
A Vectorized Hash-Join

Rich Martin
University of California at Berkeley

rmartin@CS.Berkeley.EDU
May 11, 1996

 Abstract

A vector instruction set is a well known method for exposing bandwidth to appli-
cations. Although extensively studied in the scientific programming community,
less work exists on vectorizing other kinds of applications. This work examines
vectorizing a traditional database operation, a Grace hash-join. We how to vec-
torize both the hash and join phases of the algorithm, and present performance
results on a Cray C90 as well as traditional microprocessors. We concluded that
vector scatter-gather and compress are essential to both this algorithm as well as
to other non-scientific codes.

1

1. Introduction

A well known method for exposing bandwidth at the architectural level is through a vector
instruction set architecture. Although extensively studied in the scientific programming commu-
nity, little work exists on vectorizing other types of applications. This work examines vectorizing
a traditional database operation, a Grace hash-join.

The join operation is one of the most time-consuming and data-intensive operations performed in
relational databases. The join operation is also a frequently executed relational operator [5]. Due
to its high cost and frequency, hundreds of papers exist on a multitude of facets of the join opera-
tion. Most of the cost models presented attempt to minimize the number of disk accesses because
disk accesses are the most expensive operation. This work explores vectorizing the computational
aspects of the hash and join phases.

2. Background

For the purposes of this paper, arelation can be thought of as a table, and atuple as row in the
table. Anattribute is a field type in the table row.

This section presents a short review of the equijoin. In an equijoin, = is the operator used to com-
pare attributes. Different kinds of joins use other comparison operators besides =. For a complete
description of the join operator, see [5].

Figure 1 illustrates the inputs and resulting output tables after an equijoin operation. For the rela-
tions R and S, the output relation Q is the table formed by concatenating attributes in R and S
which have matching elements in the key attribute. For example, in Figure 1, the attributecus-

Relation R

Product Customer

Ultra Dave

Indy John

Alpha Hank

Relation S

Customer ZIP

John 94305

Hank 98195

Bill 02139

Relation Q

Product Customer ZIP

Indy John 94305

Alpha Hank 98195

FIGURE 1. Example Join Operation

2

tomer is used to form entries in Q from entries in R and S which have the same customer. We call
the attribute type which is matched thekey.

2.1 Nested-Loops Algorithm

In the naive algorithm, called thenested-loops join, each tuple in the first relation is compared
with every tuple in the second relation. The pseudo-code below illustrates this operation:

For each row in S do

For each row in R do

if (Ra.key == Sb.key) then

 concatenate Ra, Sb and place in result Q

The pseudo-code shows how this algorithm is . The nested-loops join might be fine for
small relations [3], but for large relations, even ones that fit in memory, the cost is much too high.

2.2 Hash-Joins

We define the join loadas the number of keys which must be compared between the two relations.
The central idea in a hash-join algorithm is that the load can be reduced by hashing the tuples into
buckets. Tuples which hash to different buckets will not need to be compared. Figure 2 shows
how hashing reduces the join load. Each point on the abscissa represents a key from R. Likewise,
each point on the ordinate represents a key from S. The lines represent the groupings of keys into
buckets. In the nested-loops join, the number of comparisons is proportional to the entire area. In
a hash-join algorithm, only those keys which hash to the same bucket (the shaded areas) need to
be compared.

2.3 Grace Hash-Join

The Grace hash-join [4] uses hashing to reduce join load on two levels. On one level, hashing is
used to break up large relations that reside on disk into buckets small enough such that each

O n2()

Keys from R

K
ey

s
fr

om
 S

Bucket
Si

RiBucket

FIGURE 2. Reduction of join load by hashing

3

bucket fits into memory. Once each bucket is small enough to fit into memory, hashing is used
again to reduce the join load.

The Grace hash-join hash has two passes. In the first pass, the relations are hashed into separate
buckets which resided on disk. Each bucket is small enough to fit into main memory. In the sec-
ond pass, a bucket from one relation is brought into main memory and hash table is constructed
from it. Then, for each record in the second relation, it’s key is hashed and compared to every key
which hashed to same bucket in the first relation.

The next section presents the sequential version of the hashing algorithm used in this study. The
following sections present the vectorized version of the hash algorithm. Both the hashing to disk
buckets phase and hashing to compare keys phase of the Grace hash-join use algorithm presented
below.

2.4 Sequential Hash Algorithm

The hash algorithm used in this work is unlike most hashing algorithms in that it is not con-
structed for easy insert and delete operations. Rather, this hash algorithm and associated data
structures are designed only togroup keys into buckets. Recall that the main purpose of the
building the hash table is to reduce join load, not to build a persistent hash table.

The hash algorithm used in this paper is closely related to the radix sort first described in [6]. In
the first pass of the radix sort, the keys to be sorted are moved into buckets based on a digit within
the key. They idea carried over from radix sorting to hashing is that both move keys into buckets.
Unlike a generic hash, the radix sort uses a fixed hash function. The a hash algorithm has four
phases:Extract-Buckets, Histogram, Scan and Rank-and-Permute. The next sections describe
these phases in detail. Throughout the next sections, the term key and records will be used some-
what interchangeably.

2.4.1 Extract-Buckets and Histogram Phases

The extract-buckets phase maps each record into a bucket. It is very simple and will not be dis-
cussed further. In the histogram phase, a pass is made over every key. For each key, a counter of

4

its corresponding bucket number is incremented. Figure 3 illustrates this phase of the hash, for 9
keys and 4 buckets. The hash function used in this example iskey mod (number of buckets).

At the end of the histogram phase, the arraybuckets contains the number of keys which hash into
each of the buckets. The pseudo code for this phase is very simple:

for (i := 0 to number of keys) {

buckets[hashed_keys[i]]++ ;

}

2.4.2 Scan Phase

buckets

3

2

14

16

17

4

4

20

9

Keys Hashed Keys (contain the Bucket #)

3

2

2

0

1

0

0

0

1

HistogramHash
4 2 2 1

FIGURE 3. Building a histogram of keys

buckets

4 2 2 1

0 4 6 8

Scan

4 2 2 10 + + +

FIGURE 4. The Scan operation

5

The scan phase takes the arraybuckets and preforms a+scan operation on it. The+scanoperation
can be thought of as summing the array and shifting is over by one. Figure 4 shows the results of
the buckets array after the scan. The pseudo-code is very simple:

sum :=0;

for (i :=0 to number of buckets) {

 val := buckets[i];

 buckets[i] := sum;

 sum += val;

}

The important observation to make at this point is that after the scan phase, theith entry in the
bucketsarray contains the number of keys in the buckets0... i-1. The algorithm then uses this
information to move records which hashed to the same bucket together.

2.4.3 Rank-and-Permute Phase

In the rank-and-permute phase, another pass is made over the keys. For each key, it’s bucket num-
ber is determined and then the key is moved into a the result array. The key’s position in the result
array is indexed by the current bucket. The bucket position is incremented as each key is moved.

Figure 5 shows how the keys are moved in the rank-and-permute step. The arraybuckets is used
as an index vector to move keys into the result array. After the rank-and-permute step, theresult

16

4

4

20

17

9

2

14

3

0

4

6

8

Permute buckets

0

1

2

3

3

2

14

16

17

4

4

20

9

Keys

FIGURE 5. Rank and Permute Phase

Result

6

andbuckets arrays form a hash table. We can find the first key of bucketi is found by indexing into
the arrayresult[bucket[i]]. The size of bucketi is given bybuckets[i+1]-buckets[i], if i<number
of keys,else 0.

for (i := 0 to number of keys) {

rank := buckets[hashed_keys[i]];

buckets[hashed_keys[i]]++;

result[rank] := keys[i];

}

2.5 Sequential Join Algorithm

The sequential join algorithm is very simple. First, the disk bucket Ri is brought into memory.
Next, a hash table is constructed with as many buckets as possible on Ri. Increasing the number of
buckets reduces the keys per bucket which in turn reduces the join load. Next, the algorithm
passes once through each record in the corresponding disk bucket Si. Each record of Si is hashed
and then compared to every record in Ri which hashed to the same bucket. If any matches are
found, the records are concatenated and written to the final output file.

3. Vectorized Algorithm

The vectorized algorithm follows the same steps as the sequential algorithm. The basic difference
is the data structure used to build a hash table. Instead of a one-dimensional arraybuckets we
expand the array to two dimensions. We use the two techniques first described in [6]: virtual pro-
cessors andloop raking.

7

3.1 Vectorized Hash

The vectorized hash relies heavily on the idea of virtual processors. Imagine trying to vectorize

the sequential version of the histogram phase shown in Section 2.4.1 on page 3. Multiple keys
may map to the same bucket, which would imply more than one vector register would have to
update the same bucket on the same loop iteration.

To solve this problem we look at every vector register as it’s own SIMD processor. We call each
of these “processors” a Vector Processing Element (VPE). The problem then becomes how to
divide the keys among the VPEs. Because each VPE must have an independent “memory” (recall
the SIMD nature of VPEs), we give each VPE its own copy of the arraybuckets.In effect, we
have made the bucket array a two-dimensional array the number of VPEs wide. Figure 6 shows a
bucket mapping with 3 VPEs (and thus a vector register length of 3). Notice how the how each
column of the arraybuckets can now be updated independently. In the example shown in Figure
6, There would be 3 passes through the keys because 9 keys divide up into three passes with a
vector length of 3 . During each pass, three buckets would be updated. The pseudo-code for this
vectorized histogram is shown below. If the number of keys is not a multiple of the vector register
length, than an second loop is needed to ‘clean up’ the extra elements.

buckets[i][VPE]Hashed Keys

3

2

2

0

1

0

0

0

1

Histogram

vector len

1

1

1

2 1 1

1

8

6

5

0 2 3

4

Scan

7

4

8 8

6

1

Iteration 0

Iteration 2

Iteration 1
VPE 0 VPE 1 VPE 2

FIGURE 6. Vectorized Hash

VPE 0

VPE 1

VPE 2

8

for (i := 0 to Number of Elements Per VPE) {

for (vpe :=0 to number of VPEs) {

offset += Number of Elements Per VPE

buckets[hashed_keys[i+offset]][vpe]++;

}

}

The second technique used is loop raking. Loop raking was first developed to maintain the stabil-
ity of radix sort. While not strictly necessary to for the correctness of hashing, loop raking is use-
ful to prevent bank conflicts in the code. It also keeps the records in order. Figure 6 shows how
the VPEs map to update the bucket array. VPE 0 (and thus vector register 0) is shown in red, VPE
1 in green and VPE 2 in blue. So on the first pass, the algorithm would generate bucket indexes
for keys 0, 4 and 7.

The scan phase must now create a total ordering of all the keys. We can create a total ordering on
the buckets by scanning each row of the buckets array and carrying the result to the next row. Fig-
ure 6 shows the resulting linear ordering “snake” after the scan is completed. Notice how the last
column of the 2-dimensional arraybucketsis the same single dimensional case.

Vectorizing the scan operation is non-trivial and beyond the scope of this report. The reader is
referred to [1] for the vectorized version of the scan.

3.2 Join

A equijoin builds a set of keys which match on the = operator. We look to the vectorized quicksort
[6] to find a method to quickly build this set. In the vectorized quicksort, the keys are partitioned
into two sets. One is the set of keys greater than the comparison key and the other set is less than
the comparison key. In the vectorized join, we are only looking for the set of keys which are
equal. However, both algorithms share the same basic idea. Both do a scalar-vector compare fol-
lowed by a compress to “filter out” the correct set of keys. Figure 7 shows how an mask vector is
generated by a scalar-vector compare followed by a compress to filter out the correct data.

9

4. Implementation Details and Experience.

The hash-join program, HMJ, implements a the Grace hash-join algorithm. HMJ is written in
standard C and runs on Unix workstations and the Cray C-90. HMJ assumes all keys are 32-bit
integers, but can handle variable-length records, as long as each record is a multiple of the target
machine’s integer size.

An important point is that during theRank-and-Permute phase, HMJ moves entire records, not
just the keys. Moving entire records is necessary in the first pass of the Grace Hash-Join when the
records are being moved into disk. During the join phase, it’s not strictly necessary to move the
entire record because if a key the first relation key doesn’t match any key in the hashed bucket,
then the record will be discarded.

The sequential version was written quickly. However, coaxing the compiler to vectorize certain
loops in the vectorized version to an acceptable degree took about a week. For example, one
would think the compiler would vectorize the two lines of the following loop in the same way.
The most straightforward way to vectorize both lines in the loop would be a strided load, shift,
mod and strided store.

rec_p = (generic_rec *) input_buf;

for (i=0,key_p = (unsigned int*) input_buf; i< num_rec ;

i++, key_p += num_ints_rec) {

(1) hash_keys[i]= (rec_p[i].key >>32) % num_buckets;

(2) hash_keys[i]= ((*key_p) >>32) % num_buckets;

Bucket R[i]

17

Key S

3

2

14

16

17

4

23

9

17

17

17

1

1

compare

compress

17

17

store

mask Result

FIGURE 7. Vectorized Join

10

}

The compiler did vectorize both loops. However, on the C-90, line 1 obtained an asymptotic rate
of 2.5µsec per element, which is the same as the scalar version. Changing the code in the inner
loop to line 2 achieves an asymptotic rate of 0.02µsec per record, a 124 times speedup! A quick
review of the assembly code generated for line 1 shows many scalar instructions in the inner loop.

The astute reader will notice that the first line uses a structure definition to replace a general
pointer operation. Cray’s vectorizing compiler could not vectorize much code without defining
the records as structures.

For the join phase, the compiler would not vectorize the compress. A similar result is reported in

the description of the vectorized the quicksort. HMJ uses the same work-around as the quicksort.
Instead of using compress, the join phase builds an index vector using the WHENEQ() Cray
library routine. WHENEQ() takes an input vector key and returns an index vector of all the ele-
ments in the input vector which match the key. The loop which permutes the keys into the final
output array did vectorize with a pragma definition to the compiler. Calling a library routine for
each input key is certainly not optimal, but it is much faster than the scalar code to implement the
same function.

Bucket R[i]

17

Key S

3

2

14

16

17

4

23

9

17

WHENEQ()

17

17

store

Result

FIGURE 8. HMJ implementation of Join

Index

4

6

11

5. Results

Because this study concentrates on vectorizing the computation, the following section does not
examine I/O time.

The plot in Figure 9 shows the total compute time on the C90 for the vectorized version of HMJ
vs. the non-vectorized version. The vectorized version used the vectorized data structures and the
scalar version uses the simpler scalar data structures. The plot shows the total compute time, in
seconds, plotted against the combined number of records in both tables (so 1,000,000 records on
the abscissa means each table was 500,000 records). Both tables had 64 byte records, and the keys
were random 32 bit integers. The compute time is defined as the sum of the following compute
phases:Extract-Buckets, Histogram, Scan, Rank-and-Permuteand Join. The figure clearly shows
that the vectorized version is faster than the scalar version.

0

5

10

15

20

25

30

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

se
c

Number of Records

Vector
Scalar

FIGURE 9. Vectorized vs. Scalar Compute Times

12

!

Figure 10 shows the breakdown for the compute phases of the vectorized version of HMJ. The
graph is a “stack-graph”, so the time shown for a phase includes all the phases “below” it. The
most interesting feature of the vectorized version is that the join time dominates all the other
phases. Recall that for each key in the join, the function WHENEQ() is called. The vector code
tries to size each bucket at 128 elements. This is because the fastest time to call WHENEQ() for
the join phase was empirically determined to be 128 elements, which is exactly the vector length
of the C90. This also has the property of reducing the number of buckets, which speeds the other
phases. Unfortunately, time constraints did not permit empirically measuring or modelling the
relationship between the number of buckets in the join phase and execution time.

0

1

2

3

4

5

6

7

8

9

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

se
c

Number of Records

Extract
Histogram

Scan
Rank-and-Permute

Join

FIGURE 10. Vectorized Compute Times

13

Figure 11 shows the same breakdown of phases as the vector version. Notice how slow the
Extract-Keysphase is on the scalar code compared to the vector code. The join phase is also com-
parable to the vectorized version. The slowness of the scalarExtract-Keys exposes just how slow
the scalar unit on the C90 is. The C90 designers seems to be flirting with a common pitfall: ignor-
ing the speed of the scalar unit.

.

0

5

10

15

20

25

30

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

se
c

Number of Records

Extract
Histogram

Scan
Rank-and-Permute

Join

FIGURE 11. Scalar Compute Times

14

Figure 12 shows where the vectorization can make a large difference in execution time. The three
plots are the asymptotic time to move a record. That is, when running at the peak rate, how fast
can joined data be moved through the processor? The time per record is obtained by taking the
total computation time and dividing it by the number of records. An UltraSparc running the scalar
code (the middle line) is included for comparison. For records of up to 128 bytes, the scalar HMJ
on the UltraSparc and vectorized HMJ on the C90 are roughly comparable. When moving large
records however, the vectorized HMJ is significantly faster. The C90’s asymptotic rate for per-
form the Hash-Join on 384 byte records is one record every 4.1µsec, which translates into a band-
width for the entire compute phase of 94 MB/s! By contrast, the UltraSparc’s asymptotic rate for
the same sized record is one every 11.5µsec, which translates into a Hash-Join bandwidth of 33.4
MB/s.

The other point to note is that the scalar unit on the C90 is slower than the UltraSparc. The Cray
designers seem to be ignoring the importance of a fast scalar unit in the design of the C90.

6. Future work

This work did not present a cost model for the vector and scalar phases of the algorithm. One is
sorely needed to evaluate trade-offs between a vector and scalar machine on this algorithm. Also,
a cost model is needed in the join phase to determine the optimal bucket size. While the sequential
version should make the buckets as small as possible, the same is not true in a vector machine.
Trade-offs between comparing keys using vector instructions and reducing the number of buckets
are possible.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400

µ-
se

c

Record Size (bytes)

C90 Vector

UltraSparc
C90 Scalar

FIGURE 12. Asymptotic Time to Move a Record

15

7. Conclusions

The initial results in this paper show a hash-join can be vectorized. The results also show that vec-
torization can be accomplished even for applications written in C. The usefulness of the compress
instruction for both the hash-join and quicksort cannot be overstated. Compress is essential for
“filtering” data sets. While many traditional scientific codes do not “filter-out” data, the author
(with no empirical evidence other than sorting and joining) would claim that is exactly what many
large non-scientific codes do.

The importance of vector scatter-gather has been widely recognized: the author is unaware of any
vector instruction set after the Cray-1 which did not have it. Scatter-gather is also a critical
instruction for the vectorized hash-join.

8. Acknowledgments

The author would like to thank Andrea Dusseau for writing the original radix sort in C on the
Cray Y-MP. The code was an invaluable guide for the hash algorithm. The author would also like
Krste Asanovic for his contributions to the join algorithm.

16

REFERENCES

1. Chatterjee, S., Blelloch, G., Zagha, M. Scan Primitives for Vector Processors. InProceedings
of Supercomputing ‘90, pages 666-675, November 1990.

2. DeWitt, D., Gerber, R. Multiprocessor Hash-Based Join Algorithms. InProceedings of VLDB
1985.

3. Dusseau, A., Ghormley, D., Keeton, K., Radix Sort: Squeezing Performance out of the Cray Y-
MP. unpublished UC Berkeley CS-267 class project, April 1992.

4. Goodman, J., An Investigation of Mutiprocessor Structures and Algorithms for Database Man-
agement, Technical Report UCB/ERL M81/33, University of California, Berkeley, May,
1981.

5. Harris, E., Ramamohanarao, K. Join Algorithm costs revisited.The VLDB Journal, 5(1), pages
64-84, 1996.

6. Levin, S. A Fully Vectorized Quicksort.Parallel Computing, December 1990.

7. Mishra, P., Eich, M. Join Processing in Relational Databases.ACM Computing Surveys, March
1992

8. Zagha M., Blelloch G. Radix Sort for Vector Multiprocessors. In Proceedings of Supercomput-
ing ‘91.

