
Vectorizing SPECint95

Krste Asanovíc
Computer Science Division

University of California at Berkeley
Berkeley, CA94720

krste@cs.berkeley.edu

Abstract

The SPECint95 benchmark suite contains compute-intensive integer codes that are gener-
ally regarded as non-vectorizable. This study reveals, however, that half of the benchmarks
can be accelerated significantly with vector execution, though this requires minor modifica-
tions to the source code in some cases. For the T0 vector microprocessor, a geometric mean
improvement of 1.32 is obtained across all eight benchmarks, with individual speedups in the
range 1.16–4.5. Profiling information reveals that the vector unit provides large speedups but
only on limited portions of the runtime, whereas superscalar processors provide more modest
speedups across the entire runtime. This result implies that vectors combined with superscalar
instruction issue will yield much larger speedups than if either technique is used in isolation.
For example, the vector unit from T0 would only add about 7% to the area of the R10000
superscalar microprocessor but would increase its SPECint95 performance by around 28%.
These results demonstrate that a vector unit can improve cost/performance even for codes with
low levels of vectorization.

1 Introduction

Increases in the level of scalar instruction-level parallelism (ILP) supported by microprocessor mi-

croarchitectures have been accompanied by dramatic increases in the die area of these scalar units,

primarily because of the complexity of managing multiple scalar instructions at various stages of

execution. Vector instruction set extensions provide a much simpler hardware mechanism for sup-

porting high degrees of parallelism, provided computations can be cast into a data parallel form.

Vectors have proven successful at improving the performance of supercomputers running scientific

and engineering applications, but there has been little research applying vectors to other applica-

tion areas. The need for greater performance on multimedia applications has renewed interest in

1



such data parallel instruction sets, with several manufacturers introducing data parallel extensions

to their instruction sets [PW96, TONH96, Lee96] and several research groups investigating vector

microprocessor designs [WAK+96, KPP+97, LD97, Esp97]. It is therefore plausible that future

microprocessors will include small but powerful vector units to accelerate both new multimedia

and human-machine interface applications as well as traditional scientific and engineering tasks.

Currently, only supercomputers have vector units and so few non-supercomputer applications are

written with vectorization in mind. If vector units become commonplace on low-cost systems and

provide the fastest mode of execution, compiler writers and programmers will have an incentive to

vectorize a wider range of tasks.

The SPEC95 benchmarks [Corb] have become popular both to measure performance of com-

mercial processors and to provide the workload for compiler and architecture research studies.

The SPEC95 benchmarks are divided into SPECfp95, which contains floating-point codes, and

SPECint95, which contains compute-intensive integer codes. While SPECfp95 contains many

programs originally developed for vector supercomputers and which are known to be highly vector-

izable, the SPECint95 benchmarks are generally regarded as non-vectorizable. This paper reports

on a study which reveals that half of the SPECint95 codes, including some described as “non-

vectorizable” by the SPEC documentation, can be accelerated significantly using vector execution,

though this occasionally requires some minor modifications to the source code.

2 Methodology

From Amdahl’s law [Amd67], we know that vector speedup is given by

Ts

Tv

=
1

(1� f) + f=V

whereTs is the execution time of the program running in scalar mode,Tv is the execution time

for the program running in vector mode,f is the fraction enhanced by vector execution (thevector

coverage), andV is the vector speedup for that fraction. More generally, programs have several dif-

ferent portions of their runtime that can be accelerated to differing degrees, which we can express

by rewriting Amdahl’s law as

Ts

Tv

=
1

(1�
P

i fi) +
P

i(fi=Vi)

2



whereVi is the vector speedup for fractionfi of the runtime.

The approach taken in this study has two main steps. The first step is to profile the SPECint95

codes running on conventional superscalar microprocessor-based systems to identify routines that

are both time-consuming and vectorizable. Two workstations were used for the profiling measure-

ments, a Sun Ultra-1/170 workstation running Solaris 2.5.1 and an Intel Pentium-II workstation

running NetBSD1.3. The Sun machine has a 167 MHz UltraSPARC-I processor [CDd+95], with

in-order issue of up to 4 instructions per cycle. The Sun C compiler version 4.0 was used to

compile the code using the flags:-fast -xO4 -xarch=v8plus -dn . Execution time pro-

files were obtained using either the-p compiler option withprof , or with high-resolution timer

calls (Solarisgethrtimer ) embedded in the application. The Pentium-II processor [Gwe97]

runs at 300 MHz with out-of-order execution of up to 3 CISC instructions per cycle. Thegcc

version 2.7.2.2 compiler was used to compile the code with optimization flags:-O3 -m486 . Ex-

ecution time profiles were obtained using either the-pg compiler option withgprof , or with

high-resolution timer calls (NetBSDgettimeofday ).

The second step is to port the codes to run on the T0 vector microprocessor [WAK+96] de-

scribed below in the next section. The SPECint95 codes were not written with vectorization in

mind, and in some cases, have been highly tuned for scalar execution. This artificially limits the

potential for vectorization, and so minor changes were allowed within source code modules pro-

vided there were no changes to global data structures or program behavior. The intent is to model

how these types of code would be written and tuned for future microprocessors with vector units,

rather than to determine the effectiveness of automatic vectorization of the unmodified SPECint95

sources. The scalar code was also modified and optimized to allow a fairer comparison.

Execution is profiled both before and after vectorization on T0. These timings give values for

the vector speedup,Vi, as well as the fraction of runtime,fi, for each piece of vectorizable code.

The workstation systems are also profiled to give values forfi.

3 The T0 Vector Microprocessor

T0 is a research prototype containing a MIPS-compatible RISC scalar unit extended with a vector

coprocessor. The scalar unit is very similar to the MIPS R3000 [Kan89], except that it includes the

MIPS-II instruction set extensions and has a fully-pipelined 3 cycle load latency with 2 interlocked

3



load-delay slots. The processor has a small 1 KB instruction cache but no data cache. Scalar load

and store instructions access off-chip SRAM main memory directly.

The vector coprocessor is tightly coupled to the scalar unit and includes 15 general-purpose

vector registers (plus a zero register) each holding 32 elements of 32 bits, two vector arithmetic

functional units, and one vector memory unit. Both vector arithmetic functional units support a

full complement of 32-bit integer arithmetic, logical, and shift operations, together with support

for scaled, rounded, and saturated fixed-point arithmetic. One of the vector arithmetic functional

units also contains a 16-bit by 16-bit multiplier producing 32-bit results. Vectorized conditional

execution is supported via vector conditional move instructions. Both vector arithmetic functional

units contain 8 parallel pipelines (lanes) and can produce up to 8 results per clock cycle. The

vector memory functional unit loads and stores vector registers to and from memory, supporting

unit-stride, constant-stride, and indexed (scatter/gather) accesses. The path to off-chip memory

has a 128-bit wide data bus and a single address port. Unit-stride vector loads and stores transfer

up to four 32-bit operands, eight 16-bit operands, or eight 8-bit operands per cycle. Non-unit

strided and indexed vector loads and stores are limited by the single address port and transfer up

to one element per cycle regardless of operand size. The vector coprocessor has fully pipelined

instruction startup to eliminate vector startup penalties, and implements all forms of chaining to

reduce inter-instruction latencies.

The Spert-II workstation accelerator [WAK+96] integrates a 40 MHz T0 together with 8 MB

of SRAM memory on a double-slot SBus card. The board is mounted in a Sun workstation which

provides I/O facilities. There is no automatically vectorizing compiler for T0, but thegcc cross-

compiler version 2.7.0 is available for scalar code and thegas cross-assembler has been extended

to handle the vector coprocessor instructions. As described below, the vectorizable code was man-

ually translated into assembly code. Timings were obtained using the on-chip cycle counter.

4 Benchmark Modifications

Three versions of each code were obtained by modifying the SPECint95 sources.

The first version contains only changes required to port the code to the Spert-II board. In

some cases, the benchmark was reduced in size to fit in the small 8 MB memory. Also, a few

modifications were made to port to the limited operating system environment on the board. No

4



changes were made to the main computational routines in this version. This version is called the

original code in the results.

The second version contains source code optimizations to improve performance when running

in scalar mode to allow a fairer comparison against the hand-vectorized code. Some changes

were made to work around the limitations in thegcc compiler used for T0 and the Pentium-II. In

particular,gcc can only inline a function if its definition textually precedes the call site, so a few

important function definitions were reordered to mimic more sophisticated inlining. As described

below, some other modifications were made to each benchmark to improve scalar performance,

e.g., explicit loop unrolling inm88ksim . Also, any vectorization changes that improved scalar

performance were also included. This version is called thescalar-optimizedcode in the results.

The final version is locally restructured to allow vectorization, and vectorizable routines are

manually translated into assembly code. This version also incorporates any beneficial scalar opti-

mizations from the scalar-optimized code and is called thevectorizedcode in the results.

The vectorized codes are linked with the T0 standard C library, which includes vectorized

versions of thememcpy, memset, strlen , strcpy , andstrcmp routines. The original and

scalar-optimized codes are linked with an alternative C library containing hand-tuned scalar as-

sembler versions of these routines.

The following subsections describe the modifications made to each benchmark in more detail.

4.1 m88ksim

Them88ksim benchmark times a simulator for the Motorola 88100 microprocessor. The standard

reference input first loads a memory test program which is too large to fit into Spert-II memory.

The simulator execution profile is not highly dependent on the simulated program, so the input was

changed to run only the last portion of the benchmark which simulates a Dhrystone executable.

This reduced total benchmark running time from 370 to 226 seconds on the Ultra-1/170. The

standardctl.in input was replaced with the following:

lo dhry.big

cacheoff

g

sd

5



q

Considerable time is spent in two vectorizable functions:killtime andckbrkpts . The

killtime routine contains two loops to update busy time status for the 32 registers and the 5

functional units in the system. The register update loop was explicitly unrolled for the scalar-

optimized version. Both loops were vectorized for the vectorized version, with vector lengths 32

and 5.

Thecbrkpts routine contains a loop to check on the 16 possible breakpoints, but this loop

exits early whenever a breakpoint condition is met. The loop is vectorized by speculatively ex-

ecuting all 16 loop iterations, with the exit iteration determined subsequently. This speculative

execution is straightforward to implement in software because the loop does not write memory and

the loop bounds are compile-time constants.

4.2 compress

The compress benchmark is a modified version of the Unixcompress command based on

the LZW compression algorithm [Wel84]. To fit into the board’s memory, the benchmark was

changed to compress and decompress 2,000,000 characters of text. The text was generated by the

SPEC-supplied harness code with arguments “2000000 e 2231 ”. The benchmark was split to

give separate timings for compression and decompression, with the two components referred to as

comp anddecomp in the results below.

The scalar-optimized version of the code was almost completely rewritten from the original

to provide a clearer structure and faster code. Some of the major changes included removing

references to global variables inside loops, handling exceptional conditions, such as code bit size

changes and string table clear, outside of the main control flow, and using an array of structures

rather than two arrays for the hashed string table to reduce address calculations and cache misses.

Profiling revealed that significant time was spent packing and unpacking codes from the input

and output bitstreams. The original compress routine packs each 9- to 16-bit code into the output

bitstream one code at a time. A more efficient approach is to keep a buffer of unpacked codes, and

then to pack the entire buffer into the output bitstream in one step. In particular, a single check

for 16-bit codes can be used to choose a specialized loop which avoids the bitfield manipulations

required for shorter code lengths. This is an important optimization because 16-bit codes are the

6



most common for long files. Similarly, the decompress routine can be accelerated by unpacking

multiple codes at a time. The scalar-optimized code includes these pack/unpack optimizations.

The original decompression routine reads out strings from the string table one character at a

time in reverse order into a temporary string buffer. The characters in the buffer are then copied in

correct order into the output stream. The scalar-optimized version of the code puts the characters

into the buffer in the correct order and so can use amemcpy to move characters into the output

stream.

The vectorized code attains speedups by vectorizing the pack/unpack operation and also the

standardmemcpy routine. When 8N -bit codes are packed, they occupyN bytes of storage.

Vectorization is across these independentN -byte sections of packed input or output codes. A

buffer of 512 codes is used, giving a vector length of 64.

The execution time forcompress is very sensitive to code quality in the inner scalar loops.

The compiler’s assembler output for this inner loop was hand-optimized to overcome problems in

gcc ’s instruction-scheduling and delay-slot filling in both the scalar-optimized and vector codes

for T0. In addition, the pack/unpack routines of the scalar-optimized code were hand-scheduled,

and thememcpycall for the vector code was hand-inlined.

4.3 ijpeg

The ijpeg benchmark repeatedly performs JPEG image compression and decompression while

varying various compression parameters. It is the most highly vectorizable of the SPECint95

programs.

A number of changes were made to the original scalar code to port to the Spert-II board. The

MULTIPLIER type was changed fromint to short in jmorecfg.h to match the interface

with the T0 vector inverse DCT (Discrete Cosine Transform) routine. Theijpeg DCT routines

have been designed to work with 16-bit integers and so this change doesn’t affect the accuracy

or runtime of the scalar routine. The T0 forward DCT vector routine first performs 1D DCTs

down columns followed by 1D DCTs across rows, whereas the original SPEC code does rows first.

Although mathematically equivalent, rounding errors cause a slight change in the coefficients and

hence in test output. The original and scalar-optimized versions were modified to work the same

way as the vectorized version so that all codes would produce identical output. This resulted in no

7



change to run-time and less than 0.2% change in compressed file sizes for the test image.

The constantJPEG BUFFERSIZE was reduced to 1 MB inspec main.c to reduce mem-

ory consumption by statically allocated arrays. The timings used thepenguin.ppm reference

input image reduced in resolution by a factor of two in both directions to fit into the reduced mem-

ory. The reduced size image does change the scalar execution profile slightly, and halves the vector

lengths of some routines, but the runs should still be representative of typical JPEG code.

The benchmark command line arguments were:

-image_file penguin.ppm -compression.quality 90

-compression.optimize_coding 0 -compression.smoothing_factor 90

-difference.image 1 -difference.x_stride 10 -difference.y_stride 10

-verbose 1 -GO.findoptcomp

The ijpeg code has been well tuned for scalar execution but a few minor optimizations were

added. The original code performs coefficient quantization using an integer divide, with a quick

magnitude check to skip cases where the result will be zero. The quantization tables are changed

rarely, and so the division can be replaced by a reciprocal multiply and arithmetic shift right.

When packing bits into the output stream, the original code calls theemit bits subroutine

twice for non-zero AC coefficients, once for the preceding zeros symbol and again for the non-

zero coefficient magnitude. These two bit strings can be combined to reduce the number of calls

to emit bits , though two calls must still be made if the total number of bits is greater than

24. A further optimization is possible, similar to that incompress , where instead of calling

emit bits as each symbol is generated, all symbols for a block are first buffered before making

a single call to pack all the symbol bitstrings to the output stream.

The vectorized version replaces many routines with vector code. The forward and inverse8�8

2D DCTs are vectorized across the constituent 1D 8-point DCTs. The forward DCTs are performed

with vector length 512, corresponding to the test image width. The inverse DCTs are performed in

small groups of 1 or 2 blocks, limiting vector lengths to 8 or 16. The vector length for inverse DCT

could also have been increased up to the image width by buffering a scan line of coefficients, but

this would have required more than local restructuring of the code. The coefficient quantization

and dequantization is also vectorized with vector lengths of 64. The image manipulation routines

rgb ycc convert , upsample , anddownsample , have vector lengths proportional to image

8



width (512), or half of the image width (256) for subsampled components.

Theencode MCUroutine has two incarnations, one which generates Huffman coded bitstrings

(encode one block ) and one which just calculates the symbol frequencies for optimizing Huff-

man coding (htest one block ). These routines need to scan the 63 AC forward DCT coef-

ficients to find runs of zeros. A vector routine was written to scan the coefficients and return a

packed bit vector. This packed bit vector can then be scanned quickly with scalar code to find the

symbols for Huffman coding. The Huffman code lookup can also be vectorized, but it was found

that the vector version ran at about the same speed as the scalar version on T0. The scalar code can

use an early exit loop to find the coefficient magnitude, but the vector version must use multiple

conditional instructions to determine the magnitudes and these consume more than half the vector

lookup runtime.

4.4 li

The li benchmark is a simple Lisp interpreter. The original SPECint95 benchmark can be run

unchanged on the Spert-II board. Profiling revealed that a considerable fraction of time is spent in

the mark and sweep garbage collector. The only change made for the scalar-optimized code was

to reorder routines in the garbage collector code to allowgcc to inline them.

The mark phase of theli garbage collector was vectorized by converting the depth-first traver-

sal of the live storage nodes into a breadth-first traversal [AB89]. The mark routine dynamically

manages a queue of pointers on the run-time stack. The queue is initialized with the root live

pointers at the start of garbage collection. A stripmined loop reads pointers from the queue and

overwrites it with pointers for the next level of the search tree. Any pointers that should not be

followed are set to NULL. Most vector machines provide some form of vector compress instruc-

tion to pack together selected elements of a vector [HP96]. T0 lacks a vector compress instruction

and so a scalar loop is used to compress out NULL pointers from the queue. The mark phase is

finished when the queue is empty after the scalar compress operation. The average vector length is

80 during this phase.

The li interpreter allocates node storage in segments, each of which contains a contiguous

array of nodes. The sweep phase was vectorized by partitioning the nodes within a segment into

sections, then vectorizing over these sections. The vector code chains together the unmarked nodes

9



within each section into a local free list. A scalar loop then stitches the multiple free lists together

to give a single free list, which has the same node ordering as the original scalar code. The vector

length is determined by the number of nodes allocated at one time within each segment — 1000

for the li benchmark.

4.5 Other SPECint95 benchmarks

The remaining SPECint95 benchmarks could not be appreciably vectorized with small local changes.

Although theperl benchmark is dominated by complex control flow, it spends a few percent of

its runtime in vectorizable standard C library functions [Corb] and so might experience a small

speedup from vectorization.perl could not be ported to the Spert-II board due to its extensive

use of operating system features.

Thego benchmark spends significant time in loops but makes extensive use of linked list data

structures, which hamper vectorization. It is possible that a substantial rewrite could make use of

vectors.

Thegcc andvortex benchmarks are dominated by complicated control structures with few

loops and it is unlikely that even extensive restructuring could uncover significant levels of vector

parallelism.

5 Results

Table 1 shows the extent of the code modifications in terms of lines of code in the original sources

that were affected. Except forcompress , only a small fraction of the source was modified for

vectorization. Thecompress code is a small kernel, and was extensively rewritten for the scalar-

optimized version. Although it required the largest percentage of modifications for vectorization,

the absolute number of lines changed is small.

The four codes present a range of possibilities for how vector execution could be incorpo-

rated into these types of applications. Them88ksim andijpeg codes as written would require

little programmer effort to obtain the benefits of vector execution. Garbage collectors, such as

that in li , are small but important kernels. Garbage collectors are often highly tuned by lan-

guage implementers, because any speedups benefit all programs run under the language system.

Thecompress code requires some local restructuring to obtain a data parallel version, but this

10



Benchmark Original Scalar-Optimized Vector Changes
(LOC) Changes (LOC) (LOC)

m88ksim 19,915 4 (0.0%) 65 (0.3%)
compress 1,169 1,071 (100.0%) �80 (7.5%)
ijpeg 31,211 84 (0.3%) 778 (2.5%)
li 7,597 0 (0.0%) 198 (2.6%)

Table 1: This table shows the number of lines of code in the original benchmark, together with
the number of lines of original code changed for the scalar-optimized and vectorized versions.
�compress vectorization changes are counted relative to the scalar-optimized version.

restructuring also improves the performance of scalar execution.

Table 2 presents the overall timings for the codes on each platform. The scalar optimizations

were tuned for Spert-II, and although generally these optimizations improve performance on the

other platforms, in a few cases performance is reduced. In particular, the explicit loop unrolling

in m88ksim reduces performance on both the UltraSPARC and the Pentium-II. Theli scalar-

optimized code on the UltraSPARC was also slightly (2%) slower than the original code, even

though the only modification was to reorder some routine definitions. The scalar-optimized code

for compress is twice as fast as the original SPEC source code on T0, but only 15–18% faster

on the workstation systems. This difference in speedup might be due to the better compiler and

superscalar issue on the Sun system and the out-of-order superscalar scheduling on the Pentium-II

giving better performance on the original code.

Table 3 gives a timing breakdown for the benchmarks. The scalar-optimized version was used

for the scalar profiles, except form88ksim on the workstation systems where the faster original

version was used. These profiles were obtained either with statistical profiling or with embedded

calls to high-resolution timers, both of which are intrusive methods that slightly affect the timing

results compared to Table 2.

The vector speedup obtained on whole benchmarks varies widely, withijpeg having the

greatest speedup (4.5) confirming the suitability of vectors for these types of multimedia appli-

cations. The lowest speedup is forcomp (1.07) whose runtime is dominated by scalar hash ta-

ble operations. Using a combined figure of 1.16 forcompress , and assuming no speedup for

the non-vectorized codes, the geometric mean vector speedup for T0 across all eight SPECint95

11



Benchmark Original Scalar-Optimized Vector
(s) (s) (s)

Ultra-1/170, 167 MHz
m88ksim 226.5 241.0 N/A
compress 1.49 1.30 N/A
ijpeg 37.6 36.1 N/A
li 403.8 412.1 N/A

Pentium-II, 300 MHz
m88ksim 133.7 140.2 N/A
compress 1.25 1.06 N/A
ijpeg 24.8 24.3 N/A
li 209.4 191.5 N/A

Spert-II, 40 MHz
m88ksim 1853.1 1831.5 1300.2
compress 7.43 3.75 3.23
ijpeg 271.5 269.7 63.8
li 2493.0 2279.1 1871.8

Table 2: Execution time in seconds for the three versions of each benchmark on each platform.
Thecompress times are the sum ofcomp anddecomp.

12



Application Ultra-1/170 Pentium-II T0 Scalar T0 Vector T0

Routine 167 MHz 300 MHz 40 MHz 40 MHz Vector

(s) (%) (s) (%) (s) (%) (s) (%) Speedup

m88ksim

killtime 66 (26) 34.8 (26.2) 457.3 (25.0) 57.6 (4.4) 7.93

ckbrkpts 41 (16) 15.6 (11.7) 230.1 (12.6) 101.1 (7.8) 2.28

Other 143 (57) 82.5 (62.0) 1144.1 (62.5) 1142.3 (87.8) 1.00

Total 250 (100) 132.8 (100.0) 1831.5 (100.0) 1301.0 (100.0) 1.41

comp

packcodes 0.11 (11.0) 0.04 (4.6) 0.22 (9.6) 0.03 (1.2) 8.58

Other 0.85 (89.0) 0.81 (95.4) 2.05 (90.4) 2.12 (98.8) 0.97

Total 0.96 (100.0) 0.85 (100.0) 2.27 (100.0) 2.15 (100.0) 1.07

decomp

unpackcodes 0.04 (12.3) 0.04 (10.5) 0.24 (16.3) 0.03 (2.4) 9.46

Other 0.30 (88.6) 0.18 (89.5) 1.23 (83.7) 1.06 (97.6) 1.16

Total 0.34 (100.0) 0.22 (100.0) 1.48 (100.0) 1.08 (100.0) 1.37

ijpeg

rgbyccconvert 4.1 (10.4) 3.17 (13.1) 23.1 (8.7) 2.2 (3.6) 10.7

downsample 7.1 (18.0) 4.47 (18.5) 62.1 (23.4) 6.5 (11.0) 9.5

forward DCT 12.7 (32.2) 5.95 (24.6) 73.6 (27.8) 5.1 (8.6) 14.3

encode MCU 4.4 (11.2) 3.26 (13.5) 26.3 (9.9) 18.8 (31.6) 1.4

inverse DCT 5.3 (13.5) 3.71 (15.3) 42.4 (16.0) 4.6 (7.7) 9.2

upsample 2.2 (5.6) 1.44 (6.0) 14.6 (5.5) 1.1 (1.8) 13.3

Other 3.6 (9.1) 2.20 (9.1) 22.7 (8.6) 21.2 (35.6) 1.1

Total 39.4 (100.0) 24.20 (100.0) 264.8 (100.0) 59.5 (100.0) 4.5

li

mark 96.2 (23.3) 57.0 (28.8) 426.6 (18.8) 102.3 (5.5) 4.17

sweep 29.2 (7.1) 20.4 (10.3) 129.9 (5.7) 45.6 (2.5) 2.85

Other 286.7 (69.6) 120.3 (60.8) 1712.0 (75.5) 1708.0 (92.0) 1.00

Total 412.1 (100.0) 197.7 (100.0) 2268.4 (100.0) 1855.9 (100.0) 1.22

Table 3: Breakdown of runtime for scalar and vector SPECint95 applications. Thecompress
benchmark is split intocomp anddecomp components. The scalar-optimized profile is given for
the scalar systems, except form88ksim on Ultra and Pentium-II, where the faster original version
is profiled.

13



benchmarks is 1.32.

Individual functions exhibit much higher speedups, with several of theijpeg routines running

over 10 times faster in vector mode. The vector unit therefore improves performance by acceler-

ating limited portions of the execution time by a large amount. Note that these vector speedups

are measured relative to optimized scalar code, and are much larger than would be possible with

current superscalar microarchitectures.

For decomp andijpeg , there is also a more moderate speedup over the whole runtime, but

this is due to the vectorized standard C library functions which are not timed individually.

Comparing the profiles of scalar code, we see that all the platforms are broadly similar in

their distribution of runtime amongst the vectorizable and non-vectorizable portions of code. The

biggest differences occur for the Pentium-II oncomp, where it spends comparatively less time in

vectorizable code, and onli , where it spends comparatively more. The workstations are super-

scalar designs whereas T0 is single-issue, suggesting that speedups from instruction-level paral-

lelism are distributed throughout the benchmark rather than being concentrated in the regions that

were vectorized.

6 Discussion

The above results present clear evidence that significant portions of the SPECint95 benchmark

suite can be executed with vector instructions after some minor modifications to the source code,

but the magnitude of the vector speedup is affected by several factors. The discussion in this

section estimates the impact of these factors, which include fabrication technology, memory hier-

archy, vector architecture, and code quality, and also shows how vector speedup can be profitably

combined with superscalar speedup.

T0 is fabricated in an older 1.0�m two-metal CMOS technology which results in a larger die

area and lower clock rate compared with the newer technology used to fabricate the superscalar

processors. Because it does not interfere with core processor functions, the addition of a vector

unit should have no impact on processor cycle time, and so we can assume that vector micropro-

cessors will have the same clock cycle as vectorless microprocessors when implemented in the

same technology. Table 4 shows the performance of the benchmarks with all machines scaled to

the same clock rate and with speedups measured relative to T0 running scalar-optimized code.

14



Benchmark/Routine T0 Scalar Ultra-1/170 Pentium-II T0 Vector

m88ksim
killtime 1.00 1.66 1.75 7.93
ckbrkpts 1.00 1.35 1.97 2.28
Other 1.00 1.92 1.85 1.00
Total 1.00 1.76 1.84 1.41

comp
packcodes 1.00 0.48 0.75 8.58
Other 1.00 0.58 0.34 0.97
Total 1.00 0.57 0.36 1.07

decomp
unpackcodes 1.00 1.45 0.84 9.46
Other 1.00 0.99 0.91 1.16
Total 1.00 1.04 0.90 1.37

ijpeg
rgb ycc convert 1.00 1.34 0.97 10.7
downsample 1.00 2.10 1.85 9.5
forward DCT 1.00 1.40 1.65 14.3
encode MCU 1.00 1.43 1.08 1.4
inverse DCT 1.00 1.92 1.52 9.2
upsample 1.00 1.61 1.35 13.3
Other 1.00 1.53 1.37 1.1
Total 1.00 1.61 1.46 4.5

li
mark 1.00 1.06 1.00 4.17
sweep 1.00 1.07 0.85 2.85
Other 1.00 1.43 1.90 1.00
Total 1.00 1.32 1.53 1.22

Table 4: Relative speed of each component normalized to same clock rate on each platform. The
speedups are measured relative to the scalar-optimized code running on T0. The workstation tim-
ings form88ksim are for the original code which is faster for those systems.

15



T0 has an unconventional memory hierarchy, with a small 1 KB direct-mapped primary in-

struction cache (I-cache) but no data cache (D-cache), and a flat three cycle latency main memory

system. This memory hierarchy should producelower vector speedups compared with a more

conventional memory system. The small I-cache produces more misses, concentrated outside of

vectorizable loops which generate few I-cache misses. The overall effect is to reduce the vector-

izable fraction of runtime,fi, by increasing the time spent executing non-vectorizable scalar code.

The lack of a primary D-cache has two main effects. First, all scalar accesses have three cycle

latencies rather than the two cycles typical for primary D-caches. The tuned scalar code for the

vectorizable loops is mostly able to hide this extra cycle of latency, whereas it will likely slow

performance on other code. Second, there are no D-cache misses. While both vector and scalar

unit will experience approximately the same number of D-cache misses in a conventional memory

hierarchy, most of the vectorizable code has relatively long vectors which should help hide miss

latencies to the next level of cache. The SPECint95 codes have relatively small working sets and

little execution time is spent in misses from typical sizes of external cache, even on fast processors

[CD96].

The vector speedup is also affected by the design of the vector unit. T0 has a simple vector

unit that lacks some common vector instructions. For example, the addition of a vector compress

instruction would reduce the execution time for theli mark routine from 102.3 seconds to an

estimated 47 seconds, increasing speedup to a factor of 9. T0 also lacks masked vector memory

operations which would further reducemark runtime to around 33 seconds, improving vector

speedup to 13. Another example is thesweep routine, where masked stores would decrease

runtime to around 27 seconds, improving vector speedup to 4.9. Theencode MCUroutine per-

formance could be increased with the addition of a “count leading zeros” instruction to determine

AC coefficient magnitudes. These vector unit optimizations require little additional die area, and

no increases in main memory bandwidth. Several of the routines are limited by vector strided and

indexed memory instructions that transfer only one element per cycle on T0. Additional address

ports would improve throughput considerably, but at some additional cost in the memory system.

An alternative approach to improve cost/performance would be to reduce the number of parallel

lanes in the vector unit; this would reduce area but have limited performance impact for those

routines limited by address bandwidth.

The relative timings are also affected by code quality. The vector routines were manually

16



translated into assembly code, likely resulting in higher code quality than automatic compilation

and hence greater vector speedup. Theijpeg DCT routines were the most difficult to schedule

and would probably show the largest improvement over compiled code. But for thecomp, de-

comp, and li benchmarks, and for thergb ycc convert , upsample , anddownsample

portions ofijpeg , performance is primarily limited by the single address port and so there is

little opportunity for aggressive assembler hand-tuning to improve performance. The vectorization

of the m88ksim benchmark is trivial with no stripmine code and little choice of alternative in-

struction schedules, and so performance should be very close to that with a vectorizing compiler.

The speedup provided by the vectorized standard C library routines requires no compiler support

beyond function inlining.

Because of the effort involved, the manual vectorization strategy is limited to a few key loops in

each benchmark. Compared with an automatically vectorizing compiler, this limits vector coverage

and hence reduces vector speedup. Another distortion from hand-tuning is that only the scalar

routines compared against vectorized routines were tuned, which reduces vector speedup compared

with more careful tuning or higher quality compilation of the non-vectorizable scalar code.

Almost all of these factors act to reduce the vector speedup for T0 compared to a future vector

microprocessor with a conventional memory hierarchy and an automatically vectorizing compiler.

The exception is the quality of the vector code for each routine, but this only changes the vector

speedup,Vi, not the vectorizable fraction,fi. Because the vector speedups are high and the fraction

vectorized is low, the resulting overall speedup is not very sensitive to the values forVi. As a highly

pessimistic example, consider if the vector speedups of theijpeg DCT routines were reduced by

a factor of 2, and other speedups were reduced by a factor of 1.5, except for the standard library

routines andencode MCUwhich remain unchanged. In this case, the resulting geometric mean

speedup on SPECint95 would only drop to 1.26.

7 Combined Superscalar and Vector Execution

Because of their simple control logic and regular structure, vector units are inexpensive additions to

microprocessor designs. For example, the QED R5000 microprocessor [Gwe96] has a single-issue

integer unit, very similar to that of T0, together with a floating-point unit, memory management

unit, and split primary caches each of 32 KB. Although the vector unit from T0 can complete up

17



to 24 integer operations per cycle, it would add only 24% to the R5000 die area when scaled to

the same technology. The results above suggest that a smaller vector unit, with half the number

of lanes would achieve most of the benefit. This reduced vector unit would require only 12%

additional die area and could use the existing 64-bit cache interfaces.

The results in Table 4 show that superscalar processors speed up both vectorizable and non-

vectorizable code by approximately the same amount, whereas vector units only speed up the

smaller vectorizable fraction but to a much greater degree. A particularly attractive design alterna-

tive is to combine vector and superscalar techniques, giving a combined speedup of

Ts

Tss+v

=
1

(1� f)=S + f=V

whereS is the superscalar speedup, andTss+v is the execution time of the combined superscalar

and vector processor.

As an example, consider the MIPS R10000 [Yea96] which is a quad-issue out-of-order super-

scalar microprocessor. The R10000 achieves approximately 1.7 times speedup over the R5000 on

SPECint95 when running at the same clock rate with the same external cache [Cora]. Based on

the previous results, we can assume a vector unit would achieve a speedup of 1.32 over the R5000

by speeding up 28% of the execution time by a factor of 8. From the above equation, we can

predict that adding a vector unit to the R10000 would increase its speedup to 2.18, or an additional

1.28 times greater than the superscalar speedup alone. Although the R10000 has the same primary

cache configuration as the R5000, the multiple functional units and complex instruction issue man-

agement logic inflate the die to 3.4 times the area of the R5000. The full T0 vector unit would only

add 7% area to the R10000 die, and could use the existing 128-bit primary and secondary cache

interfaces.

8 Related Work

There has been little work in vectorizing codes outside of the traditional supercomputing applica-

tion areas. Lee [Lee92] reported that the Cray compiler could automatically vectorize the main

loop from SPECint92eqntott but did not present performance numbers. Appel and Bendicksen

vectorized a stop and copy garbage collector for the Cyber 205 vector memory-memory architec-

ture but used synthetic garbage structures to measure performance [AB89]. The SCANDAL group

18



at CMU has developed techniques for vectorizing irregular computations including sorting and

various graph algorithms [RM94, Zag98]. Lee provides some performance data for a vectorized

stream cypher running on T0 [LD97] and a comparison of performance and cost with superscalar

microprocessors.

9 Summary and Conclusions

This study has shown that half of the SPECint95 benchmarks can be significantly accelerated with

vector execution, though in some cases this required minor source code changes. For the T0 vector

microprocessor, vector speedups are in the range 1.16–4.5 with a geometric mean performance in-

crease of 1.32 across all eight benchmarks. Profiling results reveals that the vector unit accelerates

code by providing large speedups but only on limited portions of the runtime, whereas superscalar

processors accelerate code by providing more modest speedups over most of the runtime. Be-

cause they achieve speedup in different ways, the two architectural techniques can be combined to

yield larger speedups than when each is used individually. For example, adding a vector unit to

the MIPS R10000 superscalar microprocessor was estimated to improve SPECint95 by 28% while

only requiring 7% additional die area.

Vector units have proven successful in accelerating scientific and engineering codes, and there

has also been much recent interest in applying vectors to new multimedia applications. This paper

demonstrates that these vector units can also accelerate a much wider range of tasks. Adding a

vector unit to a superscalar processor can significantly improve cost/performance even for codes

which have low levels of vectorization, because vector units are compact yet can provide much

larger speedups than are possible with current superscalar microarchitectures on data parallel por-

tions of the workload. The resulting superscalar vector architectures are a promising approach for

future microprocessor designs.

10 Acknowledgments

Thanks to many anonymous.

19



References

[AB89] Andrew W. Appel and Aage Bendiksen. Vectorized garbage collection.Journal of

Supercomputing, 3:151–160, 1989.

[Amd67] G. M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. InAFIPS Conference Proceedings, number 30, pages 483–

485, 1967.

[CD96] Zarka Cvetanovic and Darrel D. Donaldson. AlphaServer 4100 performance charac-

terization.Digital Technical Journal, 8(4):3–20, 1996.

[CDd+95] A. Charnas, A. Dalal, P. deDood, P. Ferolito, B. Frederick, O. Geva, D. Greenhill,

H. Hingarh, J. Kaku, L. Kohn, L. Lev, M. Levitt, R. Melanson, S. Mitra, R. Sundar,

M. Tamjidi, P. Wang, D. Wendell, R. Yu, and G. Zyner. A 64b Microprocessor with

Multimedia Support. InProceedings IEEE International Solid-State Circuits Confer-

ence, volume 38, pages 178–179, February 1995.

[Cora] Standard Performance Evaluation Corporation. SPEC CPU95 Results. SPEC95 re-

sults are available from the SPEC web site:http://www.specbench.org

[Corb] Standard Performance Evaluation Corporation.SPEC95. 10754 Ambassador Drive,

Suite 201, Manassas, VA 20109.

[Esp97] Roger Espasa.Advanced Vector Architectures. PhD thesis, Universitat Polit`ecnica de

Catalunya, February 1997.

[Gwe96] Linley Gwennap. R5000 improves FP for MIPS midrange.Microprocessor Report,

10(1):10–12, January 1996.

[Gwe97] Linley Gwennap. Klamath extends P6 family.Microprocessor Report, 11(2):1,6–8,

February 1997.

[HP96] J. L. Hennessy and D. A. Patterson.Computer Architecture — A Quantitative Ap-

proach, Second Edition. Morgan Kaufmann, 1996.

20



[Kan89] G. Kane.MIPS RISC Architecture (R2000/R3000). Prentice Hall, 1989.

[KPP+97] Christoforos Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson,

Krste Asanovi´c, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin Gribstad,

Kimberly Keeton, Randi Thomas, Noah Treuhaft, and Kathy Yelick. Scalable Proces-

sors in the Billion-Transistor Era: IRAM.IEEE Computer, 30(9):75–78, September

1997.

[LD97] C. G. Lee and D. J. DeVries. Initial results on the performance and cost of vector

microprocessors. InProceedings of the 30th Annual International Symposium on

Microarchitecture, pages 171–182, December 1997.

[Lee92] Corinna Lee.Code optimizers and register organizations for vector architectures.

PhD thesis, University of California at Berkeley, May 1992.

[Lee96] Ruby B. Lee. Subword parallelism with MAX-2.IEEE Micro, 16(4):51–59, October

1996.

[PW96] Alex Peleg and Uri Weiser. MMX technology extension to the Intel architecture.IEEE

Micro, 16(4):42–59, October 1996.

[RM94] Margaret Reid-Miller. List ranking and list scan on the Cray C-90. InProceedings

Symposium on Parallel Algorithms and Architectures, pages 104–113, Cape May, NJ,

June 1994.

[TONH96] Marc Tremblay, J. Michael O’Connor, Venkatesh Narayanan, and Liang He. VIS

speeds new media processing.IEEE Micro, 16(4):10–20, October 1996.

[WAK +96] John Wawrzynek, Krste Asanovi´c, Brian Kingsbury, James Beck, David Johnson,

and Nelson Morgan. Spert-II: A Vector Microprocessor System.IEEE Computer,

29(3):79–86, March 1996.

[Wel84] Terry A. Welch. A technique for high-performance data compression.IEEE Com-

puter, 17(6):8–19, June 1984.

21



[Yea96] Kenneth C. Yeager. The MIPS R10000 superscalar microprocessor.IEEE Micro,

16(2):28–40, April 1996.

[Zag98] M. Zagha. Efiicient irregular computation on pipelined-memory multiprocessors.

Ph.D. Thesis (In Preparation), 1998.

22


