
fact that the network interface is on the memory bus, rather than the cache bus, accounts for almost all of this cost.
Given the compilation techniques represented by TAM, the most important architectural investment for supporting
emerging parallel languages is simply to bring the network interface closer to the processor. However, this must be
accomplished without unduly increasing the memory access and atomicity costs.

6 Relationship to Other Models

TAM builds on a rich history of execution models developed to support general-purpose parallel programming. This
section discusses the aspects of these models that TAM strives to retain and the short-comings that TAM attempts to
avoid.

6.1 Dataflow

Under dynamic dataflow models, the program can be mapped arbitrarily onto the machine by simply hashing the tag
associated with each instruction-level activity. Data is transmitted between instructions in the form of tagged tokens,
where the tag carries control information (the context) for the destination instruction. When a token arrives at a
processor, its tag is compared with the tags in a matching store. If no match is found, storage is allocated and the token
is placed in the store to await its partner. The matching partner causes the token to be removed, its storage deallocated,
and the enabled operation scheduled for execution. In addition, it is necessary to include a buffer in each processor to
hold either fully enabled operations or tokens that have not been considered for matching. The simplicity of this model
derives from the implicit allocation of storage and scheduling associated with each message arrival. Any operation can
execute on any processor, simply by sending the tokens to that processor.

The shortcomings of the model derive from precisely the same factors: implicit allocation of storage and scheduling
based on message arrival. First, the matching store serves essentially to hold the state of the overall computation, i.e.,
the parallel analog of the call stack. Given its associative nature, it is impractical to make the matching store extremely
large, so deep recursion or extensive parallelism cause the store to fill up and the program to deadlock. The only way
to avoid this problem is to estimate the amount of storage that is implicitly allocated by the assignment of various
units of work to a processor. By limiting the problem size and explicitly constraining the scheduling of computation, a
program can be made to operate within the machine resource limits[9]. Second, the token queue serves to represent the
excess parallelism in the program. To avoid overcommitting this resource, it is necessary to constrain the scheduling
of computation to limit the maximum exposed parallelism. Finally, all of the information provided to the scheduled
operation must be carried on the input tokens, so the amount of work performed per scheduling event must be small.
The work per message event cannot be enlarged by referring to the context of the operation.

In refinements of the MIT Tagged-Token Data Machine[1] the local processor state took on an ever more significant
role. Pure dataflow graphs circulate loop constants through the body of the loop for every iteration. To eliminate
this overhead, a loop constant area was provided. Since it was necessary to allocate and initialize the loop constant
area, work could no longer be assigned to processors by simply hashing the tag. The Manchester machine[18] and
Sigma-1[20] adopted an alternative approach of “sticky” match operations with similar drawbacks.
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Figure 5: Distribution of processor time for the benchmark programs. The metric used is Sparc cycles per TL0
instruction (CPT); bars show the contribution to the CPT resulting from each TL0 instruction class.

6.2 ETS

The ETS model[12] embodied in Monsoon[31] is a partial remedy to these problems. Implicit allocation of the
matching store is eliminated by explicitly allocating an activation frame to hold the local storage for each function
invocation. Synchronization bits are associated with each frame location to support a dyadic match. Using a k-bounded
loop scheme, constants can be initialized in each of the loop frames.

However, the token buffer remains. When a message arrives, storage is allocated for it in a large queue. To avoid
deadlock, this buffer must be large enough to represent the excess parallelism in the program. As in the pure dataflow
case, this is determined by the scheduling of computation, not the relative rates of system components. (The token
buffer in Monsoon is kept in a separate memory proportional in size to the frame store. It provides storage for roughly
16 tokens per frame on average, with a token queue store of 64K tokens for 256K words of frame store and an expected
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average frame size of 64 words. Since the token is removed from the queue when processed, LIFO or FIFO storage
management is sufficient. Both are provided.)

The amount of work that can be performed per scheduling event is limited by the extent to which data can be
drawn from the local processor state. In its final version, Monsoon allows short instruction threads to be scheduled,
using frame slots and a small set of registers (an accumulator and three temporary registers) to convey data between
instructions in a thread, based on the Hybrid work, discussed below. Furthermore, the machine cycle time is limited
by the read-modify-write on the frame synchronization bits and the frame access per instruction. These times could
potentially be reduced via caching, but the arbitrary interleaving of tokens in the queue is unlikely to provide any useful
locality.

6.3 Hybrids

The Hybrid[23] proposal was the first to observe the interplay between register allocation and thread scheduling. This
model provides a machine language of multiple threads operating against an activation frame and registers. However,
each frame slot includes presence bits, like the ETS. A thread is suspended upon access to a frame slot marked
not-present. The suspension is accomplished by building a queue of instruction pointers into waiting threads. The
queue is rooted in the frame slot, so the eventual store of the value enables the threads. Since no registers are saved
upon suspension, the compiler is required to evacuate the registers across any potential point of suspension. This
elaborate suspension, queuing and scheduling mechanism is part of the basic model and required in any machine that
implements it. Scheduling (and the scheduling structure) is outside the programming model, so there is no means by
which the compiler can organize the program to make efficient use of processor resources.

P-Risc[28] observed that presence-bits can be kept in the frame like local data, rather than as special tags, and that
matching could be simulated by toggling the tag bit atomically and suspending on the result. This is easily extended
to a general counter, as in TAM. P-Risc eliminated the notion of suspension within a thread. However, it failed to
retain the distinction between registers and frames of the Hybrid model. Instead the entire frame is viewed as a set of
registers. Like the hybrid model, scheduling is outside the execution model. When a thread completes, any enabled
thread could execute next, so there is no means by which the compiler can develop a higher level strategy for utilizing
processor resources while tolerating latency.

6.4 Message Driven Processing

Message-driven processing generalizes the dataflow model by allowing the token to carry an arbitrary amount of data
and eliminating the synchronization discipline implied by matching. Parallelism is generating by sending a message
with the address of a handler at its head, followed by a sequence of data. The message-driven model holds that when
a message arrives at the processor, storage is automatically allocated for it in a scheduling queue. When the message
reaches the head of the queue, its handler is invoked. The handler can comprise an arbitrary computational task,
including sending of messages and waiting for synchronization events. Therefore, storage allocated for the message
can have an arbitrary lifetime and simple stack or queue based storage management is not sufficient. The message
buffer (or scheduling queue) serves to represent a significant portion of the state of the complete computation and the
excess parallelism in the program. Furthermore, the amount of work performed per scheduling event must be small,
unless stronger assumptions are made about the state of the computation assigned to the particular processor. Thus,
the fundamental shortcomings of the dataflow approach remain, the tokens are simply larger.

The J-Machine[14] approximates the message-driven model, rather than implementing it directly. A portion of
the on-chip memory provides a message buffer and scheduling queue managed in hardware as a fixed-size ring buffer.
Arriving messages are transferred into the queue and serviced in FIFO order. The first word of each message is
interpreted as an instruction pointer and the message is made available to the handler as one of the addressable data
segments. If the handler does not run to completion, it must copy its message data to an allocated region of non-buffer
memory. This happens for roughly 1� 3 of all messages. (Close to 1� 3 of the messages hold a request to which the
handler immediately replies and general allocation and scheduling is not required.) In reflection of the small amount
of computation per message, the instruction set provides only four data and three address registers.
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The fundamental difference between the message driven model and TAMis where computation-proper is performed:
in the former, computation occurs in the message handlers whereas in the latter it is in “background” threads. TAM
inlets only remove messages from the network and integrate them into the computation. This difference significantly
affects the nature of allocation and scheduling performed at message arrival. Inlets execute immediately upon message
arrival, cannot suspend, and have the responsibility to terminate quickly enough not to back-up the network. The inlet
either moves the message data into the data structures of the ongoing computation or, in the case of remote service
requests, immediately replies to the requester.

This seemingly slight restriction on message handlers has a significant conceptual implication — the on-going
computation on the node is assumed to be manipulating a significant amount of local state in a manner consistent with
the local storage hierarchy. The higher level programming model must ensure that the storage required to handle a
message is allocated and available when the message arrives. Also, by accumulating several messages and making
use of local data, the amount of work per dynamic scheduling event can be made larger and better use can be made of
large register files.

6.5 Light-weight thread packages

TAM can be compared to light-weight threads packages in that a goal of both is to allow the representation of arbitrary
parallelism and to support interleaved execution of logically parallel tasks mapped onto a single processor. It is
important, however, not to be mislead by the terminology: threads in threads packages are roughly comparable to TAM
activations, rather than TAM threads.

The frame scheduling of TAM can be implemented using a threads package: when a frame is allocated a thread is
created for the activation, when the first TAM thread is posted the thread is enabled. Swapping to the next activation
corresponds to suspending the current thread.

However, TAM frame allocation and scheduling is much cheaper to implement than that of a threads package. The
size of a frame is fixed and specified when it is allocated, whereas the stack of a thread can grow arbitrarily. The TAM
frame swap code is produced in-line and is closely integrated with the frame data structure, which includes part of
the scheduling queue, and the thread scheduling. Furthermore, the compiler is responsible for saving registers at the
end of a quantum. In contrast, threads packages must assume that all processor registers are live and must be saved.
Finally, threads packages do not provide the same degree of compiler control over scheduling.

7 Summary

This paper has presented TAM, a threaded abstract machine that serves as a framework for implementing general
purpose parallel programming languages. TAM is a parallel machine language of multiple threads. It can represent the
sophisticated and dynamic forms of parallelism arising in such languages. The model evolved from work on dataflow
execution models and addresses many of the same goals. However, it fundamentally differs from dataflow models in
allowing the compiler to control the scheduling of threads. Furthermore, TAM exposes, rather than hides, the critical
performance aspects of modern multiprocessors: interprocessor communication, synchronization, and utilization of
the storage hierarchy. This permits the compiler to apply optimizations in recognition of these factors. Perhaps the
most important feature of TAM is the way it exposes the interaction between the handling of asynchronous message
events, the scheduling of computation, and the utilization of the storage hierarchy.

The empirical investigation of TAM centers on an implementation of Id90 on the CM-5 multiprocessor. The
TAM model is codified in a pseudo-machine language TL0. A compiler was implemented from Id90 to TL0 and a
code-generator was constructed to translate TL0 into Sparc instructions with direct access to the network interface.
This provides a detailed cost model for the various TAM primitives in the absence of specific hardware support.
Combined with usage measurements on real programs it provides a baseline for assessing architectural alternatives.
More importantly, it demonstrates that the TAM scheduling hierarchy of quanta and threads is effective in practice.
Sizable chunks of work are scheduled from a single loop or function body in each quantum, so registers and caches
can be well utilized. The quanta are much larger than what worst-case static analysis predicts. The most frequent
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scheduling event is a simple thread fork, which incurs a cost of seven cycles. Substantial latency tolerance is achieved
since there are multiple enabled frames with multiple enabled threads on each processor most of the time. Moreover,
remote accesses frequently complete within the issuing quantum, which allows the synchronization and scheduling to
be handled almost as cheaply as the simple thread fork.

This work demonstrates that a dataflow graph representation of programs should be adopted at compile time, but
a control flow representation at run-time. The TAM model provides a bridge from one to the other. It allows static
scheduling to the extent possible in the formation of threads, while making dynamic scheduling efficient by biasing it
toward logically related threads that share resources in the level of the storage hierarchy closest to the processor.

While this work strives to settle certain issues regarding the effectiveness of dataflow or multithreaded execution
models, we believe it opens several avenues of research. It clearly identifies the areas where architectural efforts can
be applied most profitably, especially improved network access. The division of work between inlets and threads
suggests that separate processors should be considered, but to handle the frequent case of remote responses arriving
during the issuing quantum there needs to be a very tight coupling between the two processors[39]. Looking at the
anticipated evolution of microprocessor architectures, the reliance on branch prediction will be undermined by the
TAM style of indirect transfer to threads. This is an interesting trade-off because the fork-based model allows ample
opportunity for thread prefetching, which is lost when mapped to jumps and branches. The vast area of open problems
lies in compilation for this kind of execution model. A prime example is the question of register management using
estimates of quantum boundaries and remote access latencies. Additionally, how can static analysis contribute to
compiler directed scheduling policies? It is expected that the simple storage directed scheduling policy embodied in
TAM will not be sufficient in the long run. We have seen examples where a processor becomes so successfully focused
on its local work that it starves other processors by failing to spawn off additional work[13]. Nonetheless, it is clear
that latency tolerance and dynamic scheduling must be addressed in concert with the characteristics of the local storage
hierarchy.
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