Radix Sort and Hasn-Join for
Vector Computers

Ripal Nathuji
6.893. Advanced VLS| Computer Architecture
10/12/00

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

What is Radix Sorting?

digit 0 digit 1 digit 2
1(9]5 184 -"}3 fllﬂ]
962 962 2]4]3 EE
s[5 l3 4 (82 9 [6]2 2 [4]3
18E 3[2]2 18] 3 (22
2]4]3 HEE 4[5]2 3 lo|s
1]o]s 2[4]3 SEE 4 [8]2
BEE 3lols 3]o]s 8|3
AEIE 1oz 1]o]s 962

o Sort by least significant digit instead of most significant digit

e Better than sorting by most significant digit since it saves
having to keep track of multiple sort jobs

6.893

Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Properties of Radix Sorting Algorithms

Treat keys as multidigit numbers, where each digit isan
integer from <0...(m-1)> where mis the radix

Theradix misvariable, and chosen to minimize running
time
Example:
32-bit key as 4 digit number
mis equal to the number of distinct
digitsso m=2*"* =2° = 256

Performance: Runsin O(n)
Other comparison based sorts such as
quicksort run in O(n log n) time
***Not advantageous for machines w/cache

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Serial Radix Sort
« N =#of keysto sort

COUNTING-SORT K= array of keyS
sogRwKes D = array of r-bit digits
Buckei[t] — 0 Values of Bucket[] after each phase:

doj—0Oto N —1)
Buckel|D[j]] — Bucket[D[j]] + 1 ° H|Stogram-KeyS:

SCAN-BUCKETS

- Bucket[1] contains the number
g Ei;[l] of digits having valuei
Bucket[i] — Sum Scan-Buckets:
RMH{;;:;E; - BUCket[I] Contai ns the number
o e of digitswith values<i
R[A] — K] Rank-And-Permute:

Buckel|[D[j]] — A+ 1

Each key of valuel is placed
In its final location by getting
the offset from Bucket[i] and
Incrementing the bucket

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

How Can We Parallelizethe Serial Radix Sort?

Problem:

e Loop dependenciesin all three phases

Solution:

o Useaseparate set of buckets for each processor
Each processor takes care of N/P keyswhere P is
number of processors.

Buckets (j)
5

0 1 2 i — |

0
l
Processors (1) .

This resolves the data dependencies, but creates a new
problem with Scan-Buckets: How can we sort the

digits globally instead of just within the scope of each
individual processor.

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Fully Parallelizing Scan-Buckets

Instead of having each processor ssimply scan its own
buckets, after doing Scan-Buckets we would like the
value of Bucketd[i,j] to be:

! i1
Z Buckets[k. m] + Z Buckeis[k. j]
E_0rm_0 k_0

The sum can be calculated by flattening the matrix
and executing a Scan-Buckets on the flattened matrix

] - - - .o
[Fs kd i iy
[
- .4 - E
o'k

b " . -
— -
= B

= i

= £ L
- E=

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

TechniquesUsed In the Data-Parallel Radix Sort

 Virtua Processors
e Loop Rakings

e Processor Memory Layout

6.893

Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Virtual Processors
V ector multiprocessors offer two levels of parallelism:
multiprocessor facilities and vector facilities.

To take advantage of this, view each element of a vector
register asavirtual processor. So a machine with register
length L and P processors has L x P virtual processors.

Now the total number of keys can bedivided into L x P

6.893

Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

L oop Raking

Usually operations on arrays are vectorized using strip
mining. In strip mining an element of a vector register
handles every Lth-element

Unfortunately using strip mining each virtual processor
will have to handle a strided set of keysinstead of a
contiguous block as required by the parallel algorithm

Using atechnique called loop raking, each virtual processor
handles a contiguous block of keys. Loop raking uses a
constant stride of N/L to access elements

=
1]
- - ? ?
=
1]
-
-

S
=
(8]

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Processor Memory L ayout

A memory location X is contained in bank (X mod B)
where B isthe number of banks
e Simultaneous accesses to the same bank result in delay

There are two possible ways to lay out the buckets in memory:

o Place the buckets for each virtual processor in contiguous
memory locations:

This approach could cause multiple virtual processorsto
access the same bank simultaneoudly.

» Place the buckets so that the buckets used by each virtual
processor are in separate memory banks (i.e. Place all the
buckets of a certain value from all virtual processorsin
contiguous memory locations):

This approach keeps multiple virtual processors from
accessing the same bank simultaneously

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

Processor Memory Layout: Example

Bank O
Ox0000
Bank 1
Ox0001
O0x0002
Ox0003
0Ox0004
Bank 2
O0x0005
Ox0006
O0x0007
\ Bank 3

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

| mplementation of Radix Sort on 8-processor CRAY Y-MP

Four Routines:
1. Extract Digit:
o [Extracts current digit from keys and computes an index
Into the array of buckets
o Usesloop raking
« Timeforrouting: Tgyyaq pigi=1-2N/P
2. Histogram Keys:
o Usesloop raking
 Timefor routine: 2 steps
TCI ear-Bucketszl' 1.2
THistogram-Keys:2'4'N/P
3. Scan Buckets:
o Usesloop raking
e Timeforrouting: Te. . puckes—2-92"-L-PIP=252"L

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

| mplementation of Radix Sort on 8-processor CRAY Y-MP

4. Permute Keys:
o Usesloop raking
 Timeto permute avector ranges from 1.3 cycles/element
to 5.5 cycles/element
e Timeforroutine: Tg i ang-permute—3-2N/P

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Performance Analysis

Total sorting times:
TCounting-Sort:L 'Zr'Tbucket_l_N/ I:)'Tkey
* Tratixso=ML-2" Ty tN/P Tygy
Choice of Radix:
 Theoptima valuefor r increases with the number of
elements per processor
e Choosing r below the optimal value puts too much
work on keys, choosing r above the optimal value puts
too much work on buckets
« Vauefor r and approximation of total sort time;

_ T
L- :I!i'l'n..k:l
= IgIN/P)—1g(L)—1

lg(V/P - |—lgirin2 — 1]

[TR b- ':-""..-'.IIJ] z-l!l‘j".':i;kc! s
-lr:{.'ntzl.'c-.\--r| - !gl:."'-.l.l'ljrj] = Ig[Ji,.l 1 (7 3 -Eu:}-)

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Choosing a Valuefor r

400
350
300
250
200

150

Time per Key (6 nsec clocks)

100

a0 r==%§ e —

D 1 1 1 1
2044 B192 32768 131072 524288
MNumber of Keys

Time Per Key (B nsec clocks)

Key Wiork Bucke: Work

i 1 1 1 A A 1 1 1 1 1
1 2 3 4 5 8 7 8B 9 10 11 12 13 14
Bits Per Pass (r)

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Predicted vs. M easured Performance

180
160
140
120
100

80

a0
40 |
20|

Measured Performance

Fredicied Performance

Time Per Key (6 nsec clocks)

YT 5192 33760 131072 534288
Keys

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Other Factors of Performance

 Vector Length

e Multiple Processors

e Space

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Varying Vector Length

Decreasing the vector length decreases the number of virtual

Processors

Advantage: decreases the time for cleaning and scanning
buckets

Disadvantage: increases the cost per element for performing the
histogram, T,

Conclusion: Reducing the vector length isonly beneficial if
(N/P < 9000)

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Changein Performance with Number of Processors

« |f N/Pisheld constant, speedup is linear with increase
inP

Speedup

B
7L
&

= M L o
— 1 °© 1T 7T

2 3 4 5 6 7 8
Mumber of Processors

o |f Nisfixed, speedup isnot linear with increasein P
due to changes in the optimal r

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Memory | ssues

Memory needed for Radix Sort:
 Temporary array of size N to extract current digit +
an array of size N for destination of permute +
array of size L-2"-P for the buckets » 2.5N
Possible ways to conserve memory:
» Extract digit as needed instead of using temporary
array
 Lowerradix (i.e. 2" term)
e Reduce vector length (L)

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Conclusonson Vectorized Radix Sort

e Radix sort can be Vectorized using three major techniques
1. Virtual processors
2. Loop raking
3. Efficient memory allocation

e Ovedl performance can be optimized by adjusting
1. Theradixr
2. Thevector length L
3. Number of processors
4. Memory considerations

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

|ntroduction to Hash-Join

 Thejoin operation isone of the most time-consuming
and data-intensive operations performed in databases

 Thejoin operation is frequently executed and used

» |dea vectorize the computational aspects of the hash
and join phases

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

Equijoin

Relation R

Relation S

Product Customer Customer Z1p
Ultra Dave John 94305
Indy John Hank 08195
Alpha Hank Bill 02139
Relation Q

Product Customer Z1pP

Indy John 94305

Alpha Hank 98195

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Naive Approach

For esach row in 5 do
For each row in R do
if {Ra.key == 3bh.key) then

concatenate Ra, Sbh and place in result Q

This approach istoo expensive and runsin O(n?)

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Reduction of Loads by Hashing

Bucket
Si

Keys from S

By hashing the tuples of each relation into buckets, we
change from having to compare the entire areato just
the areas in which keys hash to the same bucket (shaded

areas).

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Grace-Hash Join

Two Phases:

1. Redations are hashed into buckets so that each bucket
Is small enough to fit into main memory

2. A bucket from one relation is brought into memory
and hashed. Then every key of the second relation is
hashed and compared to ever key of thefirst relation
which hashed to the same bucket.

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Phases of Sequential Hash

o Extract-Buckets and Histogram Phases
e Scan Phase

 Rank and Permute Phase

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

Extract-Buckets and Histogram Phase

Keys

3
2
14

16

17

Hash

Hashed Keys (contain the Bucket #)

-

Histogram

Ok e |1

- o o o |— = |k ke

i

buckets

2

2

Hash function used is key mod (number of buckets)

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

Scan Phase

buckets

Scan
0*t4 t2F2 1
0 4 6| 8
sum :=0;
for (i :=0 to number of buckets) {
val := bucketas[i];
buckets[i] := =sum;

sum += wal;

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Rank and Permute Phase

Keys Permute Result buckets

After this phase the result and buckets arrays form a hash table

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Sequential Join Algorithm

» Thedisk bucket R; is brought into memory

« Eachrecord of S ishashed and compared to every
record in R

 Any matchesthat are found are concatenated and
written to final output file

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

Vectorized Algorithm

Use two techniques:
1. Virtual processors

2. Loop raking

6.893

Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Hashed Keys
Iteration 0
Iteration 1

Iteration 2

TYWYYYYY

buckets[i][VPE]

vector len

-l e

VPE 0 VPEO VPE1 VPE 2

Histogram

YPE |

VPE 2

Scan +

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Join

Bucket R[1] mask Result

3 17] store 17
2 17 » 17

14

16

17 | compare]

17] COMpress

Mask vector is generated by a scalar-vector comparison

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Problemsthat Occurred

Compiler exhibited problems vectorizing certain parts of the code:

o Getting the compiler to vectorize certain loops in the
code

 The compiler would not vectorize compress in the Join
phase

6.893 Radix Sort and Hash-Join for Vector Computers Ripal Nathuji

Results (usng CRAY C90)

30 .
E’t:c or —-—
Scalar ——
25
20}
g15
0}
5
05 00000 Tet06 1.3c706 2ci06 1.3c706 3006 33c+06

Number of Records

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

V ector:

30
ey
Rank-and-Pern I.?‘%-_
5t r.[}nfn a]
20k -
g 15t 3 4
o
10} .
sl .
0 a . - B a i
) S00000 le+06 1.5e+06 2e+06 2.5e+06 Je+6 3.5e+06
Number of Records
9 . . . — —
. Extract —
8 Histosram —
a S | -
Rsnk—ant!—l-‘ern]ule .=
Join -
71
6 - o
5l : .
)
: 4 o L
3k .
2 o - " o
1k "
o Les

Se+06

Nil| rﬁ-{}er of

6.893

Radix Sort and Hash-Join for Vector Computers

Ripal Nathuji

|-sec

16

14 ¢

12}

10 §

Results
C920 Vector
C90 Scalar
UltraSparc
of#fr—’—
50 100 150 200 350 300 350

Record Size (bytes)

400

